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Abstract

The well known number partition problem is NP-hard even in the following version:
Given a set S of n non-negative integers; partition S into two sets X and Y such
that |X| = |Y| and the sum of the elements in X is as close as possible to the sum
of the elements in Y (or equivalently, minimize the maximum of the two sums). In
this paper we study the following generalization of the partition problem: given an
edge-weighted graph G containing two edge-disjoint spanning trees. Find a pair of
edge-disjoint spanning trees such that the maximum weight of these two trees is as
small as possible. In the case when G is precisely the union of two trees this problem
may be seen as a generalization of the partition problem in which we have added a
graph structure to the numbers (through the edges) and the extra restriction that
only sets X and Y which correspond to trees in G are valid partitions. We first show
how to obtain a 2-approximation via an algorithm for weighted matroid partition.
Then we describe a simple heuristic which when applied to the 2-approximation
above will result in a solution whose value is no more than % times the value of an
optimal solution. We also show that the approach above may sometimes exclude all
optimal solutions. Both the partition problem and its generalization to the problem
above on edge-disjoint spanning trees are special cases of the problem of finding, in
a weighted matroid with two disjoint bases, a pair of disjoint bases which minimize
the maximum of their weights. In the last part of the paper we give some results on
this problem for transversal matroids which turn out to be analogous to those for
graphs.

Key words: Edge-disjoint spanning trees, approximation algorithm, graphic
matroid, transversal matroid, matroid partition algorithm, approximation scheme.

* Corresponding author.
Email addresses: jbj@imada.sdu.dk (Jorgen Bang-Jensen), goncalve@labri.fr

Preprint submitted to Elsevier Science 10 September 2007



1 Introduction

In communication networks that are to be shared by several parties, a desirable
property would be that these parties could use disjoint parts of the network,
hence avoiding interference of messages and retaining privacy. One example of
such a situation could be when two phone companies share the same optical
network. Here it would be useful to be able to divide the cables of the network
into two parts A, B plus maybe some unused cables C' such that company 1
used part A, company 2 part B and C'is left for other purposes. Let us assume
that both companies wish to be able to service all possible clients (meaning
that A and B must be connected networks and span all clients) and that no
company wishes to pay more than absolutely necessary for their network (in
particular, it does not want to pay much more than the other company). Here
the price to pay is a fixed price for each section of the optical network and
varies according to the length and other properties of the particular section.
The problem above can be formulated as the following graph theoretical prob-
lem. Note that if a graph contains two edge-disjoint spanning subgraphs, then
in particular it contains two edge-disjoint trees and we make the reasonable
assumption that no cable price is negative.

Problem 1.1 Given a graph G containing two edge-disjoint spanning trees
and non-negative real valued weight function w on the edges. Find a pair of
edge-disjoint trees T, T which minimizes' max{w(T),w(T)}.

In the next section we show, by a straightforward reduction from the parti-
tion problem, that Problem 1.1 is NP-hard, even in the case when G is just
the union of two spanning paths. In fact one may view Problem 1.1 as a re-
stricted partition problem in which, besides the numbers, an underlying graph
structure is given and valid partitions must correspond to spanning trees in
the graph. One can easily generalize the partition problem to the following
NP-hard problem which we call Partition(2k): Given a set S of n > 2k
non-negative integers. Find two disjoint sets X,Y C S each of size k so that
max{Y .cx S, Yy t} is as small as possible. It is not difficult to see that this
problem contains the partition problem as a special case (see the proof of
Proposition 2.1 below). How does one solve this problem heuristically? In par-
ticular, how do we find the right set of 2k elements to partition? The answer
is easy: first sort the elements of S according to increasing value and consider
the first 2k elements only. Now apply your best heuristic for the partition
problem (into sets of equal size) to this part. It is not difficult to show that
this reduction cannot remove every optimal solution to the original problem
(for a proof see Section 7) and hence we may safely (and quickly!) reduce to
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this potentially much smaller problem.

Inspired by this, let us go back to the problem of the phone companies and see
what a similar idea would be here. If instead the phone companies collaborated
and wanted to get disjoint connected networks so that the total price of the
two networks was minimized, we would have the following graph problem.

Problem 1.2 Given a graph G containing two edge-disjoint spanning trees
and with edge weights w : E — R, . Find a pair of edge-disjoint spanning trees
Ty, Ty which minimizes w(Ty) + w(T3).

We show in the next section that Problem 1.2 is polynomially solvable. Since
every solution to Problem 1.1 consists of two edge-disjoint spanning trees, it
is easy to see that the following lower bound is valid. Here OPT\ i, jax and
OPT insum denote the value of the optimal solution to Problems 1.1 and
1.2, respectively.

OPT

minmax =

OPTminsum
O T | )

Below we will use the phrase “the min sum reduction” for the approach
where we replace the edges of the starting graph by the edges of two edge-
disjoint spanning trees which form an optimal solution to Problem 1.2. By the
observation above we have

Proposition 1.1 Let G be a graph containing two edge-disjoint spanning trees
and let w be a non-negative weight function on the edges of G. Applying the min
sum reduction and taking any pair of edge-disjoint trees in the resulting graph
gives a solution to Problem 1.1 whose value is at most twice the optimum.

In this paper we show how one can obtain a %—approximation algorithm for
Problem 1.1 by first performing the min sum reduction and then applying a
heuristic for Problem 1.1 on the graphs which are the union of two spanning
trees. We also give an example which shows that the approach of working
only on the edges of an optimum solution to Problem 1.2 may result in an
optimality gap of %. On the other hand, in [1| we show that for a large variety
of instances the min sum reduction not only preserves the value of an optimal
solution but also make Problem 1.1 much easier to solve by (meta-)heuristics.
Finally, we consider the further generalization of the partition problem to
matroids. As we will see below Problem 1.1 can be formulated as a special
case of a more general problem of finding disjoint bases in a matroid such that
the maximum weight of the two bases is minimized. Also for this problem the
min sum reduction is valid and corresponds to finding two disjoint bases whose
total weight is as small as possible. Thus also for general matroids we obtain a
2-approximation to the min max problem via the min sum solution. Another



class of matroids of practical interest is the class of transversal matroids. In
the last part of the paper we give some results on the analogue of Problem 1.1
for transversal matroids.

2 Terminology and Preliminaries

In this paper all graphs may have parallel edges but no loops. A loop less
graph is simple if it has no parallel edges. We use standard terminology on
graphs such as that used in [2,12].

2.1 Matroids

We start by recalling the definition of a matroid. For terminology on matroids
not defined below we refer to [10,11]. A matroid M consists of a set S (called
the ground set) and a collection F of subsets of S, satisfying the following two
axioms:

(A)IfY € Fthen VX CY: X € F.
(A2) X,)Y e Fand [X|>|Y|=3re X -Y: Y +z € F2.

The subsets in F are called independent and all other subsets of S are
dependent. A circuit is a minimal dependent set. A base is a maximal®
independent set. It is an easy consequence of (A2) that all bases of M have
the same cardinality.

When we speak of algorithms for a matroid M it often makes no sense to
assume that we have a list of the independent sets of M. Instead we assume
that we have at our disposal an independence oracle O which given a subset
X of the ground set will return the answer “yes” if and only if X is independent
in M. If X is dependent we also assume that O will return a circuit C' C X.
A matroid algorithm A is polynomial if it makes only a polynomial number
of calls (measured in the size of the ground set S) to an independence oracle
and all other operations of A can be bounded by a polynomial in |[S|. An
independence oracle is polynomial if it can provide its answer in polynomial
time with respect to the size of ground set.

Suppose that besides the matroid M = (S, F) we also have a weight function
won S. By an optimal base of M (w.r.t. w) we mean a base B such that w(B)
is minimum over all bases of M. Among many nice properties of matroids the

2 Here and in the rest of the paper we use the shorthand notation Y +x for Y U{x}.
3 both minimal and maximal are with respect to inclusion



following is the most useful: one can find an optimal base of M by sorting the
elements of S according to increasing weight w(s;) < w(sy) < ... ... w(sg))
and then starting from B = (), iterate through the elements in sorted order and
adding s; to the current B if and only if B+ s; is independent. This algorithm,
called the greedy algorithm for matroids, always returns an optimal base (see
e.g. |10, Section 7.4]).

Theorem 2.1 (Matroid union [11]) Let M, = (S, F1), My = (S, F2) be
matroids on the same ground set S. Define F to be the following collection of
subsets of S: X € F if and only if there exists a partition X = X1 U Xy such
that X; € F; fori=1,2. Then M = (S,F) is a matroid called the union of
My and My and is denoted by M = MV Ma.

Theorem 2.2 [10, Theorem 13.1.1] Given matroids My = (S, F1), My =
(S, F2) and polynomial independence oracles for My, My we can check in
polynomial time whether a given set X C S is independent in My V M.

Combining this with the fact that the greedy algorithm is polynomial when
we have a polynomial independence oracle we get the following.

Theorem 2.3 [10, Chapter 13] There is a polynomial algorithm for checking
whether a matroid M = (S, F) with a polynomial independence oracle O has
two disjoint bases and in case the answer is “yes” and w 1s an arbitrary weight
function on S we can find in polynomial time a pair of disjoint bases By, By
minimizing w(By) + w(Ba) over all pairs of disjoint bases.

2.2 Edge-Disjoint Spanning Trees in Graphs

Now we are ready to show how Problem 1.2 can be solved via matroid algo-
rithms. Given a graph G = (V| E') we can define a matroid M(G) (called the
circuit matroid of G) by taking F as the ground set and as independent sets
those subsets of £ which induce an acyclic graph. It is easy to see that M(G)
is indeed a matroid and that the bases of M(G) are precisely the maximal
spanning forests of G' (which are the spanning trees provided G is connected).
Thus the following is a direct consequence of Theorem 2.3.

Theorem 2.4 Problem 1.2 is polynomially solvable.

The following lemmas (which also hold generally for bases of matroids) are
easy to prove (see e.g. |12, Exercises 8.2.17 and 8.2.21|

Lemma 2.1 Let T and T’ be edge-disjoint spanning trees and lete € E(T), €’ €
E(T"). ThenT+¢' —e and T'+e— €' are (edge-disjoint) spanning trees if and



only if € is on the fundamental cycle* of T' + e and e is on the fundamental
cycle of T + €.

Lemma 2.2 Let Ty and T, be edge-disjoint spanning trees. Then for every
e; €T;,1=1,2, there exists at least one edge e3_; € T3_; such that T;—e;+e3_;
and Ts_; — e3_; + e; are (edge-disjoint) spanning trees (possibly e; = e3_;).

Definition 2.1 A 2T-graph is the union of two trees having the same vertex
set. In particular every 2T-graph on n vertices has 2n — 2 edges and may
contain parallel edges.

We observe that since every vertex in a 2T-graph G has at least one edge in
each tree, we have 6(G) > 2.

Proposition 2.1 Problem 1.1 is NP-hard.

PROOF. The partition problem is NP-hard even in the following version
(see [6]): Given a set S of 2n integers S = {x1,y1, %2, Y2, ..., Tn, Yn} find a
partition of S into two sets S, 5, of n integers each so that no S; contains
both z; and y; for some j and | ¥ ,cg, © — Y4, | is minimized ®. Given such
an instance we construct an instance of Problem 1.1 by letting G be the graph
with n + 1 vertices {vg,v1,...,v,} and two edges between v;_; and v; with
weights z; and y; respectively for each ¢ = 1,2,...,n. Clearly any solution
T,T to Problem 1.1 corresponds to a valid partitioning of S and vice versa
and optimal solutions are preserved by the transformation. O

Note that the proof of Proposition 2.1 shows that Problem 1.1 is NP-hard
even when G is the union of two spanning paths and hence also for 2T-graphs.

3 A heuristic for partitioning the edges of a 2T-Graph evenly

In this section the weight of an edge may be any real number.
Definition 3.1 A d-vertex is a vertex of degree d.

First observe that every 2T-graph has a 2-vertex or a 3-vertex. This follows
from the facts that there is no vertex of degree less than two and the sum of

4 If T is a tree and wv is an edge not in T joining two vertices u,v of T, then the
fundamental cycle of T+ uv is the unique cycle formed by the uv-path in T and
the edge uv.

® Given a normal instance {s1,82,...,8,} of the partition problem simply let z; = s;
and y; = 0.



the degrees is 4n — 4.

Theorem 3.1 The edge set of every 2T-graph G with weights w on the edges
can be partitioned into two spanning trees Ty, and T}, with w(Ty) > w(T;), such
that

w(Th) — w(T}) < maxw(e) —minwle) . (2)

PROOF. The theorem is true if G is of order 2. We now prove the claim
by induction on the order of G. Assume that we have proved the claim for
2T-graphs of order £k < n. Let H be a 2T-graph on n vertices and let T} and
T, be two spanning trees partitioning the edges of H.

Case 1: there is a 2-vertex v in H. Let e; and ey be the two edges
adjacent to v such that w(e;) > w(ey) and consider the graph H' = H — v.
Since degy, (v) = 1 and degy, (v) = 1 the graphs 7T} —v and 75 —v are connected
spanning trees in H'. So the graph H' is a 2T-graph with order smaller than H.
By induction, there are two trees 7T} and T} partitioning H' with w(7}) > w(T)
such that ' = w(T}) — w(7T}) < maxeer; w(e) — mineer; w(e).

Now let Ty = T] + e; and Ty = T} + e5. We have that |w(Ty) — w(Th)| =
|w(T}) +w(e2) —w(T}) —w(er)] , and so, [w(T2) —w(T1)| = [ —(w(er) —w(ea))|-
We finally obtain that —(w(e;) — w(e2)) < w(Tz) — w(T1) < . Thus, if
w(T1) > w(T3) then

w(Th) — w(Tz) <w(e) —w(ey) < Ierg%w(e) - geli%;w(e) )

since e; € Ty and ey € Ty. Similarly, if w(73) > w(7T7) then

- <0< — mi < — mi
w(Ty) —w(Ty) <O < I(}éé%i(w(e) Igélj{l}w(e) < Iexézgcw(e) geuTrllw(e) ,

where we used that maxer, w(e) = max{max.crs w(e),w(ez)} and

mineer; w(e) = min{min.czy w(e),w(e1)}. Thus the partition of H into 7} and
Ty, satisfies (2) (with the naming chosen so that 7, = 77 if w(T}) > w(7T») and
Ty, = T, otherwise).

Case 2: there is a 3-vertex v in H. Without loss of generality v has
degree one in T}. Let e; = vv; be the edge incident to v in 77 and let e; = v
and e3 = vvs be the edges incident to v in 7T5. By Lemma 2.2 we may assume
that

w(er) < max{w(es),w(es)} . (3)



Consider the graph H' = H — v + vyv3 obtained by deleting v and adding a
new edge vovs and setting w(vevg) = w(ey) + w(es) — w(ep). Since the graphs
T, — v and T, — v + vyv3 are edge-disjoint trees and cover H’, the graph H' is
a 2T-graph with order smaller than H. By induction, there are two trees T}
and 7] partitioning H’ with w(7}) > w(7}) and such that w(7}) — w(T}) <
maxXeer; w(e) — mineer w(e).

Case 2A: the edge vovs is in 7). Let T, = T/ + e and T), = T} + es +
e3 — vau3. Then, w(T}) = w(T]) + w(er) and w(T}) = w(T}) + w(ey). Let Q =
w(Th)—w(T}). It is clear that Q = w(T})—w (7)) < max.ery w(e)—min.er; w(e).
If max.er, w(e) > maXeer w(e), then (2) holds for T), and T}, so we assume
that w(vovs) > max.eq, w(e). Since w(vavs) = w(es)+w(e2)—w(er) and we have
maxecr, w(e) > max{w(es),w(es)} we know that min{w(es),w(es)} > wley).
By Lemma 2.1, we can exchange the edge e; with one of e; or e3 to get two new
edge-disjoint spanning trees. Without loss of generality assume that we may
exchange e; and ey. Consider the trees 1) = T)+ey—ey and T = Tj, +e1 —es.

Now it is clear that
W(T7) = w(I7) = Q + 2u(er) — 20(es) | (4)

Assume first that w(7}) > w(7}*) holds. Then we have

w(Ty) —w(Ty) < Igg?W(e) - géinl,M(e) +2w(er) — 2w(es) - (5)

Since max.ery w(e) = w(vavz) and w(er) < w(ey) we have

w(Ty) —w(T}) <w(ey) + w(ez) —w(er) —minw(e) + w(e;) —w(ex)  (6)

e€T]/
=w(e3) — minw(e) (7)
e€T]/
< — mi . 8
_gég,gw(e) ggggl}W(e) (8)

Hence (2) holds for the pair (7}, 7).

Suppose now that w(7}") > w(T}). Define the number M by

Then



w(Th) —w(Th) = M + w(ez) —w(er) . (10)

w(I7) = w(Ty) = =M + w(ex) —w(er) - (11)

Now it follows easily that (2) holds for one of the pairs (7},,7;) or (77, T)).
Recall that w(7),) — w(7;) > 0. Hence if M < 0 (2) holds for (7},,7;) and
otherwise it holds for (T}", T})).

Case 2B: the edge vyv; is in 7). Let T}, = T} +e; and T} = T + e +
es — voug. Let Q = w(T},) — w(T}) and observe as above that Q = w(7}) —
w(T}) < max.er; w(e) —mineery w(e). By (3) w(vavs) = w(ea) +wles) —w(er) >
min{w(es), w(es)}. Hence mineer, w(e) < mineer; w(e) and (2) holds for 7}, and
T, O

4 A Better Approximation Algorithm for Problem 1.1

Lemma 4.1 Let G be a 2T-graph and let T),,T; be a partitioning of G into
2-edge disjoint spanning trees such that (2) holds. Then

w(Ty) < gmax{rgeaé{w(e),@} : (12)

PROOF. By (2) and the fact that w(7},) + w(7;) = w(G) we have
2w(Th) = (w(Th) + w(T)) + (w(Th) — w(Th)) (13)
<w(G) + (mazeer,w(e) — minwe)) (14)
<w(G@)+ maxw( ). (15)

Let ¢’ be chosen such that w(e’) = maxeeqgw(e). If w(e’) < @ then (15) im-
plies that 2w(7}) < 3w(G) and thus (12) holds. Now assume that w(e’) > @
Then (15) implies that 2w(7}) < 3w(e’) showing that (12) holds again. O

Lemma 4.2 Let G be an edge-weighted graph with weight function w, such
that G contains two edge-disjoint spanning trees and let Ty, Ty be a solution to
Problem 1.2 on G. Then for every pair (T,T") of edge-disjoint trees in G we
have

max w(e) > max wle) . (16)

ecTUT ecT1UTy



PROOF. This follows from the fact that (77 UT3) is an optimal base in the
matroid M = M(G) vV M(G) (see e.g. |10, page 153]). O

Theorem 4.1 There exists a %—appmm’mation algorithm for Problem 1.1.

PROOF. As we argued in the introduction, given any edge-weighted graph
H with two edge-disjoint spanning trees, we can find an optimal solution T, 7"
to Problem 1.2 in polynomial time. Now let G be the spanning 2T-graph of
H consisting of precisely the edges of 7" and T". Clearly, for every solution
(T1,T3) to Problem 1.1 on H we have w(T}) + w(T3) > w(T) + w(T") = w(G),

max{w (7)), w(Ty)} > %) . (17)

Let (77, T5) be an optimal solution to Problem 1.1 on the graph H. By Lemma
4.2 and the fact that (77, Ty) satisfies (17) we have

G
max{w(Ty),w(Ty)} > max{meag(w(e),#} : (18)
Now applying Lemma 4.1 we get that for any pair (7},7;) of edge-disjoint
trees in G satisfying (2) we have

w(Th)<;max{r&aécw(e),@} (19)
< S max{u(T}), (7)) (20)

It remains to show that in G we can find a pair T}, T satisfying (2) in polyno-
mial time. It is easy to see that the proof of Theorem 3.1 can be turned into a
polynomial algorithm split for finding two trees T, and 7, which satisfy (2).
The algorithm is described in Algorithm 1 below. The main observation is that
by doing O(n) work at each step we can obtain that (2) holds in each step as we
construct the two trees bottom up. The complexity of the algorithm is clearly
at most O(n?). Hence the total complexity of the approximation algorithm is
dominated ® by that of finding an optimal solution to Problem 1.2.

O

6 The algorithm for finding an optimal solution to Problem 1.2 makes O(n) calls
to an independence oracle which is implemented as a search for a certain path in a
graph of size at least O(n). See [10, Chapter 13] for details
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Algorithm 1. : Split
Input: A 27-graph H and two edge-disjoint spanning trees 77,75 of
H
for j=1ton—1do
if H has a 2-vertex u then
Remove u from H and update T} and T5 by removing the edge incident
to u from both.
else {H has a 3-vertex u}
Choose i such that u is a 1-vertex in 7; and remove the edge zu incident
to u from T;.
Remove the edges xu and yu incident with u in T3;_4
Add a new edge xy with weight w(zu) + w(yu) — w(zu) to Ts;_1.
end if
end for
Set Ty, = T; and T; = T5_; where w(7T;) = max{w(T1),w(T3)}
Denote by v; the vertex removed from H in the jth iteration above.
for j=n—1to1do
if v; had degree 2 when removed from H then
Add the heaviest of the two removed edges to 7; and the other to Tj,.
else {v; had degree 3 when removed from H}
Let e, es, and e3 be the removed edges and let e be the edge that
replaced e, and es.
Replace e by es and e3 in the tree containing e and add e; to the other
tree.
If it is possible to obtain a lower value of the heaviest tree by exchanging
e; with either e and e3 (while ensuring we have two spanning trees)
then do this.
end if
Rename T}, and 7} such that T} is the heaviest of the two trees.
end for

5 How Good is the Min Sum Reduction?

As we saw above we can get a %—approximation algorithm for Problem 1.1 by
first applying the min sum reduction and then applying the algorithm split.

The example in Figure 1 shows that in some cases the min sum reduction may
remove all optimal solutions to Problem 1.1. Let T} = {105, vav4, U304, V405 },
Ty = {0109, v1V3, V10y, VU5 }, T}, = {V103, Vav4, V304, V3U5} and finally

T, = {vyv4, vov3, Vovs, V405 }. Then (11, T3) and (T}, T;) are both pairs of edge-
disjoint spanning trees. The weights of these trees are w(7}) = 2k + p + 1,
w(Th) =k+2p+ 1, w(Ty) =2k +2, w(T}) = k+ 3p+ .

11
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Fig. 1. In (a) the whole graph is shown. The weights should satisfy that £ > p > 1.
In (b) the optimum solution to Problem 1.2 is shown. The dotted and dashed edges
represent the trees T} and Th, respectively. In (c¢) the optimum solution to Prob-
lem 1.1 is shown. The solid and fat dotted edges represent the trees 7} and T,
respectively.

Note that (7}, T») is an optimal solution to Problem 1.2 since there are only 5
edges with a cost lower than k and these are all included in T7 U T5. It is also
easy to verify that (77,75) is an optimal solution to Problem 1.1 on the 2T-
graph T U T5. We will now show that by choosing the weights appropriately
we can exclude all optimal solutions to Problem 1.1 by performing the min
sum reduction to reduce the instance to the optimal min sum solution 77 UT5.

We want to ensure w(7y) < w(T}), w(T}) < w(Th), w(1) < w(Ty) and w(Ty) +
w(Ty) < w(Ty)+w(T}). If weset « =1, we need 1 < p < k/3. If we set p = k/3
we get:

7
w(Tl) = gk =+ 1 and W(Th) = Qk + 2 s
which gives us a lower bound of

w(Ty)  th+1 7

_ Las k .
W(Ty)  2%k+2 60N

Above we had w(T},) + w(T}) — (w(T1) + w(T2)) = 4k +3 — (4k+2) = 1.
If instead we set « = k — 4 and p = 2 we get a smaller difference between
w(Ty) = 2k +3 and w(T},) = 2k + 2, but a bigger difference between the sums:

12



Fig. 2. Here k is an integer greater than 2 and p is the number of nodes minus two (p
should be even). The optimum solution is to set T; = {e1,es,€5,..., €25, €2n—2}
and Ty = {ea,e4,¢€6,...,€2,—4,€2,—3}. In worst case the algorithm split gets the
solution 71 = {ey,eq,€5,¢€8,...,€2,—3} and To = {es, e3,€6,€7,..., €2, 2}

w(Ty) +w() — (w(Th) + w(Ty)) = 4k +4 — (3k + 8) = k — 4. Thus the pro-
portion between the total weight of a min sum solution and an optimal min
max solution may be almost %.

6 The Case of 2T-Graphs

For 2T-graphs there is no prepossessing step (via a min sum solution) before
we apply algorithm split, so the question is whether that will lead to a better
approximation guarantee for the algorithm split.

If we just take the generic version of split then we can show a lower bound
of 3/2 for the algorithm. For the graph in Figure 2 the optimum solution is
to set T1 = {e1,€e3,€5,...,€, 5,6 o} and Ty = {ea, €4, €6,...,€0,_4,€2, 3}
This gives w(Ty) =p(k—1)+1=pk —p+1 and w(Ty) = p+ (k—1)p = pk.

Since we have not given any order for which the algorithm picks the vertices
to of degree 2 (there are none of degree 3) to remove, we can assume the worst
case scenario. Assume the algorithm removes the vertices from the right, i.e.,
first v,, then v,_; and so on down to v;. In the first rebuilding step we set
Ty, = {e1} and T} = {es}. In the next step we balance best possible and get
Ty = {e1,es} and T; = {eq, €3}, in the third step T), = {e1,e4,65} and T; =
{ea, e3,¢e6}, and so on. Before the final step we have w(7},) = w(T}) = (p/2)k.
Thus, after the final step we have T}, = {ej,eq4,€5,€s,...,€0, 3} and T} =
{ea, €3, €6, €7, ..., €9, 2}. This gives w(T},,) = (p/2)k+ (k—1)p = (p/2)(3k —2)
and w(T;) = (p/2)k + 1. This gives a lower bound of

(p/2);3kk ~2) _ K2 sk,

To get a better approximation guarantee than 3/2 we will try to give a strategy
for picking the nodes of degree 2 or 3. We will call this strategy keep-max
Instead of taking first the nodes of degree 2 and then 3 in arbitrary order when
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Fig. 3. Here k is an integer greater than 3. The optimum solution is to set
Ty = {ej,e9,e7,es} and Ty = {es, eq, €5, e6}. This gives w(T1) = w(Ty) = 3k/2. The
algorithm gets T1 = {ey, eg, e7,e4} and Ty = {es, €2, €3, eg}. This gives w(T}) = 2k—2

and w(Ty) = k + 2. This gives a lower bound of %722 =4/3 —4/(3k).

reducing the graph, we always take the node with the smallest maximum-
weight adjacent edge. This way, when rebuilding the graph, and balancing the
trees, we will always start with the maximum-weight edge. When rebuilding
we always balance best possible in each step.

Using the strategy keep-max with algorithm split on the lower bound ex-
ample from Figure 2 now gives the optimal solution. However, we can show
a lower bound of 4/3 — 4 for algorithm split with strategy keep-max. For
the graph in Figure 3 the optimum solution is to set T} = {ey, e, €7, €5} and
Ty = {es, eq, e5,¢6}. This gives w(T1) = w(Tz) = 3k/2. Assume w.l.o.g.. that
the algorithm first removes vs. It will then next remove vy, and then vs. In
the first rebuilding step we have T3 = {e;} and Ty = {e5}. In the next step
we get T1 = {e1,eq} and Tp = {es, e}, in the third step 77 = {ey, eq, €7}
and Ty = {es, eq, €3}, and finally T} = {e1, es,e7,e4} and Ty = {es, €9, €3, €s}.
This gives w(T}) = 2k — 2 and w(T3) = k + 2 this gives a lower bound of

23’;—722 =4/3 —4/(3k) which is very close to 4/3 for large k.

We have not yet been able to show that algorithm split with strategy keep-
max gives a better approximation guarantee than the 3/2 that follows from
Theorem 4.1.

7 A Matroid Generalization

In this section we study the further generalization of the partition problem to
matroids and give some results on the problem for transversal matroids. We
start with a direct generalization of Problem 1.1 to general matroids.

Problem 7.1 Let M = (S, F) be a matroid containing two disjoint bases and
let w be a weight function on S. Find a pair of disjoint bases B, B' of M which
minimizes max{w(B),w(B’)}.

It follows from the results proved so far that this problem is NP-hard for
graphic matroids (see Section 7.2) and in fact it is even NP-hard when M is
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a uniform matroid (see below).

Problem 7.2 Let M = (S, F) be a matroid containing two disjoint bases and
let w be a weight function on S. Find a pair of disjoint bases B, B" of M which
minimizes w(B) + w(B').

It follows from Theorem 2.3 that Problem 7.2 is solvable in polynomial time.
Furthermore, the observation that we made for graphs in Proposition 1.1 is
valid in general.

Proposition 7.1 Let M = (S, F) be a matroid containing two disjoint bases
and let w be a weight function on S. If membership of F can be checked in
polynomial time, then there is a 2-approximation algorithm for Problem 7.1

for M.

PROOF. By Theorem 2.3 we can find a pair of disjoint bases B, B, in
M which minimize w(B;) + w(Bs). Now, for any pair of disjoint bases of M,
including the optimal solution (B, B’) to Problem 7.1, the sum of the weights of
these two bases is at least w(B;) 4+ w(Bs), implying that max{w(B),w(B’)} >
w, so taking the pair (Bj, B) we obtain a 2-approximation of
Problem 7.1. O

7.1 Uniform Matroids

The uniform matroid U, is the matroid M = (S, F) such that |S| = n and
F is precisely the collection of subsets of S of size at most k. The problem
Partition(2k) was defined above. It is easy to see that this problem is equiva-
lent to Problem 7.1 for the uniform matroid U, i, where k is the same as above,
n is the number of integers for the instance of Partition(2k) and the weight
w on the elements of U, ; is simply the value of the corresponding integers.

The next result shows that (for uniform matroids) it is enough to solve Prob-
lem 7.1 on the uniform matroid induced by the 2k elements of smallest weights.
Note that this set is exactly the union of two disjoint bases whose sum is min-
imum among all pairs of disjoint bases in U, ;. Hence for uniform matroids
the minsum reduction preserves at least one optimal solution to Problem 7.1.

Proposition 7.2 Let S be a set of r > 2k non-negative numbers s; < o <

< Sop < Sopgr < oo < s, 1 > 2k, Let Sop = {s1,82,...,5%}. Then
every optimal solution to the problem Partition(2k) for the set Say is also an
optimal solution to the problem Partition(2k) for the full set S.
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PROOF. For any subset Z C S we denote by s(Z) the sum s(2) = 3, 7 si.
Let X,Y denote an optimal solution to Partition(2k) for Sa, where s(X) >
s(Y) and suppose that there exists a subset W C S such that |W| = 2k,
W # Sor, and a partition P,Q of W into two sets of size k where s(Q) <
s(P) < s(X). Assume furthermore that W N Sy, is maximum among all such
W and that among all such subsets s(W) is as small as possible. If P C XUY,
then by the ordering of the elements of S we have s(P) > s(Q) > s(X — P) +
s(Y — P), but then (P, Sy, — P) is a better partition of Sy, contradicting the
optimality of (X,Y’). Hence we must have P — (X UY’) # (. If we also have
Q—(XUY) # 0, thenlet p e P—(XUY) and ¢ € Q—(XUY') be arbitrary. Let
u,v € (XUY)—(PUQ) be arbitrary distinct elements such that s(u) > s(v).
By the ordering of S we have p+¢ > u+v. If s(P—p+u) > s(Q —q+v)
we let P* =P —p+wuand Q* = Q — ¢ + v and otherwise let P* = Q —q¢+v
and Q* = P — p+ u. Now (P*, Q*) satisfies that s(Q*) < s(P*) < s(X) and
W* = P*U @Q* has a larger intersection with S5, than W, contradicting the
choice of . Hence we may assume that @ C X UY and P — (X UY) # 0.
Consider any element z € Sy, — W. If s(2) < s(q) for some ¢ € @, then we
obtain a better W by swapping z and ¢, contradiction. Hence for every possible
choice of z and g above we have s(z) > s(¢). Now let P = Sy, —Q and observe
that s(X) > s(P) > s(P). Since we also have 5(X) > s(P) > s(Q) we see that
the partition of Sy, into @ and P is better than X, Y, a contradiction. O

There exists a fully polynomial time approximation scheme (in short an FP-
TAS) for Partition(2k). It is well-known that this is the case for the standard
formulation (without requirement on equal size of the sets) of partition prob-
lem (see e.g. [4, Section 35.5]7). This FPTAS can be modified to the case
where we require the two sets to be of equal size as follows. The algorithm
from [4] works by iteratively computing a "trimmed" list L; over all possible
sums of all subsets of the first ¢ elements that do not exceed the target value
(in this case (X4cg,, 5)/2) from i = 1 to 2k. That the list L; is trimmed means
that as many elements as possible are removed from L; in such a way that for
every removed element y there is an element z € L; such that {5 < 2 <.
We say that y is represented by z in L;.

To obtain a FPTAS for our case we associate to each value z € L; a list M,
containing the different sizes of subsets of the first ¢ items that sums to z or a
value represented by z. The length of M, is at most ¢ (in fact we can restrict
M, to only contain numbers of size at most k). To each number j in M, we
associate a subset of j items whose values sum to z or a value represented by
z. It is easy to verify that keeping this extra modification only gives a blow-up
of size O(k) in both time and space. After computing Loy we find the largest
value z in Loy with & € M, and return the subset associated with k£ in M,.
Using § = ¢/2n for trimming the lists this gives a FPTAS for partition in the

7 The partition problem is a special case of the subset sum problem.
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case where the two sets are required to be of equal size. The proof is omitted
since it is a pretty straight-forward modification of the proof from [4].

Now, first applying the reduction from Proposition 7.2 and then the algorithm
just described gives the following result.

Proposition 7.3 There exists a FPTAS for Partition(2k).

7.2 Graphic Matroids

A matroid M = (S, F) is graphic if there exists a graph G = (V, E) with
|E| = |S| and there exists a mapping ¢ : S — E such that ¢ is 1-1 and onto
and X € F if and only if ¢(X) induces an acyclic subgraph of G, that is, M
is isomorphic to the circuit matroid M(G) of G.

Thus if the rank of M is |V| — 1, then G is connected and spanning trees of
G are in 1-1 correspondence to bases of M.

All the results in Sections 3-5 can be rephrased as results about Problem 7.1
for graphic matroids.

7.8 Transversal Matroids

Another well studied class of matroids is the class of transversal matroids.
A matroid M is a transversal matroid if there exists a bipartite graph B =
(SUT, E) such that M = (S, F) where the subsets X C S that belong to
F are precisely those subsets that can be matched to a subset in T'. In other
words X is in F if an only if B has a matching meeting all vertices of X. We
say that the bipartite graph B represents M. Note that B is generally not
unique. For basic properties of transversal matroids we refer the reader to [11].

Transversal matroids are closely related to practical applications and the bases
of transversal matroids are also known as systems of distinct representa-
tives which have been studied already by Philip Hall. The famous Hall’s
theorem |2, Theorem 3.11.3| gives a necessary and sufficient condition for the
existence of a transversal of a given family of subsets of a set (corresponding
to a matching meeting all vertices of T" above). By Hall’s theorem a system
of distinct representatives exists for a family F of sets if and only if for every
sub collection of sets F’ from F the following holds

U Xil > |F.

i€ F’
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Since the uniform matroid U, ; can be seen as the transversal matroid repre-
sented by a complete bipartite graph K, ; (n vertices in one side and k in the
other) it follows that Problem 7.1 is also NP-hard for transversal matroids.

The following observation is a trivial consequence of the definition of a base
in a matroid.

Proposition 7.4 If M = (S,F) is a transversal matroid, B is a base and
T C T is a subset of T such that B is matchable to T', then no vertex of
S — B is adjacent to any vertex of T —T" in B. In particular, all bases of M
which are disjoint from B are matchable to T' and to no other subset of size
|B| in T.

Theorem 7.1 Let M = (S, F) be a transversal matroid and let B = (S, T, F)
be a graph representing M. Suppose By, By are disjoint bases of M such that
S =B1UB;. Let w: S — R be a weight function on S. In polynomial time
we can find a pair of disjoint bases By, B, such that w(By) > w(B)) and

w(Bp) —w(B)) < gel%)h;w(e) - geliBrllw(e) (21)

PROOF. By Proposition 7.4 we may assume that |T'| = |By|, that is, all
bases correspond to perfect matchings with respect to 7" in B. Let M; and
M, be matchings with end vertices By U T respectively B, U T and let the
elements of By = {x1,xa,..., 2}, Bo = {y1,¥2,...,u}, t = |T|, be labeled so
that z; and y; are matched to the same vertex of 7" by M; and M,. Construct
By, and By as follows: Let H = () = L. If w(x) > w(y;) then H := H + 7 and
L := L+ y; otherwise H := H+1y, and L := L+ z;. In the i-th step add that
one of x;,y; with the largest weight to L and the other to H and rename H, L
(if necessary) so that we always have w(H) > w(L). Finally, after processing
all ¢ pairs we let B, = H and B, = L. It is easy to see that By, B; satisfy (21)
(the argument is analogous to that for the case of a 2-vertex in the proof of
Theorem 3.1) and it follows from the way we paired the elements that By, B;
are bases of M. O

Applying first a min sum reduction and then using Theorem 7.1 and arguments
analogous to those used in Section 4 we can show the following. Note that a
polynomial independence oracle can be implemented using flows in networks
(see [2, page 140]).

Theorem 7.2 There exists a %—approm’mation algorithm for Problem 7.1 in
the class of transversal matroids.®

8 Here we assume that the input is a bipartite graph B = (S, T, E) representing the
transversal matroid and a weight function on S.
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Ys

Fig. 4. A Dbipartite graph representing transversal matroid on
10 elements {a1,a2,a3,a4,a5,b1,b2,b3,b4,b5} The fours bases
A = {al,ag,ag,a4},B = {b17b27b3,b4},X = {a3,a4,b3,b4} and
Y=YUY; = {al, as, by, b5} are shown.

We will now show that the min sum reduction may remove all optimal solutions
to Problem 7.1 in the case of transversal matroids.

Theorem 7.3 Let M be the transversal matroid represented by the bipartite
graph in Figure . There exists a weight function w and some optimal solu-
tion (B, By) to Problem 7.2 on M so that (B, By) is an optimal solution to
Problem 7.1 on the restriction of M to B; U By and

max{w(B1),w(Bs)} = gmax{w(Bh),w(Bl)}, (22)

where (B, By) is an optimal solution to Problem 7.1 on M.

PROOF. Let X,Y, A, B be bases as defined in Figure 4 and let £ be an
arbitrary positive integer and define w by

w({al, asg, s, a4, ds, bl, bg, bg, b4, b5}) = {2kf, 2]4?, k, 2]{5, 2]€, 07 2]€, k’, 2]’6, Qk}
Then w(A),w(B) = Tk, 5k and w(X),w(Y) = 6k, 6k.

First observe that, since every such pair has exactly 8 elements, no pair of
disjoint bases have a total weight of less than 12k and hence A, B is an optimal
solution to Problem 2.3 in M.

We also claim that A, B is an optimal solution to problem 7.1 in the restric-

tion of M to AU B. Suppose that there is a better partition By, Bs of AU B
into disjoint bases of M. Then clearly we must have w(B;) = 6k and this
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implies that w.l.o.g. {a3,b3} C By and by C Bs. Since a3 and b3 are the only
elements in A U B which are adjacent to x3 it is not possible to extend B to

a base. Hence A, B is indeed an optimal partition. As wid) % the theorem

w(X)
follows. O

Note also that by using instead the weight assignment
w({al, ag, a3, a4, a5, bl, bg, bg, b4, b5}) = {2]64-17 2]€, 2k5+1, kf, 2]{, O, 2]{, 2ki—|—1, k’, Qk—l-l}

we can obtain w(X) +w(Y) = 12k +4 > 12k + 3 = w(A) + w(B) and still

have % roughly %.

Many transversal matroids are also graphic matroids (see e.g. [11]) so the ques-
tion is whether an example as above could be obtained from a corresponding
example for graphic matroids. However the situation changes if we restrict our
attention to transversal matroids with two disjoint bases and simple graphs.

Lemma 7.1 A transversal matroid M = (S, F) containing two disjoint bases
By, By is the graphic matroid M(G) of some simple graph G only if S =
By U Bs.

PROOF. It follows from a result of [3] that the graphic matroid of a simple
graph G is a transversal matroid if and only if G contains no subdivision of
K4. By a result of |5, Satz 5] every simple graph of minimum degree at least
3 contains a subdivision of K . Thus to prove the claim it suffices to observe
that bases of M correspond to bases in M(G), that is, spanning trees of G.
Suppose that M is the transversal matroid of the simple graph G and that G
contains no subgraph of minimum degree greater than 2. Then it is easy to
prove by induction that G is exactly the union of two spanning trees. O

If we restrict the problem to transversal matroids consisting only of two dis-
joint bases there exists a FPTAS for the problem.

Proposition 7.5 Let M = (S,F) be a transversal matroid and let B =
(S, T, E) be a graph representing M. If By, By are disjoint bases of M such
that S = By U By then there exists a FPTAS for Problem 7.1 on M.

This FPTAS can be obtained as follows. In the case where S consists of
only two disjoint bases, we can view this as another version of Partition
(compare with the proof of Theorem 7.1), where we have a list of pairs
(x1,%1)s - -+, (Tn, yn) and wish to split these pairs into two sets such that for
each pair (z;,v;), z; and y; are put into different sets, minimizing the sum of
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the elements in the maximum of the two sets. This is the same version that
we used in the proof of Proposition 2.1.

The FPTAS can be obtained by a small modification of the FPTAS for Subset
sum from [4, Section 35.5]. Iteratively compute a trimmed list L; of all possible
sums of the first ¢ pairs that do not exceed the target value (in this case
(Y ses5)/2) as follows. For each element ¢ in L; we add the two elements
(+2z,;E and ¢+ y; to L; and thereafter trim the list as described in |4]. Finally,
return the largest element in L,. That this gives a FPTAS follows directly
from the proof in [4].

If we can show that the maximum relative error we may make by performing
the min sum reduction before solving Problem 7.1 for transversal matroids
is a we immediately obtain an a(l + ¢)-approximation for Problem 7.1 on
transversal matroids by first applying the min sum reduction and then the
FPTAS from Proposition 7.5.

8 Remarks and Open Problems

We have observed that the problem Partition(2k) is equivalent to Problem
7.1 for the uniform matroid U, ; and we generalized the partition problem to
several classes of matroids:

For uniform matroids the min sum reduction does not exclude all optimal
solutions to Problem 7.1 and there exists a FPTAS.

For transversal matroids we have shown that the min sum reduction can ex-
clude the optimal solutions to the problem, but the relative error is at most
3/2 (and we have given examples where it is 7/6). For the case where the
matroid only consists of two disjoint bases there exists a FPTAS.

For graphic matroids (Problem 1.1) we have shown that the min sum reduction
can exclude the optimal solutions to the problem, but the relative error is again
between 7/6 and 3/2. Even for the case of 2T-graphs we have not been able
to show a better approximation guarantee than 3/2.

This leaves the following open problems.

e For matroids that are either graphic or transversal matroids what is the
maximum relative error we may make by performing the min sum reduction
before solving Problem 7.1. Our examples and Theorems 4.1, 7.2 show that
the answer lies between % and %

e [s there a polynomial time approximation scheme for Problem 1.1 on 2T-

graphs?

21



e What is the maximum ratio % where (T}, 7)) and (T1,T») are op-
timal solutions to Problem 1.1 and Problem 1.2 respectively on the same
graph? Our examples above show that the fraction can be as high as %.

e Can we obtain a better approximation guarantee than 3/2 for Problem 7.1
on graphic or transversal matroids?

e We saw in Section 5 that the min sum reduction does not always preserve
optimal solutions so an interesting question seems to be whether there is
some other reduction from the general case to 2T-graphs which does preserve

optimal solutions.

The problem Partition is known to be easily solvable, that is, for most in-
stances it is easy to obtain good solutions (see e.g. |7,9|) and the problem has a
fully polynomial-time approximation scheme [4, Section 35.5|. Hence one may
ask whether this property of being easy to solve well is preserved when we add
the further structure requirements to the problem by considering Problem 1.1.
We investigated this in [1] and our test results seem to indicate that this is
indeed the case.

Recently, after the completion of this paper, van den Heuvel and Thomassé [8]
proved a very interesting result on matroids. They proved that a matroid with
k disjoint bases and rank r has a cyclic ordering on the kr elements of these
bases such that any r consecutive elements of this order form a base. This
implies that given two disjoint bases B; and By minimizing w(B1) + w(B2)
there exist a cyclic ordering ey, es, ..., es. of the 2r elements of these bases
such that any 7 consecutive elements of this order form a base. Let B; be
the base with elements e;,e;41,..., €4, (the indices are modulo 2r) and let
0; = w(B;) —w(B; + ). It is clear that §; = —d;4,, so there is an index i such
that 9; > 0 and 9;,;; < 0. Furthermore since for any i we have §; — 0;,1 =
2(w(esrr) — w(e;)) it is clear that for some ¢ |6;| < wyax — warn, where
wyax and wyry are respectively the minimum and the maximum weigh of
an element. So their result implies Theorem 3.1 for arbitrary matroids.
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Appendix
Details of the FPTAS for two disjoint bases of transversal matroids

The following description is based on [4].

The lists are trimmed as follows. To trim a list L by §, remove as many
elements from L as possible, in such a way that for every element y that was
removed, there is an element z still in the list that approximates y, that is

y
—2 <.
110 >-=Y

This can be done by going trough L in sorted order and keeping an element y
only if y is greater than (14 ¢) times the last element we kept. After trimming
the list we remove all elements larger than the target value from L.

To obtain a (1 + €)-approximation we will trim the lists with ¢/2n.
Proof of Proposition &

Let y* be the optimal value. The value z* returned is the sum of some subset of
S, but not necessarily the sum of k£ elements. But it is representing the sum of
k elements. Let 2z’ denote the actual sum of k elements that z* is representing.
We know that 2’ < w(S)/2. It can be shown by induction that

*

y * *
— - < < .
Ate/2n)y =~ =Y

We have y* > 2/ > z* due to the optimality of y* and thus

v < (I4+e/2n)"z" < (1+¢/2n)"2 < (1+4¢)7 .
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