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Abstract

We introduce two notions, (i)oriented labelling and (ii) oriented L(p, q) labelling, to explore

frequency assignment problem under half- duplex setting and compute bounds of oriented la-

belling of special classes of graphs : trees, bipartite graphs and planar graphs. We do study an

oriented version of clique cover problem as well.

The frequency assignment problem (FAP) arises in wireless communication systems. There are

several models based on genetic algorithms, neural networks, constrained programming and combi-

natorial enumeration to explore and optimize different features of FAP such as available frequencies

and limiting interference among radio signals. In 1970, Metzger [14] introduced graph coloring

techniques as a tool to optimize the frequency spectrum used in FAP. Motivated by FAP, Hale [10]

developed the concept of T -coloring and it lead to many indepth graph theoretical results. A com-

mon feature of all these graph theoretical models of FAP is that they assume communication is

viable in both direction (duplex) between two radio trasmitters and hence model FAP as a non-

oriented graph. This is far away from reality. In fact, Aardal et al emphasised the importance of

“direction/orientation” of transmission in their recent survey (for details see [1] page 4) on FAP.

In this paper, we explore FAP under half-duplex setting (i.e., there are radio transimitters in a

network in which at most one way transimission is effective between any two of them). Hence FAP
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can be modeled as an oriented multi graph. As a preliminary step, we focus on oriented simple

graphs.

Oriented vertex partitioning problems

The partitioning of the vertex set of a non-oriented graph into minimum number of subsets in

which each subset possesses a special property is a fundamental graph theory problem with many

applications. For example : vertex coloring, star (vertex) coloring and clique cover problem. Note

that T -coloring is a generlization of vertex coloring . We suggest a general frame work to incorporate

“orientation” into various vertex partitioning problems. Two subsets A, B of the vertex set of an

oriented graph is called one way oriented if all edges with one end vertex in A and other in B are

oriented from A (respectively B) to B (respectively A).

Oriented vertex partitioning problem : Partition the vertex set of an oriented graph into minimum

number of pairwise one way oriented subsets in which each set possesses a special property.

Oriented coloring is a well known oriented vertex partitioning problem [16, 17].

Notation and Terminology

In this paper, we consider only finite (oriented and non-oriented) simple graphs. As usual, N+(v)

= {u : −→vu ∈ E(~G)} and N−(v) = {u : −→uv ∈ E(~G)}. A proper k-coloring of the vertices of a

non-oriented graph is called acyclic if the subgraph induced by the vertices with any two colors has

no cycle. The acyclic chromatic number of a graph G is the smallest integer k such that G has an

acyclic k-coloring. The length of the shortest path joining two vertices x, y in a non-oriented graph is

called distance between x and y. A path with an orientation such that all internal vertices have both

in-degree and out-degree one is called an oriented path. The length of a shortest oriented path joining

two vertices x, y in an oriented graph is called oriented distance between x and y. The girth of a

non-oriented graph G is the length of its smallest cycle. Let ~G(V, E) and ~H(U, F ) be two oriented

graphs. An oriented homomoriphism from ~G to ~H is a map f : V −→ U which preserves adjacency,

that is for any edge −→xy ∈ E, the correspoding pair
−−−−−−→
f(x)f(y) ∈ F .

Oriented coloring [16, 17] Let ~G(V, E) be an oriented graph. A map c : V −→ {1, 2, ..., k} is

called a k-oriented coloring of ~G if it satisfies the following.

(i) For any edge −→xy, c(x) 6= c(y).

(ii) There are no two edges −→xy, −→uv such that c(x) = c(v) and c(y) = c(u).

The least integer k in which ~G has k-oriented coloring is called the oriented chromatic number

~χ(~G) of ~G. The oriented chromatic number ~χ(G) of a non-oriented graph G is defined as max {

~χ(~G) : ~G is an orientation of G }.
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Note that the condition (i) of oriented coloring ensures that adjacent vertices do not belong to

same color class. The condition (ii) guarantees that any two color classes preserve one way oriented

property in an oriented graph. Moreover, χ(G) ≤ ~χ(G) where χ(G) denotes the chromatic number

of G. Since ~χ(Kn,n) = 2n, ~χ(G) has no upper bound as a function of χ(G). Raspaud and Sopena

[17] proved that oriented coloring of a planar graph is at most 80.

A suggestion of F. Roberts to distinguish close and very close transmitters in a wireless com-

munication system led Griggs and Yeh [9] to propose a variation of FAP as labelling the vertices of

a non-oriented graph with a condition at a distance two( known as L(2, 1)-labelling). Georges and

Mauro [7] generalized this as follows.

L(p, q)-Labelling : Let G(V, E) be a non-oriented graph and p, q be two positive integers. A map

L : V −→ {0, 1, ..., k} is called a k-L(p, q)-labelling if it satisfies the following.

(i) For any edge xy ∈ E, | L(x) − L(y) | ≥ p.

(ii) For any pair of vertices x, y at a distance 2, | L(x) − L(y) | ≥ q.

The span, λp,q(G), of G is defined as min {k : G has a k-L(p, q)-labelling }. For convenience,

we prefer λp(G) to λp,1(G).

We cite a few known results in L(p, q)-labelling problems.

(1) L(2, 1)-labelling problem is NP -complete [9].

(2) For a tree T with maximum degree ∆, ∆ + 1 ≤ λ2(T ) ≤ ∆ + 2 [9] .

(3) For a graph G with maximum degree ∆, λp(G) ≤ ∆2 + (p − 1)∆ − 2 [8] .

Two oriented variations of L(p, q)-labelling

In this section, we extend L(p, q)-labelling to oriented graphs and propose a new oriented vertex

partitioning problem.

L(p, q)-Labelling for oriented graphs : Let ~G(V, A) be an oriented graph and p, q be two positive

integers. A map L : V −→{0, 1, ..., k} is called a k-L(p, q)-labelling of ~G if it satisfies the following.

(i) For any edge ~xy ∈ A, | L(x) − L(y) | ≥ p.

(ii) For any pair of vertices x, y at an oriented distance 2, | L(x) − L(y) | ≥ q.

The span, λo
p,q(~G), of ~G is defined as min {k : ~G has a k-L(p, q)-labelling }. The span of a non-

oriented graph G, λo
p,q(G), is defined as max { λo

p,q(
~G) : ~G is an orientation of G }. For convenience

(when q=1), we denote λo
p,1(G) = λo

p(G).

Oriented L(p, q)-Labelling : Let ~G(V, A) be an oriented graph and p be a positive integer. A map

l : V −→ {0, 1, ..., k} is called a k-oriented L(p, q)-labelling if it satisfies the following.

(i) For any edge ~xy ∈ A, | l(x) − l(y) | ≥ p.
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(ii) For any pair of vertices x, y at an oriented distance 2, | L(x) − L(y) | ≥ q.

(iii) There are no two edges ~xy, ~uv such that l(x) = l(v) and l(y) = l(u).

The span, ~λp,q(~G), of ~G is defined as min {k : ~G has a k-oriented L(p, q)-labelling }. The span

of a non-oriented graph G, ~λp,q(G), is defined as max { ~λp,q(~G) : ~G is an orientation of G }. For

convenience (when q=1), we denote ~λp,1(G) = ~λp(G).

Remarks There is a distinction between the L(p, q)-labelling of oriented graphs and the oriented

L(p, q)-labelling. Note that any two oriented L(p, q)-labelling color classes (i.e. set of vertices with

same label) are one way oriented. But L(p, q)-labelling doesn’t guarantee one way orientedness of

its color classes. A pair of color classes in a L(p, q)-labelling can be viewed as a union of two

(disconnected) pairs of one way oriented sets (see Figure 1 ). Hence, an oriented L(p, q)-labelling of

an oriented graph ~G is also a L(p, q)-labelling of ~G. The graph ~H in Figure 1, with λo
1(

~H) = 3 and

~λ1( ~H) = 4, shows that the converse is not true.

Two color classes in an
oriented L(p,q)−labelling L(p,q)−labelling

b

c

d

e

f

g
 a

Two color classes in an 

FIG. 1 – Oriented color classes and the graph ~H

Let H be a subgraph of G. Then ~λp(H) ≤ ~λp(G). Oriented L(p, q)-labelling is a generalization

of oriented coloring. In particular, ~λ1(~G) = ~χ(~G)− 1(we do allow ’0’ as a label). Let I0, I1,..., I~χ−1

be a set of oriented color classes of ~G. We produce a (~χ(~G)−1)p- oriented L(p, p)-labelling of ~G by

assigning the label jp to each vertex in the set Ij for 0 ≤ j ≤ ~χ(~G) − 1. If there is a homomophism

h : ~G → ~H , then ~λp,q(~G) ≤ ~λp,q( ~H). Indeed, given a k-oriented L(p, q)-labelling lH of ~H , we

define a k-oriented L(p, q)-labelling lG of ~G, by lG(v) = lH(h(v)), for all v ∈ VG. We also note
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that a L(p, q)-labelling of a non-oriented graph G is a L(p, q)-labelling of any orientation of G.

By definition, an oriented L(p, q)-labelling of an oriented graph is also its L(p, 1)-labelling. These

remarks prove the following lemma.

Lemma 1 Let G be a non-oriented graph. Then

(i) For p ≥ q > 0, ~χ(G) − 1 ≤ ~λp,q(G) ≤ (~χ(G) − 1)p .

(ii) λo
p,q(G) ≤ λp,q(G).

(iii) λo
p,q(G) ≤ ~λp,q(G)

There is no trivial relation between λp,q and ~λp,q . Indeed, the graphs H1 and H2 depicted in

figure 2 are such that λp,q(H1) < ~λp,q(H1) and λp,q(H2) > ~λp,q(H2).

4 2 0

42
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13

1

0

0

2 3 4 5

0

2 2 3 3

4 2 0

4203

1

X

X

H H1 2

FIG. 2 – The graphs H1 and H2

For a compelete graph Kn, ~λp(Kn) = (~χ(Kn) − 1)p. Moreover, ~λ2(C5) = 4 = ~χ(C5) − 1.

Though the bounds in the Lemma 1 (i) is tight for certain graphs, we could significantly improve this

result for the class of trees.

Oriented L(p, q)-Labelling for Trees

A star, S, is a tree with a special vertex x and all other vertices of S are adjacent to x. A double

star, D, is a tree with a special pair of adjacent vertices x, y and all other vertices of D are adjacent

to either x or y (see Figure 3).
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FIG. 3 – Star and Double Star

We denote Pk the paths with k vertices. Any tree T 6= K1, K2 has a P3 as a subgraph. A tree

T ( 6= K1, K2) with no P5 as a subgraph is either a star or a double star. The minimal span for the

oriented L(p, q)-labelling of an unoriented tree T is easily computable with the following theorem.

Theorem 1 Let T be a unoriented tree. Then

~λp,q(T ) =







































0 if T = K1,

p if T = K2,

p + q if T is a star or a double star,

p + 2q else (i.e. P5 is a subgraph of T ).

The two first cases are trivial. We begin by proving that in the two last cases the span cannot be

decreased. Since ~λp,q(H) ≤ ~λp,q(G) if H is a subgraph of G, we just have to note that ~λp,q(P3) =

p + q and ~λp,q(P5) = p + 2q. Now we show how to label the trees.

Case 1 Let T be a star with a special vertex x. We construct an oriented L(p, q)-labelling of ~T

by assigning 0 to the special vertex x, p to all vertices of N+
~H
(x), and p + q to all vertices of N−

~H
(x).

Case 2 Let T be a double star with special vertices x, y. Without loss of generality, assume

that ~xy ∈ E( ~H). We construct an oriented L(p, q)-labelling of ~H by assigning 0 to all vertices of

N−

~H
(y), q to all vertices of N+

~H
(y), p to all vertices of N−

~H
(x), and p + q to all vertices of N+

~H
(x).

✈ ✛ ✈

❄

✈ ✲ ✈

✻

v

w

u

x

0 p + q

p + 2q q

FIG. 4 – The graph ~C4

Case 3 Let ~T be an orientation of T . To prove the upperbound, we construct a homomorphism

f : ~T −→ ~C4. In Figure 4, u, v, w, and w are vertices of ~C4 and 0, p+q, q, p+2q are their respective

labels in a p + 2q-oriented L(p, q)-labelling of ~C4. First, we pick an arbitaray vertex a of ~T and map

a to u (i.e., f(a) = u). Then, we map vertices of N+
~T

(a) (respectively N−

~T
(a)) into N+

~C4

(u) =

{v} (respectively N−

~C4

(u) = {x}). We continue this process until all vertices of ~T are mapped into

V ( ~C4).
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Oriented L(p, 1)-Labelling of Bipartite Graphs

Lemma 2 For a complete bipartite graph Km,n (m, n ≥ 1), ~λp(Km,n) ≤ m + n + p − 2.

Proof Let V (Km,n) = A ∪ B where A = {u1, u2, ..., um} and B = {v1, v2, ..., vn}. We construct

an oriented (m+n+ p− 2)-labelling of an arbitrary orientation of Km,n by a function l : V (Km,n)

−→ {0, 1, ..., m + n + p − 2} defined as l(ui) = i − 1 for 1 ≤ i ≤ m and l(vj) = m + j + p − 2

for 1 ≤ j ≤ n. Hence ~λp(Km,n) ≤ m + n + p − 2. ✷

It is not hard to show that the upper bound in the Lemma is tight if m = n, i.e., ~λp(Kn,n) =

2n + p− 2. Note that every bipartite graph is a subgraph of a complete bipartite graph. Hence, for a

bipartite graph G, ~λp(G) ≤ | V (G) | +p− 2.

Oriented L(p, 1)-Labelling and the Acyclic Chromatic Number

In this section, we supply an upperbound of ~λp of planar graphs based on a method develo-

ped by Alon, Marshall, Nesetril, Raspaud and Sopena [2, 15, 17]. In fact, they found an oriented

homorphism from an oriented k-acyclic graph to a special graph, ~Mk.

Special graph ~Mk

Let ~Mk be an oriented graph with vertex set V (Mk) = { (i, a1, a2,...,ai−1,ai+1,...,ak ) :

1 ≤ i ≤ k and aj ∈ {0, 1} }. The edge set of ~Mk is defined as follows. Let x = (i, a1,

a2,...,ai−1,ai+1,...,ak ) and y = (l, b1, b2,...,bl−1,bl+1,...,bk ) , 1 ≤ i < l ≤ k, be two vertices.

Then (i) −→xy ∈ E( ~Mk) if
−−→
alb̄i ∈ E(~T ) and (ii) −→yx ∈ E( ~Mk) if

−−→
b̄ial ∈ E(~T ) (see Figure 5 for ~T ).
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1

0̄
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FIG. 5 – The graph ~T

Theorem 2 [15] Let ~G be an orientation of a k-acyclic graph G. Then there exists an oriented

homomorphism from ~G to ~Mk.

Lemma 3 ~λp( ~Mk) ≤ k(2k−1 − 1) + p(k − 1).

Proof Let V ( ~Mk) = ∪k
i=1Vi, where Vi = { (i, a1, a2,...,ai−1,ai+1,...,ak) : aj ∈ {0, 1} }. Note

that | Vi |= 2k−1. Then we re- label the vertices of Vi as { vi,j : 1 ≤ j ≤ 2k−1 }, 1 ≤ i ≤ k. Now, it

is easy to prove that the map f : V ( ~Mk) −→ {0, 1, ..., k2k−1 +(k−1)(p−1)−1} such that f(vi,j)
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= (i − 1)(2k−1 + p − 1) + j − 1, 1 ≤ i ≤ k and 1 ≤ j ≤ 2k−1, is an oriented L(p, 1)-labelling of

~Mk. Hence ~λp( ~Mk) ≤ k(2k−1 − 1) + p(k − 1). ✷

Theorem 3 Let G be a k-acyclic graph. Then ~λp(G) ≤ k(2k−1 − 1) + p(k − 1).

Proof Let ~G be an orientation of G. By Theorem 2, there exists an oriented homomorphism from

~G to ~Mk. Then ~λp(~G) ≤ ~λp( ~Mk). Since ~G is an arbitrary orientation of G, ~λp(G) ≤ ~λp( ~Mk). By

Lemma 3, ~λp(G) ≤ k(2k−1 − 1) + p(k − 1). ✷

A well-known result of Borodin [3] states that any planar graph is 5-acyclic colorable. In [5], the

authors proved that planar graphs with girth at least 5 (resp. 7) are 4-acyclic colorable (resp. 3-acyclic

colorable). Moreover it is well known that graphs with treewidth k are (k + 1)-acyclic colorable. So

we have the following corollary.

Corollary 1 If G is a planar graph, then ~λp(G) ≤ 75 + 4p.

If G is a planar graph with girth at least 5, then ~λp(G) ≤ 28 + 3p.

If G is a planar graph with girth at least 7, then ~λp(G) ≤ 9 + 2p.

If G is a graph with treewidth k, then ~λp(G) ≤ (k + 1)(2k − 1) + pk.

L(p, q)-Labelling of Oriented Graphs

In [9], the authors conjectured that for an unoriented graph G, λ2,1(G) ≤ ∆2, where ∆ is the

maximum degree of G. Much work [6, 13, 8] have been done on bounding λp,q by a function of ∆.

Here, we prove a similar result for oriented graphs.

Theorem 4 For every directed graph G = (V, A) with maximal degree ∆, λo
p,1(G) ≤

⌊

∆2

2

⌋

+ p∆.

In a directed graph G = (V, A), u is a 2-neighbor of v if there is a directed 2-path between u and

v. Given a directed graph G = (V, A), its 2-paths graph G2 = (V, E) is an unoritented graph with

the same vertex set. There is an edge uv in this graph if and only if there is a directed 2-path in G

linking u and v. The next lemma gives an interesting property of these graphs.

Lemma 4 For every directed graph G = (V, A) with maximal degree ∆, its 2-paths graph G2 =

(V, E) is
⌊

∆2

2

⌋

-degenerate.

Proof

We prove that for any S ⊆ V , the induced graph G2[S] has minimal degree at most
⌊

∆2

2

⌋

. We do

so, using a discharging method. Let the initial charge γ(v) of the vertices be ∆2

2 if v ∈ S, or 0 if

v /∈ S. The total charge of the graph is ∆2

2 |S|. Then we proceed to the following discharging step,
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every vertex of S gives the charge ∆
2 to each of its neighbors. We denote γ∗ the new charge of the

vertices of G. Note that a vertex v with k neighbors in S has charge γ∗(v) at least k∆
2 .

Now consider the number of oriented 2-paths going through a vertex v ∈ V (G) and linking two

vertices in S. Let us denote this number πS(v). Note that for a vertex v with k neighbors in S, we

have that πS(v) ≤ max{i × j, i + j = k} =
⌊

k2

4

⌋

, where i and j are respectively the number of

incoming and outgoing arcs. Since k ≤ ∆ we have that πS(v) ≤
⌊

k2

4

⌋

≤ k∆
4 ≤ γ∗(v)

2 . This implies

that the number of edges in G2[S],
∑

v∈V (G) πS , is at most 1
2

∑

v∈V (G) γ∗(v). Since the discharging

does not change the total charge of the graph, we have that
∑

v∈V (G) πS ≤ 1
2

∑

v∈V (G) γ(v) =

1
2 × ∆2

2 |S|. So we have that the sum of the degrees in G2[S] is at most ∆2

2 |S|, which implies that

there is a vertex with degree at most
⌊

∆2

2

⌋

in G2[S]. ✷

This lemma implies that there is an order v1, v2, ..., vn on the vertices of G = (V, A), such that

for every i ≤ n, the vertex vi has at most
⌊

∆2

2

⌋

2-neighbors vj , with j < i. Given this order on the

vertices, we consider the following algorithm :

i = 0 ;

while there are unlabelled vertices do

for vj = v1 to vn do

if vj is unlabelled and vj can be labelled i then

let vj be labelled i;

end

end

i = i + 1;

end

Now consider the last vertex being labelled by this algorithm, say v with label k. What could

prevent it to be labelled with the value x < k, when the algorithm considered the possibility (i.e.

when i = x and vj = v) ? It is either a neighbor of v that was already labelled with the label l, with

x − p < l ≤ x, or a 2-neighbor of v that was labelled x. Note that if a 2-neighbor of v is labelled x

before the possibility was offered to v, it implies that this 2-neighbor appears before v in the order.

So the 2-neighbors of v posterior to v in the order cannot prohibit a value to v. Since v has at most ∆

neighbors and at most
⌊

∆2

2

⌋

2-neighbors appearing before v in the order, at most
⌊

∆2

2

⌋

+p∆ values

were refused to v. This implies that k ≤
⌊

∆2

2

⌋

+ p∆. Note that this implies that the algorithm labels

the graph in time O(∆2n).
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Conclusion

In this article, we have explored the role of “orientation” in FAP by extending L(p, q)-labelling

to oriented graphs and introducing oriented L(p, q)-labelling. We have computed upper bounds of

oriented L(p, q)-labelling of trees, bipartite graphs and planar graphs. Note that bounds of L(p, q)-

labelling of a tree depends on its maximum degree but bounds of oriented L(p, q)-labelling depends

on its structure (see Theorem 1). It indicates that an oriented version of labelling may provide more

structrual information of concerned network of FAP than its non-oriented version.
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