Edge partition of planar graphs into two outerplanar graphs 1

D. Gonçalves

LIRMM, U.M.R. 5506, Université Montpellier 2, 161 rue Ada 34392 Montpellier Cedex 5, France.

Abstract

An outerplanar graph is a planar graph that can be embedded in the plane without crossing edges, in such a way that all the vertices are on the outer-boundary. We prove that every planar graph G = (V, E) has a bipartition of its edge set $E = A \cup B$ such that the graphs induced by these subsets, G[A] and G[B], are outerplanar. This proves a conjecture of Chartrand, Geller, and Hedetniemi (J. Combin. Theory Ser. B, 10 (1971) 12–41).

Key words: planar graphs, edge-partition, outerplanar graphs, hamiltonian cycle

1 Introduction

Much work has been done in partitioning the edge sets of graphs such that each subset induces a subgraph of a certain form. See for example the concepts of chromatic index, arboricity, thickness, or track number. In this vein, Chartrand, Geller, and Hedetniemi ([3] and Problem 6.3 in [12]) made the famous [m, n]-conjecture. They defined the graphs with property P_m as the graphs containing no subdivision of K_{m+1} or $K_{\lceil m/2 \rceil + 1, \lfloor m/2 \rfloor + 1}$. Observe that the graphs with property P_4 (resp. P_3) are the planar graphs (resp. outerplanar graphs). The [m, n]-conjecture was that any graph with property P_m has an edge partition into m - n + 1 graphs with property P_n , for $m \ge n \ge 2$. This conjecture is false in general. In [10], it is disproved for any n and $m > cn^2$, for some constant c. In this paper (that is the extended version of [7]) we prove a special case of the conjecture, the case where n = 3 and m = 4. In other

Preprint submitted to J. Combin. Theory Ser. B

Email address: goncalves@lirmm.fr (D. Gonçalves).

¹ This research was supported by the European Research Training Network COMBSTRU-HPRN-CT-2002-00278

words, we prove that every planar graph has an edge bipartition into outerplanar graphs. There have been various results toward this case of the conjecture. Colbourn and El-Mallah [6] gave a first partial result showing that every planar graph has an edge bipartition into partial 3-trees. Then Kedlaya [13] and Ding et al. [5] proved that a bipartition into partial 2-trees exists. Another result [5] is that every planar graph has an edge partition into two outerplanar graphs and a vee-forest (*i.e.* a forest in which each connected component contains at most three vertices). A proof of this case of the [m, n]-conjecture was already claimed in [11] but finally appeared to be incorrect.

A simple case of planar graphs that can be divided into two outerplanar graphs are the hamiltonian planar graphs (*i.e.* containing a cycle going through every vertex). In this case, the first outerplanar graph is constructed with the edges of a hamiltonian cycle together with the edges in the interior of this cycle, and the second one with the edges of this hamiltonian cycle together with the edges in the exterior of this cycle. There is a lot of flexibility in this construction since the edges of the hamiltonian cycle are in both subgraphs. We say that a bipartition of an embedded planar graph (*i.e.* a plane graph) is hamiltonian if there is a hamiltonian cycle C such that all the edges strictly inside C are in the same subset and all the edges strictly outside C are in the other subset. Whitney [23] proved that 4-connected triangulations are hamiltonian and Tutte [21] generalized this result to 4-connected planar graphs. So we know that the conjecture holds for 4-connected planar graphs. Note that with a hamiltonian partition, the graph inside the hamiltonian cycle is outerplanarly embedded. This means that given an embedding of the planar graph, the embedding it induces for this subgraph is such that all the vertices are on its outer-boundary. An interesting result of Kedlaya [13] is that there exists a planar graphs G such that whatever its embedding, and whatever the bipartition of G into outerplanar graphs we consider, none of the outerplanar subgraphs are outerplanarly embedded. This implies for example that there are planar graphs with no edge partition into an outerplanar graph and a forest (forests being always outerplanarly embedded).

A triangulation is a plane graph in which all the faces are triangles. Since every planar graph is a subgraph of a triangulation and since every subgraph of an outerplanar graph is outerplanar, we restrict our work to triangulations. A graph G is chordal if every cycle of length $l \ge 4$ has a chord, which is an edge linking two non-consecutive vertices of the cycle. Let S be the graph with a cycle $(x_1, y_1, x_2, y_2, x_3, y_3)$ and chords y_1y_2, y_1y_3 and y_2y_3 (see Figure 1). A graph is S-free if it does not contain any subgraph isomorphic to S. The main result of the paper is the following theorem.

Theorem 1 Every triangulation T has an edge bipartition into chordal outerplanar graphs (e.g. COGs). Furthermore, if T is 4-connected there is such a bipartition that is hamiltonian and for which the two COGs are S-free.

Fig. 1. The graph S.

In Section 2 we give another proof of the fact that 4-connected triangulations are hamiltonian. The technique used is inspired on the original proof of Whitney [23] and may yield to the same hamiltonian cycle. This section is necessary for considering the special case of 4-connected triangulations in Theorem 1. In Section 3 we give some properties of outerplanar graphs. In Section 4 we study edge partitions of 4-connected triangulations. This study allows us to prove Theorem 1 in Section 5. Then we finally discuss some perspectives.

2 Hamiltonian cycle

A near-triangulation is a plane graph in which all the inner faces are triangular (but not necessarily the outer-face). In a near-triangulation T, a separating 3-cycle C is a cycle of length three with at least one vertex inside C and one vertex outside C. A W-triangulation is a 2-connected near-triangulation without separating 3-cycles. Note that the 4-connected triangulations being triangulations without any separating 3-cycle, they are W-triangulations. The W-triangulations being 2-connected, they have no articulation vertex (a vertex whose removal increases the number of connected components). Hence, the outer-boundary of a W-triangulation is a cycle. A chord of this cycle is also called a *chord* of T. The following lemma tells us in which case the subgraph of a W-triangulation is also a W-triangulation.

Lemma 2 Let T be a W-triangulation and C a cycle of T. The subgraph of T inside C (i.e. the graph induced by the edges on C and the edges inside C) is a W-triangulation.

PROOF. Let the near-triangulation T' be the subgraph of T delimited by C. By definition of a W-triangulation, T has no separating 3-cycle, hence T' has no separating 3-cycle. So we just have to show that T' is 2-connected, this is that it has no articulation vertex.

For any vertex v of T', since T' is a near-triangulation, at most one of the faces incident to v is not triangular, the outer-face. Furthermore, the outer-face being delimited by a cycle, the vertex v appears at most once on the outerboundary. So the neighborhood of v induces a connected graph and thus $T' \setminus v$ is connected. Hence T' has no articulation vertex and it is a W-triangulation. **Definition 3** A W-triangulation T is 3-bounded if its outer-boundary is divided into three paths, (a_1, \ldots, a_p) , (b_1, \ldots, b_q) , and (c_1, \ldots, c_r) verifying the following conditions:

- The ends of the paths are such that $a_1 = c_r$, $b_1 = a_p$ and $c_1 = b_q$.
- The paths are non-trivial, this is p > 1, q > 1 and r > 1.
- The W-triangulation T has no chord $a_i a_j$ (resp. $b_i b_j$ or $c_i c_j$) with $1 \le i < p$ and $i + 1 < j \le p$ (resp. $1 \le i < q$ and $i + 1 < j \le q$, or $1 \le i < r$ and $i + 1 < j \le r$).

Given such a 3-bounded W-triangulation T, (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) is a 3-boundary of T (see Figure 2).

In a 3-boundary the order and the orientation of the paths matters. Indeed, (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) , (b_1, \ldots, b_q) - (c_1, \ldots, c_r) - (a_1, \ldots, a_p) , and (a_p, \ldots, a_1) - (c_r, \ldots, c_1) - (b_q, \ldots, b_1) are distinct 3-boundaries. A hamiltonian path P of a graph G is a path of G with vertex set V(P) = V(G).

Property 4 For any 3-bounded W-triangulation T and any 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) of T, there is a hamiltonian path P in T from c_1 to b_1 passing through the edge a_1a_2 (see Figure 2).

Fig. 2. The 3-boundary of T and the path P of Property 4.

Note that P successively goes through c_1 , a_1 , a_2 , and then b_1 . Property 4 applies to 4-connected triangulations. Indeed, a 4-connected triangulation T with outer-boundary abc is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a). So if this property holds for T, there is a hamiltonian path P from c to b. Adding the edge bc to this path P we obtain a hamiltonian cycle.

We now define the notion of *adjacent path* of a W-triangulation with respect to a 3-boundary. Let $T \neq K_3$ be a W-triangulation 3-bounded by (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) , without chord $a_i b_j$, with $1 \leq i \leq p$ and $1 \leq j \leq q$, and without chord $a_i c_j$, with $1 \leq i \leq p$ and $1 \leq j \leq r$. The W-triangulation T having at least 4 vertices and having no separating 3-cycle, the vertices b_1 and b_2 have exactly one common neighbor in $V(T) \setminus \{a_1\}$, denoted d_1 . Let $V_a \subsetneq V(T)$ be the set of vertices of T adjacent to a vertex a_i with i > 1, excluding the vertices a_i with i > 1 and the vertex b_2 . The graph T being a W-triangulation, the neighbors of a_i in V_a , with $1 < i \leq p$, induce a connected graph. Furthermore, the vertices a_i and a_{i+1} have a common neighbor in V_a , hence the set V_a induces a connected graph. This set contains the vertices a_1 and d_1 , which respectively are the neighbors of a_2 and a_p . Denote $(d_1, d_2, \ldots, d_s, a_1)$ the shortest path linking d_1 and a_1 in the graph $T[V_a]$ (see Figure 3). This path is the *adjacent path* of T for the 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) and it verifies the following 3 points:

- There is no edge $d_i d_j$, with $1 \leq i < s$ and $i + 1 < j \leq s$, and no edge $a_1 d_i$, with $1 \leq i < s$. Indeed, if such edge existed, the path $(d_1, d_2, \ldots, d_s, a_1)$ would not be the shortest path linking d_1 and a_1 in $T[V_a]$.
- The W-triangulation T having no chord $a_i b_j$ or $a_i c_j$, the set V_a does not contain any vertex b_i or c_j , except $c_r = a_1$. Hence the vertices d_i , with $1 \le i \le s$, are not vertices b_j or c_k , with $1 \le j \le q$ and $1 \le k \le r$.
- Since $d_1 \neq a_1$ this path has length at least 1.

Fig. 3. The adjacent path of T and the graph $T_{d_2a_5}$.

Given a W-triangulation T, with 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) , without chord $a_i b_j$ or $a_i c_j$, consider the adjacent path $(d_1, d_2, \ldots, d_s, a_1)$. For any edge $d_x a_y \in E(T)$, with $1 \leq x \leq s$ and $1 < y \leq p$, we define $T_{d_x a_y}$ as the graph contained inside the cycle $C = (d_s, \ldots, d_x, a_y, \ldots, a_p, b_2, \ldots, b_q, c_2, \ldots, c_r)$ in T (see Figure 3). Since the vertices d_i are distinct from the vertices a_j, b_j or c_j, C is a cycle and $T_{d_x a_y}$ is a W-triangulation (c.f. Lemma 2).

The following property is needed to prove Property 4.

Property 5 Let T be a W-triangulation 3-bounded by (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) , without chord a_ib_j or a_ic_j and with adjacent path $(d_1, d_2, \ldots, d_s, a_1)$. For any edge $d_xa_y \in E(T)$, with $1 \leq x \leq s$ and $1 < y \leq p$, there are two disjoint paths P and Q in $T_{d_xa_y}$, one from c_1 to a_1 and one from a_y to b_1 , such that each vertex of $T_{d_xa_y}$ is contained either in P or in Q (see Figure 4).

We prove these two properties by doing a crossed induction.

Fig. 4. Property 5.

PROOF of Property 4 and Property 5. We prove, by induction on $m \ge 3$, that the following two statements hold:

- Property 4 holds if T has at most m edges.

- Property 5 holds if $T_{d_x a_y}$ has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation having at most 3 edges, K_3 . For Property 4 we have to consider all the possible 3-boundaries of K_3 . Since they are all equivalent, we denote a_1, b_1 , and c_1 the vertices of K_3 and we consider the 3-boundary $(a_1, b_1) - (b_1, c_1) - (c_1, a_1)$. In this case, the path $P = (c_1, a_1, b_1)$ clearly verifies Property 4. For Property 5, since a W-triangulation $T_{d_x a_y}$ has at least 4 vertices, a_1, b_1, c_1 , and d_1 , we have $T_{d_x a_y} \neq K_3$ and there is no W-triangulation $T_{d_x a_y}$ with at most 3 edges. So by vacuity, Property 5 holds for the W-triangulation $T_{d_x a_y}$ with at most 3 edges.

The induction step applies to both Property 4 and Property 5. This means that we prove Property 4 (resp. Property 5) for the W-triangulations T (resp. $T_{d_x a_y}$) with m edges using both Property 4 and Property 5 on W-triangulations with less than m edges. We first prove the induction for Property 4.

Case 1: Proof of Property 4 for a W-triangulation T with m edges. Let (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) be the 3-boundary of T. We consider various cases according to the existence of a chord a_ib_j or a_ic_j in T. We successively consider the case where there is a chord a_1b_j , with 1 < j < q, the case where there is a chord a_ib_j , with 1 < i < p and $1 < j \leq q$, and the case where there is a chord a_ic_j , with $1 < i \leq p$ and 1 < j < r. We then conclude with the case where there is no chord a_ib_j , with $1 \leq i \leq p$ and $1 \leq j \leq q$ (by definition of a 3-boundary there is no chord a_1b_q , a_ib_1 or a_pb_j), and no chord a_ic_j , with $1 \leq i \leq p$ and $1 \leq j \leq r$ (by definition of a 3-boundary there is no chord a_pc_1 , a_ic_r or a_1c_j).

Case 1.1: There is a chord a_1b_i , with 1 < i < q (see Figure 5). Let T_1 (resp. T_2) be the W-triangulation (*c.f.* Lemma 2), subgraph of T, in-

Fig. 5. Case 1.1: chord a_1b_i .

side the cycle $(b_i, \ldots, b_q, c_2, \ldots, c_r)$ (resp. $(a_1, \ldots, a_p, b_2, \ldots, b_i)$). It is clear that $V(T) = V(T_1) \cup V(T_2)$ and $V(T_1) \cap V(T_2) = \{a_1, b_i\}$. Since there is no chord $a_x a_y, b_x b_y$ or $c_x c_y$ for any x and $y, (b_i c_r) - (c_r, \ldots, c_1) - (b_q, \ldots, b_i)$ (resp. $(a_1, \ldots, a_p) - (b_1, \ldots, b_i) - (b_i a_1)$) is a 3-boundary of T_1 (resp. T_2). Since $a_1 a_2 \notin E(T_1)$ (resp. $c_1 c_2 \notin E(T_2)$), the W-triangulation T_1 (resp. T_2) has less edges than T, so Property 4 holds for T_1 (resp. T_2) with the mentioned 3boundary. Let P_1 (resp. P_2) be a hamiltonian path of T_1 (resp. T_2) going from c_1 to a_1 (resp. from b_i to b_1) and passing through the edge $b_i a_1$ (resp. $a_1 a_2$).

Since a_1 is an end of P_1 , this path clearly ends with the edge $b_i a_1$. Let $P'_1 = P_1 \setminus \{a_1\}$. This path goes from c_1 to b_i and passes through all the vertices in $V(T_1)$ except a_1 . Now let $P = P'_1 \cup P_2$, this is the graph with vertex set $V(P) = V(P'_1) \cup V(P_2)$ and with edge set $E(P) = E(P'_1) \cup E(P_2)$. Since the unique common vertex of P'_1 and P_2 , b_i , is an end of both P'_1 and P_2 , the graph P is a path from c_1 to b_1 . Furthermore, this path passes through all the vertices in V(T) since $V(P'_1) \cup V(P_2) = (V(T_1) \setminus \{a_1\}) \cup V(T_2) = V(T)$. Finally since $a_1a_2 \in E(P_2) \subset E(P)$ the path P fulfills Property 4.

Fig. 6. Case 1.2: chord $a_i b_j$.

Case 1.2: There is a chord $a_i b_j$, with 1 < i < p and $1 < j \leq q$ (see Figure 6). If there are several chords $a_i b_j$ consider one that maximizes j (*i.e.* such that there is no edge $a_i b_k$ with $j < k \leq q$). Let T_1 (resp. T_2) be the W-triangulation (*c.f.* Lemma 2), subgraph of T, inside the cycle $(a_2, \ldots, a_i, b_j, \ldots, b_q, c_2, \ldots, c_r)$ (resp. $(a_i, \ldots, a_p, b_2, \ldots, b_j)$). It is clear that $V(T) = V(T_1) \cup V(T_2)$ and $V(T_1) \cap V(T_2) = \{a_i, b_j\}$. Since there is no chord $a_x a_y, b_x b_y, c_x c_y$ or $a_i b_k$ with k > j, (a_1, \ldots, a_i) - (a_i, b_j, \ldots, b_q) - (c_1, \ldots, c_r) (resp. (a_i, b_j) - (b_j, \ldots, b_1) - (a_p, \ldots, a_i)) is a 3-boundary of T_1 (resp. T_2) has less edges than T so Property 4 holds for T_1 (resp. T_2) with the mentioned 3boundary. Let P_1 (resp. P_2) be a hamiltonian path of T_1 (resp. T_2) going from c_1 to a_i (resp. from b_1 to b_j) and passing through the edge a_1a_2 (resp. a_ib_j).

Since b_j is an end of P_2 , this path clearly ends with the edge $a_i b_j$. Let $P'_2 = P_2 \setminus \{b_j\}$. This path goes from b_1 to a_i and passes through all the vertices in $V(T_2)$ except b_j . Now let $P = P_1 \cup P'_2$. Since the unique common vertex of P_1 and P'_2 , a_i , is an end of both P_1 and P'_2 , the graph P is a path from c_1 to b_1 . Furthermore, this path passes through all the vertices in V(T) since $V(P_1) \cup V(P'_2) = V(T_1) \cup (V(T_2) \setminus \{b_j\}) = V(T)$. Finally since $a_1a_2 \in E(P_1) \subset E(P)$ the path P fulfills Property 4.

Fig. 7. Case 1.3: chord $a_i c_j$.

Case 1.3: There is a chord a_ic_j , with $1 < i \leq p$ and 1 < j < r(see Figure 7). If there are several chords a_ic_j consider one that maximizes i (*i.e.* such that there is no edge a_kc_j with $i < k \leq p$). Let T_1 (resp. T_2) be the W-triangulation (*c.f.* Lemma 2), subgraph of T, inside the cycle $(a_2, \ldots, a_i, c_j, \ldots, c_r)$ (resp. $(a_i, \ldots, a_p, b_2, \ldots, b_q, c_2, \ldots, c_j)$). It is clear that $V(T) = V(T_1) \cup V(T_2)$ and $V(T_1) \cap V(T_2) = \{a_i, c_j\}$. Since there is no chord a_xa_y, b_xb_y, c_xc_y or a_kc_j with k > i, (a_1, \ldots, a_i) - (a_i, c_j) - (c_j, \ldots, c_r) (resp. (c_j, a_i, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_j)) is a 3-boundary of T_1 (resp. T_2). Since $b_1b_2 \notin E(T_1)$ (resp. $a_1a_2 \notin E(T_2)$), the W-triangulation T_1 (resp. T_2) has less edges than T, so Property 4 holds for T_1 (resp. T_2) with the mentioned 3-boundary. Let P_1 (resp. P_2) be a hamiltonian path of T_1 (resp. T_2) going from c_j to a_i (resp. from c_1 to b_1) and passing through the edge a_1a_2 (resp. c_ja_i).

Let $P'_2 = P_2 \setminus \{c_j a_i\}$. This graph is a union of two vertex disjoint paths, one from c_1 to c_j and one from a_i to b_1 . Now let $P = P_1 \cup P'_2$. Since the common vertices of P_1 and P'_2 , a_i and c_j , are ends of P_1 , and are ends in distinct components of P'_2 , the graph P is a path from c_1 to b_1 . Furthermore, this path passes through all the vertices in V(T) since $V(P_1) \cup V(P'_2) = V(T_1) \cup V(T_2) =$ V(T). Finally since $a_1 a_2 \in E(P_1) \subset E(P)$ the path P fulfills Property 4.

Case 1.4: There is no chord $a_i b_j$ **or** $a_i c_j$. In this case we consider the adjacent path (d_1, \ldots, d_s, a_1) (see Figure 3) of T with respect to the 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) . Let $d_s a_y \in E(T)$ be the edge with $1 < y \leq p$ such that y is minimum. There is such an edge since the vertex d_s is, by

definition, adjacent to a vertex a_y with y > 1. The W-triangulation $T_{d_s a_y}$ has less edges than T $(a_1 a_2 \notin E(T_{d_s a_y}))$, so Property 5 holds for $T_{d_s a_y}$. Let P' and Q' be the paths of $T_{d_s a_y}$ going respectively from c_1 to a_1 and from a_y to b_1 . We distinguish two cases according to the index y of a_y , the case y = 2 and the case y > 2.

Fig. 8. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 8). The graph T being a W-triangulation, the cycle (a_1, a_2, d_s) bounds a face of T, so $V(T) = V(T_{d_s a_2})$. Let $P = P' \cup \{a_1 a_2\} \cup Q'$. Since a_1 and a_2 are ends of respectively P' and Q' the graph P is a path from c_1 to b_1 . Finally since V(P) = V(T) and $a_1 a_2 \in E(P)$ the path P fulfills Property 4.

Fig. 9. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 9). Let e_1, e_2, \ldots, e_t be the neighbors of d_s in T and inside the cycle $(d_s, a_1, a_2, \ldots, a_y)$, going from a_y to a_1 included. This implies that $e_1 = a_y$ and $e_t = a_1$. Furthermore since T has no chord a_1a_y , we have $t \ge 3$. The index y being minimum we have $e_i \ne a_j$ for all i and j such that 1 < i < t and 1 < j < y. Consider now the W-triangulation T_1 (c.f. Lemma 2), subgraph of T inside the cycle $(a_2, \ldots, a_y, e_2, \ldots, e_t)$). It is clear that $V(T) = V(T_{d_s a_y}) \cup V(T_1)$ and $V(T_{d_s a_y}) \cap V(T_1) = \{a_1, a_y\}$. The W-triangulation T having no separating 3-cycle (d_s, e_i, e_j) there is no chord $e_i e_j$ in T_1 . Furthermore since y > 2, (a_2, a_1) - (e_t, \ldots, e_1) - (a_y, \ldots, a_2) is a 3-boundary of T_1 . Since $a_1d_s \notin E(T_1)$, the W-triangulation T_1 has less edges than T, so Property 4 holds for T_1 with the mentioned 3-boundary. Let P_1 be a hamiltonian path of T_1 going from a_y to a_1 and passing through the edge a_2a_1 .

Let $P = P' \cup P_1 \cup Q'$. Since a_1 and a_y are ends of respectively P' and Q', and since these two vertices are ends of P_1 , the graph P is a path from c_1 to b_1 . Finally since $V(P) = V(P') \cup V(Q') \cup V(P_1) = V(T_{d_s a_y}) \cup V(T_1) = V(T)$, and since $a_1 a_2 \in E(P_1) \subset E(P)$, the path P fulfills Property 4.

This concludes the proof of Case 1.

Case 2: Proof of Property 5 for a W-triangulation $T_{d_x a_y}$ with m edges. The W-triangulation $T_{d_x a_y}$ is a subgraph of a W-triangulation T. This W-triangulation T is 3-bounded by (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) . Furthermore, T has no chord $a_i b_j$ or $a_i c_j$ and its adjacent path is (d_1, \ldots, d_s, a_1) , with $s \ge 1$. We distinguish the case where $d_x a_y = d_1 a_p$ and the case where $d_x a_y \ne d_1 a_p$.

Fig. 10. Case 2.1.

Case 2.1: $d_x a_y = d_1 a_p$ (see Figure 10). Let T_1 be the W-triangulation (*c.f.* Lemma 2), subgraph of T inside the cycle $(d_s, \ldots, d_1, b_2, \ldots, b_q, c_2, \ldots, c_r)$. The graph $T_{d_1 a_p}$ being a W-triangulation, the cycle (d_1, a_p, b_2) bounds a face of $T_{d_x a_y}$ and so $V(T_{d_1 a_p}) = V(T_1) \cup \{a_p\}$. The W-triangulation T_1 has no chord $b_i b_j, c_i c_j, d_i d_j$ or $a_1 d_j$. We consider two cases according to the existence of an edge $d_1 b_i$ with $2 < i \leq q$.

- If T_1 has no chord d_1b_i , with $2 < i \leq q$, then (d_1, b_2, \ldots, b_q) - (c_1, \ldots, c_r) - (a_1, d_s, \ldots, d_1) is a 3-boundary of T_1 .
- If T_1 has a chord d_1b_i , with $2 < i \leq q$ (so q > 2), then T_1 has no chord b_2a_1 or b_2d_j , with $1 < j \leq s$. Indeed, this would contradict the planarity of T(see Figure 10). In this case, $(b_2, d_1, \ldots, d_s, a_1)$ - (c_r, \ldots, c_1) - (b_q, \ldots, b_2) is a 3-boundary of T_1 .

Since $a_pb_2 \notin E(T_1)$, the W-triangulation T_1 has less edges than $T_{d_1a_p}$, so Property 4 holds for T_1 with one of the mentioned 3-boundaries. With both of these 3-boundaries, Property 4 gives a hamiltonian path P_1 of T_1 , from c_1 to a_1 and passing through the edge d_1b_2 .

Let Q be the trivial path of length 0 such that $V(Q) = \{a_p\}$. Since $V(P_1) \cup V(Q) = V(T_1) \cup \{a_p\} = V(T_{d_1a_p})$ and since $V(P_1) \cap V(Q) = V(T_1) \cap \{a_p\} = \emptyset$, the paths P_1 and Q fulfill Property 5.

Case 2.2: $d_x a_y \neq d_1 a_p$. In this case we consider an edge $d_z a_w \in E(T_{d_x a_y})$ such that $d_z a_w \neq d_x a_y$. Among all the possible edges $d_z a_w$ we choose the one that firstly maximizes z and secondly minimizes w. Such an edge necessarily exists and actually one can see that $d_z = d_x$ or $d_z = d_{x+1}$. Indeed, if $d_x = d_1$ there is at least one edge $d_1 a_w$ with w > y, the edge $d_1 a_p$. If x > 1, it is clear by definition of the adjacent path that the vertex d_{x-1} is adjacent to at least one vertex a_w with $w \ge y$.

Since $d_x a_y \notin E(T_{d_z a_w})$, the W-triangulation $T_{d_z a_w}$ has less edges than $T_{d_x a_y}$, so Property 5 holds for $T_{d_z a_w}$. Let P' and Q' be the obtained paths, going respectively from c_1 to a_1 and from a_w to b_1 .

We distinguish 4 cases according to the edge $d_z a_w$. When z = x we consider the case where w = y + 1 and the case where w > y + 1. When z = x - 1 we consider the case where w = y and the case where w > y.

Fig. 11. Case 2.2.1.

Case 2.2.1: $d_z = d_x$, and w = y + 1 (see Figure 11). The graph $T_{d_x a_y}$ being a W-triangulation, the cycle (d_x, a_y, a_w) bounds a face of $T_{d_x a_y}$ and so $V(T_{d_x a_y}) = V(T_{d_z a_w}) \cup \{a_y\}$. Since a_w is an end of Q' let $Q = Q' \cup \{a_y a_w\}$ be a path from a_y to b_1 . Since $V(P') \cup V(Q) = V(T_{d_z a_w}) \cup \{a_y\} = V(T_{d_x a_y})$ and since $V(P') \cap (V(Q) \setminus \{a_y a_w\}) \subseteq V(T_{d_z a_w}) \cap \{a_y\} = \emptyset$, the paths P' and Q fulfill Property 5.

Fig. 12. Case 2.2.2.

Case 2.2.2: z = x - 1, and $a_w = a_y$ (see Figure 12). The graph $T_{d_x a_y}$ being a W-triangulation, the cycle (d_x, a_y, d_z) bounds a face of $T_{d_x a_y}$ and so

 $V(T_{d_x a_y}) = V(T_{d_z a_w})$. Thus the paths P' and Q' already fulfill Property 5.

Fig. 13. Case 2.2.3.

Case 2.2.3: $d_z = d_x$, and w > y + 1 (see Figure 13). Let $e_1, e_2, \ldots, e_t, e_{t+1}$ be the neighbors of d_x in T and inside the cycle (d_x, a_y, \ldots, a_w) going from a_w to a_y included. This implies that $e_1 = a_w$ and $e_{t+1} = a_y$. Furthermore $t \ge 2$, since there is no chord $a_y a_w$. By definition of $d_z a_w$ we have $e_i \neq a_j$ for all i and j such that $1 < i \le t$ and y < j < w. Consider the W-triangulation T_1 (c.f. Lemma 2), subgraph of $T_{d_x a_y}$ inside the cycle $(a_y, \ldots, a_w, e_2, \ldots, e_t)$. It is clear that $V(T_{d_x a_y}) = V(T_{d_z a_w}) \cup V(T_1)$ and $V(T_{d_z a_w}) \cap V(T_1) = \{a_w\}$. The W-triangulation $T_{d_x a_y}$ having no separating 3-cycle (d_x, e_i, e_j) , there is no chord $e_i e_j$ in T_1 . Furthermore since $t \ge 2$, (e_t, e_{t+1}) - (a_y, \ldots, a_w) - (e_1, \ldots, e_t) is a 3-boundary of T_1 . Since $d_x a_y \notin E(T_1)$, the W-triangulation T_1 has less edges than $T_{d_x a_y}$, so Property 4 holds for T_1 with the mentioned 3-boundary and let P_1 be a hamiltonian path of T_1 , going from a_y to a_w .

Let $Q = Q' \cup P_1$. Since a_w is an end in both P_1 and Q' the graph Q is a path from a_y to b_1 . Since $V(P') \cup (V(Q') \cup V(P_1)) = V(T_{d_z a_w}) \cup V(T_1) = V(T_{d_x a_y})$ and since $V(P') \cap (V(Q') \cup V(P_1)) = V(P') \cap (V(P_1) \setminus \{a_w\}) = \emptyset$, the paths P' and Q fulfill Property 5.

Fig. 14. Case 2.2.4.

Case 2.2.4: z = x-1, and 1 < y < w (see Figure 14). Let $e_1, e_2, \ldots, e_t, e_{t+1}$ (resp. $f_1, f_2, \ldots, f_u, f_{u+1}, f_{u+2}$) be the neighbors of d_z (resp. d_x) in T and inside the cycle $(d_z, d_x, a_y, \ldots, a_w)$ going from a_w to d_x (resp. from a_y to d_z) included.

This implies that $e_1 = a_w$, $e_t = f_{u+1}$, $e_{t+1} = d_x$, $f_1 = a_y$, and $f_{u+2} = d_z$. Furthermore, by definition of the edge $d_z a_w$, there is no edge $d_x a_w$ or $d_z a_y$, so $t \ge 2$ and $u \ge 1$. Also by definition of $d_z a_w$ we have $e_i \ne a_j$ (resp. $f_i \ne a_j$) for all i and j such that $1 < i \le t$ (resp. $1 < i \le u$) and y < j < w. Since there is no separating 3-cycle (d_x, d_z, e_i) we have $e_i \ne f_j$ for all i and j such that $1 \le i \le t$ (resp. $1 < i \le u$) and y < j < w. Since there is no separating 3-cycle (d_x, d_z, e_i) we have $e_i \ne f_j$ for all i and j such that $1 \le i \le t$ and $1 \le j \le u$. Consider the W-triangulation T_1 (c.f. Lemma 2), subgraph of $T_{d_x a_y}$ inside the cycle $(a_y, \ldots, a_w, e_2, \ldots, e_t, f_u, \ldots, f_2)$. It is clear that $V(T_{d_x a_y}) = V(T_{d_z a_w}) \cup V(T_1)$ and $V(T_{d_z a_w}) \cap V(T_1) = \{a_w\}$. The W-triangulation $T_{d_x a_y}$ having no separating 3-cycle (d_z, e_i, e_j) or (d_x, f_i, f_j) , there is no chord $e_i e_j$ or $f_i f_j$ in T_1 . Furthermore since there is no chord $a_i a_j$, since $t \ge 2$, and since $u \ge 1$, (e_t, f_u, \ldots, f_1) - (a_y, \ldots, a_w) - (e_1, \ldots, e_t) is a 3-boundary of T_1 . Since $d_x a_y \notin E(T_1)$, the W-triangulation T_1 has less edges than $T_{d_x a_y}$ and Property 4 holds for T_1 with the mentioned 3-boundary. Let P_1 be a hamiltonian path of T_1 , going from a_y to a_w .

Let $Q = Q' \cup P_1$. Since a_w is an end in both P_1 and Q' the graph Q is a path from a_y to b_1 . Since $V(P') \cup (V(Q') \cup V(P_1)) = V(T_{d_z a_w}) \cup V(T_1) = V(T_{d_x a_y})$ and since $V(P') \cap (V(Q') \cup V(P_1)) \subseteq (V(T_{d_z a_w}) \setminus \{a_w\}) \cap V(T_1) = \emptyset$, the paths P' and Q fulfill Property 5.

This concludes the proof of Case 2 and so the joint proof of Property 4 and Property 5.

3 Outerplanar graphs

We consider a subclass of outerplanar graphs, the chordal outerplanar graphs (COGs).

Lemma 6 The set of chordal outerplanar graphs corresponds to the set of outerplanar graphs that have an outerplanar embedding in which every innerface is a triangle.

PROOF. Consider an outerplanarly embedded chordal outerplanar graph G. If G had an inner-face f bounded by a cycle C of length at least 4, C should have a chord. In this case, C and its chord would form a graph containing a cycle with vertices inside, contradicting the definition of outerplanar embedding.

Conversely consider an outerplanarly embedded graph G in which every innerface is triangular. Any cycle $C \subseteq G$ of length $l \geq 4$ delimits a region of the plane which is the union of some inner-faces. Since there is no vertex inside Cand since these inner-faces are triangles, the cycle C necessarily has a chord. In an outerplanarly embedded graph G, a side is an edge $e \in E(G)$ incident to the outer-face. It is easy to see that in every outerplanar embedding of a graph G the set of sides is exactly the same. So we extend the definition of side to every outerplanar graphs (not necessarily outerplanarly embedded). In a graph G, two vertices are *linked* if they belong to the same connected component. If they belong to distinct connected components these vertices are *unlinked*. We observe now that the class of chordal outerplanar graphs is closed under some operations.

Lemma 7 If A is a COG with c connected components and with a bridge e, then $A \setminus \{e\}$ is a COG with c + 1 connected components. Furthermore:

- all the sides (resp. bridges) $f \neq e$ of A are sides (resp. bridges) of $A \setminus \{e\}$, and
- any two vertices unlinked in A are unlinked in $A \setminus \{e\}$.

PROOF. Consider an outerplanar embedding of A. It is clear that deleting a bridge e of A does not modify the length of any inner-face. So the outerplanar embedding of $A \setminus \{e\}$ clearly implies the lemma.

Lemma 8 Let A be a COG with c connected components and with a vertex u of degree 2 and such that its two neighbors, v and w, are adjacent. The graph $A \setminus \{u\}$ is a COG with c connected components and such that:

- the edge vw is a side of $A \setminus \{u\}$,
- any side (resp. bridge) of A that is not incident to u is a side (resp. a bridge) of A\{u}, and
- any two vertices unlinked in A are unlinked in $A \setminus \{u\}$.

PROOF. It is known that the set of chordal graphs is closed under vertex deletion. Furthermore given an outerplanar embedding of A, if we delete u the embedding of $A \setminus \{u\}$ obtained clearly implies the lemma.

The union $A \cup B$ of two graphs A and B is a graph defined by $V(A \cup B) = V(A) \cup V(B)$ and $E(A \cup B) = E(A) \cup E(B)$. The intersection $A \cap B$ of two graphs A and B is a graph defined by $V(A \cap B) = V(A) \cap V(B)$ and $E(A \cap B) = E(A) \cap E(B)$. The following lemmas give us some conditions for the union of two COGs to be a COG.

Lemma 9 Let A and B be two COGs with respectively c_A and c_B connected components and such that their intersection is a single vertex v. Their union $A \cup B$ is a COG with $c_A + c_B - 1$ connected components such that:

Fig. 15. Lemma 9.

- any side (resp. bridge) of A or B is a side (resp. a bridge) of $A \cup B$, and
- any two vertices unlinked in A (resp. B) are unlinked in $A \cup B$.

PROOF. Divide the plane by a line (\mathcal{D}) . Put the vertex v on (\mathcal{D}) and then outerplanarly draw A and B in distinct half-planes. This gives us an outerplanar embedding of $A \cup B$. Furthermore, any inner-face of $A \cup B$ being an inner-face of A or B, the inner-faces of $A \cup B$ are all triangular. So the embedding of $A \cup B$ clearly implies the lemma.

Fig. 16. Lemma 10.

Lemma 10 Let A and B be two COGs with respectively c_A and c_B connected components and such that their intersection is a path $P = (v_1, \ldots, v_k)$. If all the edges of P are bridges of B, then $A \cup B$, is a COG with $c_A + c_B - 1$ connected components. Furthermore:

- any side (resp. bridge) $e \notin E(P)$ of A or B is a side (resp. a bridge) of $A \cup B$, and
- any two vertices unlinked in A (resp. B) are unlinked in $A \cup B$.

PROOF. The edges of P being bridges of B, Lemma 7 implies that the graph $B' = B \setminus E(P)$ is a COG. Since $P \subseteq A$ we have $A \cup B = A \cup B'$ and so $A \cup B$ is the union of A and each of the connected components of B'. The edges of P being bridges of B, each connected component of B' has at most one vertex in A. This implies, by Lemma 9 (applied for each union of a connected component), that $A \cup B$ is a COG with the desired properties.

Lemma 11 Let A and B be two COGs with respectively c_A and c_B connected components and such that their intersection is an edge e. If e is a side of both A and B then $A \cup B$ is a COG with $c_A + c_B - 1$ connected components. Furthermore:

Fig. 17. Lemma 11.

- any side (resp. bridge) $f \neq e$ of A or B is a side (resp. a bridge) of $A \cup B$, and
- any two vertices unlinked in A (resp. B) are unlinked in $A \cup B$.

PROOF. Divide the plane by a line (\mathcal{D}) . Put the edge e on (\mathcal{D}) and then outerplanarly draw A and B in distinct half-planes. This gives us an outerplanar embedding of $A \cup B$. Furthermore, any inner-face of $A \cup B$ being an inner-face of A or B, the inner-faces of $A \cup B$ are all triangular. So the embedding of $A \cup B$ clearly implies the lemma.

Fig. 18. Lemma 12.

Lemma 12 Let A and B be two COGs with respectively c_A and c_B connected components and such that their intersection is a path (u, v, w). If uv is a bridge of A and if vw is a side of both A and B then $A \cup B$ is a COG with $c_A + c_B - 1$ connected components. Furthermore:

- any side (resp. bridge) e of A or B, with e ≠ uv and e ≠ vw, is a side (resp. a bridge) of A ∪ B, and
- any two vertices unlinked in A (resp. B) are unlinked in $A \cup B$.

PROOF. The edge uv being a bridge of A, by Lemma 7 the graph $A' = A \setminus \{uv\}$ is a COG with $c_A + 1$ connected components. Let A'_u be the connected component of A' containing the vertex u and let A'_v be the graph $A' \setminus A'_u$. The edge vw being a side of both A'_v and B, Lemma 11 applies to the union $A'_v \cup B$. Finally, this union having only the vertex u in A'_u , Lemma 9 applies to the union $A'_u \cup (A'_v \cup B)$ and implies the lemma.

4 Partition of 4-connected triangulations

Since 4-connected triangulations have a hamiltonian cycle, they have a hamiltonian partition into two COGs. Let T be a triangulation with k 4-connected components T_1, \ldots, T_k . It is known that these 4-connected components are 4-connected triangulations and that we obtain them by cutting T along its separating 3-cycles. So each T_i has a hamiltonian cycle and let A_i and B_i be two COGs partitioning T_i , obtained by using the hamiltonian cycle method. It is not easy to combine the COGs A_i (resp. B_i) to obtain a COG A (resp. B), such that A and B form an edge-partition of T. For such process being successfull, each COG A_i or B_i should fulfill some special conditions. We prove in this section that some W-triangulations (including 4-connected triangulations) admit a partition into two COGs verifying these special conditions. In the next section we show how these conditions allow us to combine the COGs A_i and B_i of each 4-connected components of T to obtain the partition of T described in Theorem 1.

The stellation T^* of a near-triangulation T, is the near-triangulation obtained from T by adding inside each inner-face abc of T a new vertex x and three new edges xa, xb, and xc. Such a vertex x of T^* is called an f-vertex. Given a partition of a stellation T^* into two COGs A and B, a f-vertex $v \in V(T^*)$ has its neighborhood partitioned in an *extendable* way (see Figure 19) if its three neighbors a, b, and c, are such that the edges ab, va, and vb are in the same COG (*e.g.* A) and the edge vc in the other one (*e.g.* B). The edges acand bc are either in A or B. In such partition of the edges in the neighborhood of an f-vertex v, the edge ab is called the support edge of v. A partition of a stellation T^* is extendable if every f-vertex has its neighborhood partitioned in an extendable way.

Fig. 19. Neighborhood of an f-vertex v partitioned in an extendable way.

In this section there are many edge partitions depicted. Let us define a drawing convention for this figures.

Drawing convention for the partitions into two COGs A and B (see Figure 20). In these figures, the thin edges are edges that are either edges of A or B. The bold edges are either grey or black, according to which COG they belong to. In each figure it is indicated which of the colors corresponds to A or B. There are three types of edges in A (resp. B): the "normal" ones, the "bulging" ones or the "dotted" ones. The "normal" edges are bridges of A

or B. The "bulging" ones are sides of A or B. The "dotted" ones are edges of A or B which nature (bridge, side or other) are not indicated. Since a bridge e of a COG A is also a side of A, such an edge may be depicted as a "normal", a "bulging", or a "dotted" line.

Fig. 20. Drawing convention for the figures depicting a partition into two COGs.

The following property concerns bipartitions of 3-bounded W-triangulations into COGs.

Property 13 For any 3-bounded W-triangulation T and any 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) of T, there is a partition of the stellation T^* into two COGs $A = (V(T^*), E(A))$ and $B = (V(T^*), E(B))$ (see Figure 21). Furthermore,

- (a) this partition is extendable,
- (b) A is connected,
- (c) B has exactly two connected components, one containing b_1 and the other one containing b_a ,
- (d) the edge a_1a_2 is a side of A,
- (e) the edges $a_i a_{i+1}$ for $2 \le i < p$, are bridges of B,
- (f) the edges $b_i b_{i+1}$ for $1 \leq i < q$, are bridges of A, and
- (g) the edges $c_i c_{i+1}$ for $1 \le i < r$, are bridges of B.

Fig. 21. Property 13.

Note that Property 13 holds for 4-connected triangulations. Indeed, a 4-connected triangulation T with outer-boundary abc is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a). The following property is related to Property 13.

Property 14 Let T be a W-triangulation 3-bounded by (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) , without chord $a_i b_j$ or $a_i c_j$ and with adjacent path $(d_1, d_2, \ldots, d_s, a_1)$. For any edge $d_x a_y \in E(T)$, with $1 \leq x \leq s$ and $1 < y \leq p$, there is a partition of the stellation $T^*_{d_x a_y}$ into two COGs $A = (V(T^*_{d_x a_y}), E(A))$ and $B = (V(T^*_{d_x a_y}), E(B))$ (see Figure 22). Furthermore,

- (a) the partition is extendable,
- (b) A is connected,
- (c) B has exactly two connected components, one containing b_1 and the other one containing b_a ,
- (d) the edge a_1d_s and the edges d_id_{i+1} for $x \leq i < s$, are bridges of A,
- (e) the edge $d_x a_y$ is a side of A,
- (f) the edges $a_i a_{i+1}$ for $y \leq i < p$, are bridges of B,
- (g) the edges $b_i b_{i+1}$ for $1 \leq i < q$, are bridges of A, and
- (h) the edges $c_i c_{i+1}$ for $1 \le i < r$, are bridges of B.

Fig. 22. Property 14.

We need Property 13 for proving Theorem 1 in the next section. Even if Property 14 is not used there, this property is needed to prove Property 13. Indeed, as in Section 2, we prove these two properties by doing a crossed induction.

PROOF of Property 13 and Property 14. We prove, by induction on $m \ge 3$, that the following two statements hold:

- Property 13 holds if T has at most m edges.
- Property 14 holds if $T_{d_x a_y}$ has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation having at most 3 edges, K_3 . For Property 13 we have to consider all the possible 3-boundaries of K_3 . Since they are all equivalent, we denote a_1 , b_1 , and c_1 the vertices of K_3 and we consider the 3-boundary $(a_1, b_1)-(b_1, c_1)-(c_1, a_1)$. In Figure 23 there is a partitions of K_3^* verifying Property 13 for the considered 3-boundary. Note in particular that, since $V(B) = V(K_3^*) = \{a_1, b_1, c_1, v\}$, the graph B has two connected components, the path (a_1, c_1, v) and the vertex b_1 . For Property 14, recall that there is no W-triangulation $T_{d_x a_y}$ with at most 3 edges. So by vacuity, Property 14 holds for m = 3.

Fig. 23. Initial case of Property 13.

The induction step applies to both Property 13 and Property 14. This means that we prove Property 13 (resp. Property 14) for the W-triangulations T (resp. $T_{d_x a_y}$) with m edges using both Property 13 and Property 14 on W-triangulations with less than m edges. We first prove the induction for Property 13.

Case 1: Proof of Property 13 for a W-triangulation T with m edges. Let (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) be the 3-boundary of T. As in Section 2 we consider various cases according to the existence of a chord a_ib_j or a_ic_j in T.

Fig. 24. Case 1.1: chord a_1b_i .

Case 1.1: There is a chord a_1b_i , with 1 < i < q (see Figure 24). Let T_1 and T_2 be the W-triangulations respectively delimited by $(b_i, \ldots, b_q, c_2, \ldots, c_r)$ and $(a_1, a_2, \ldots, a_p, b_2, \ldots, b_i)$. We have already seen that these graphs have less edges than T and are respectively 3-bounded by (b_ia_1) - (c_r, \ldots, c_1) - (b_q, \ldots, b_i) and (a_1, \ldots, a_p) - (b_1, \ldots, b_i) - (b_ia_1) . Thus Property 13 holds for T_1 and T_2 with the mentioned 3-boundaries. This implies that there exists a partition of T_1^* into $A_1 = (V(T_1^*), E(A_1))$ and $B_1 = (V(T_1^*), E(B_1))$ such that:

(a1) the partition of T_1^* is extendable,

(b1) A_1 is connected,

- (c1) B_1 has exactly two connected components, one containing c_1 and one containing c_r ,
- (d1) the edge a_1b_i is a side of A_1 ,
- (f1) the edges $c_j c_{j+1}$ are bridges of A_1 , and
- (g1) the edges $b_j b_{j+1}$, for $j \ge i$, are bridges of B_1 .

Property 13 implies that there exists a partition of T_2^* into $A_2 = (V(T_2^*), E(A_2))$ and $B_2 = (V(T_2^*), E(B_2))$ such that:

- (a2) the partition of T_2^* is extendable,
- (b2) A_2 is connected,
- (c2) B_2 has exactly two connected components, one containing b_1 and one containing b_i ,
- (d2) the edge a_1a_2 is a side of A_2 ,
- (e2) the edges $a_j a_{j+1}$, for $j \ge 2$, are bridges of B_2 ,
- (f2) the edges $b_j b_{j+1}$, for j < i, are bridges of A_2 , and
- (g2) the edge a_1b_i is a bridge of B_2 .

Let $A = B_1 \cup A_2$ and $B = A_1 \cup B_2$. All the edges of T^* being in A_1 , B_1 , A_2 or B_2 , the graphs A and B cover T^* . Furthermore, the only edge belonging to both T_1^* and T_2^* , a_1b_i , is in A_1 and B_2 (*c.f.* (f1) and (d2)). So the sets E(A) and E(B) do not intersect and they form a partition of T^* . We now prove that A and B are COGs and that they verify Property 13.

(a) Each inner-face of T being an inner-face of T_1 or T_2 , any f-vertex of T^* is an f-vertex of T_1^* or T_2^* . For each f-vertex of T^* , the partition of its neighborhood is as in T_1^* or T_2^* . So the partitions of T_1^* and T_2^* being both extendable (*c.f.* (a1) and (a2)), the partition of T^* into A and B is extendable too. Thus point (a) of Property 13 holds.

The COGs B_1 and A_2 intersect on two vertices, a_1 and b_i . B_1 has two connected components, one containing a_1 and one containing b_i . Indeed, the connected component containing the vertex c_1 also contains the path (b_i, \ldots, b_q) (c.f. (c1) and (g1)). Let B'_1 (resp. B''_1) be the connected component of B_1 containing the vertex a_1 (resp. b_i). We consider the union of B_1 and A_2 as a succession of two unions in which the graphs intersect on a single vertex: $A = A_2 \cup B_1 =$ $(A_2 \cup B'_1) \cup B''_1$. Lemma 9 holds for each of these unions and it implies that $A = A_2 \cup B_1$ is a COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

- (b) Since A_2 , B'_1 , and B''_1 are connected (*c.f.* (b2) and (c1)), A is connected.
- (d) The edge a_1a_2 being a side of A_2 (*c.f.* (d2)), it is a side of A.
- (f) The edges $b_j b_{j+1}$ being bridges of A_2 or B_1 (*c.f.* (f2) and (g1)), these edges are bridges of A.

The intersection of the COGs A_1 and B_2 is the edge a_1b_i . This edge being a

bridge of B_2 (*c.f.* (g2)), Lemma 10 implies that $B = A_1 \cup B_2$ is a COG that fulfills points (c), (e), and (g) of Property 13. Indeed:

- (c) Since A_1 is connected and contains the vertices b_i and b_q (c.f. (b1) and (g1)) and since B_2 has two connected components, one containing b_1 and one containing b_i (c.f. (c2)), B has two connected components, one containing b_1 and one containing b_i . Furthermore since b_i and b_q are in the same connected component of B (A_1 being connected), the vertices b_1 and b_q are in distinct connected components of B.
- (e) The edges $a_j a_{j+1}$, for $j \ge 2$, being bridges of B_2 (*c.f.* (e2)), these edges are bridges of B.
- (g) The edges $c_j c_{j+1}$ being bridges of A_1 (*c.f.* (f1)), these edges are bridges of B.

Fig. 25. Case 1.2: chord $a_i b_j$.

Case 1.2: There is a chord $a_i b_j$, with 1 < i < p and $1 < j \leq q$ (see Figure 25). If there are several chords $a_i b_j$ consider one that maximizes j. Let T_1 and T_2 be the W-triangulations respectively delimited by $(a_2, \ldots, a_i, b_j, \ldots, b_q, c_2, \ldots, c_r)$ and $(a_i, \ldots, a_p, b_2, \ldots, b_j)$. We have already seen that these graphs have less edges than T and are respectively 3-bounded by (a_1, \ldots, a_i) - (a_i, b_j, \ldots, b_q) - (c_1, \ldots, c_r) and (a_i, b_j) - (b_j, \ldots, b_1) - (a_p, \ldots, a_i) . Thus Property 13 holds for T_1 and T_2 with the mentioned 3-boundaries. This implies that there exists a partition of T_1^* into $A_1 = (V(T_1^*), E(A_1))$ and $B_1 =$ $(V(T_1^*), E(B_1))$ such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,
- (c1) B_1 has exactly two connected components, one containing a_i and one containing b_q ,
- (d1) the edge a_1a_2 is a side of A_1 ,
- (e1) the edges $a_k a_{k+1}$, for $2 \leq k < i$, are bridges of B_1 ,
- (f1) the edge $a_i b_j$ and the edges $b_k b_{k+1}$, for $k \ge j$, are bridges of A_1 , and
- (g1) the edges $c_k c_{k+1}$ are bridges of B_1 .

Property 13 implies that there exists a partition of T_2^* into $A_2 = (V(T_2^*), E(A_2))$ and $B_2 = (V(T_2^*), E(B_2))$ such that:

- (a2) the partition of T_2^* is extendable,
- (b2) A_2 is connected,
- (c2) B_2 has exactly two connected components, one containing b_1 and one containing b_j ,
- (d2) the edge $a_i b_j$ is a side of A_2 ,
- (f2) the edges $b_k b_{k+1}$, for k < j, are bridges of A_2 , and
- (g2) the edges $a_k a_{k+1}$, for $k \ge i$, are bridges of B_2 .

Let $A = A_1 \cup A_2$ and $B = B_1 \cup B_2$. The graphs A and B covering all the edges of T^* and having no common edge $(a_i b_j \in E(A) \setminus E(B))$, they form a partition of T^* . We now prove that A and B are COGs and that they verify Property 13.

(a) The neighborhood of every f-vertex of T^* is partitioned as in T_1^* or as in T_2^* . Thus (*c.f.* (a1) and (a2)) the partition of T^* into A and B is extendable.

The intersection of the COGs A_1 and A_2 is the edge $a_i b_j$. This edge being a bridge of A_1 (*c.f.* (e1)), Lemma 10 implies that $A = A_1 \cup A_2$ is a COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

- (b) Since A_1 and A_2 are connected (*c.f.* (b1) and (b2)), A is connected.
- (d) The edge a_1a_2 being a side of A_1 (*c.f.* (d1)), it is a side of A.
- (f) The edges $b_k b_{k+1}$ being bridges of A_1 or A_2 (*c.f.* (f1) and (f2)), these edges are bridges of A.

The COGs B_1 and B_2 intersect on two vertices, a_i and b_j . The COG B_2 has two connected components, one containing b_1 and a_i and one containing b_j (*c.f.* (c2) and (g2)). We consider the union of B_1 and B_2 as a succession of two unions in which the graphs intersect on a single vertex. Lemma 9 implies that $B = B_1 \cup B_2$ is a COG that fulfills points (c), (e), and (g) of Property 13. Indeed:

- (c) Since B_1 has two connected components, one containing a_i and one containing b_q (c.f. (c1)), and since B_2 has two connected components, one containing b_1 and a_i and one containing b_j (c.f. (c2) and (g2)), B has two connected components, one containing b_1 and one containing b_1 and one containing b_2 .
- (e)(g) The edges $a_k a_{k+1}$, for $k \ge 2$, being bridges of B_1 or B_2 (c.f. (e1) and (g2)), and the edges $c_k c_{k+1}$ being bridges of B_1 (c.f. (g1)), these edges are bridges of B.

Case 1.3: There is a chord $a_i c_j$, with $1 < i \le p$ and 1 < j < r (see Fig-

Fig. 26. Case 1.3: chord $a_i c_j$.

ure 26). If there are several chords $a_i c_j$ consider one that maximizes *i*. Let T_1 and T_2 be the W-triangulations respectively delimited by $(a_2, \ldots, a_i, c_j, \ldots, c_r)$ and $(a_i, \ldots, a_p, b_2, \ldots, b_q, c_2, \ldots, c_j)$. We have already seen that these graphs have less edges than T and are respectively 3-bounded by (a_1, \ldots, a_i) - (a_i, c_j) - (c_j, \ldots, c_r) and (c_j, a_i, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_j) . Thus Property 13 holds for T_1 and T_2 with the mentioned 3-boundaries. This implies that there exists a partition of T_1^* into $A_1 = (V(T_1^*), E(A_1))$ and $B_1 = (V(T_1^*), E(B_1))$ such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,
- (c1) B_1 has exactly two connected components, one containing a_i and one containing c_j ,
- (d1) the edge a_1a_2 is a side of A_1 ,
- (e1) the edges $a_k a_{k+1}$, for $2 \leq k < i$, are bridges of B_1 ,
- (f1) the edge $a_i c_j$ is a bridge of A_1 , and
- (g1) the edges $c_k c_{k+1}$, for $k \ge j$, are bridges of B_1 .

Property 13 implies that there exists a partition of T_2^* into $A_2 = (V(T_2^*), E(A_2))$ and $B_2 = (V(T_2^*), E(B_2))$ such that:

- (a2) the partition of T_2^* is extendable,
- (b2) A_2 is connected,
- (c2) B_2 has exactly two connected components, one containing b_1 and one containing b_q ,
- (d2) the edge $a_i c_j$ is a side of A_2 ,
- (e2) the edges $a_k a_{k+1}$, for $k \ge i$, are bridges of B_2 ,
- (f2) the edges $b_k b_{k+1}$ are bridges of A_2 , and
- (g2) the edges $c_k c_{k+1}$, for k < j, are bridges of B_2 .

Let $A = A_1 \cup A_2$ and $B = B_1 \cup B_2$. The graphs A and B covering all the edges of T^* and having no common edge $(a_i c_j \in E(A) \setminus E(B))$, they form a partition of T^* . We now prove that A and B are COGs and that they verify Property 13.

(a) The neighborhood of every f-vertex of T^* is partitioned as in T_1^* or as in T_2^* . Thus (*c.f.* (a1) and (a2)) the partition of T^* into A and B is extendable.

The intersection of the COGs A_1 and A_2 is the edge $a_i c_j$. This edge being a bridge of A_1 (*c.f.* (f1)), Lemma 10 implies that $A = A_1 \cup A_2$ is a COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

- (b) Since A_1 and A_2 are connected (*c.f.* (b1) and (b2)), A is connected.
- (d) The edge a_1a_2 being a side of A_1 (*c.f.* (d1)), it is a side of A.
- (f) The edges $b_k b_{k+1}$ being bridges of A_2 (*c.f.* (f2)), these edges are bridges of A.

The COGs B_1 and B_2 intersect on two vertices, a_i and c_j . The COG B_1 has two connected components, one containing the vertex a_i and one containing the vertex c_j (c.f. (c1)). We consider the union of B_1 and B_2 as a succession of two unions in which the graphs intersect on a single vertex. Lemma 9 implies that $B = B_1 \cup B_2$ is a COG that fulfills points (c), (e), and (g) of Property 13. Indeed:

- (c) Since B_1 has two connected components, one containing a_i and one containing c_j (c.f. (c1)), and since B_2 has two connected components, one containing b_1 and a_i and one containing b_q and c_j (c.f. (c2), (e2), and (g2)), B has two connected components, one containing b_1 and one containing b_q .
- (e)(g) The edges $a_k a_{k+1}$, for $k \ge 2$, being bridges of B_1 or B_2 (c.f. (e1) and (e2)), and the edges $c_k c_{k+1}$ being bridges of B_1 or B_2 (c.f. (g1) and (g2)), these edges are bridges of B.

Case 1.4: There is no chord $a_i b_j$ or $a_i c_j$. As in Section 2 we consider the adjacent path (d_1, \ldots, d_s, a_1) (see Figure 3) of T for the 3-boundary (a_1, \ldots, a_p) - (b_1, \ldots, b_q) - (c_1, \ldots, c_r) . Let $d_s a_y \in E(T)$ be the edge with $1 < y \leq p$ such that y is minimum. The W-triangulation $T_{d_s a_y}$ having less edges than T, Property 14 holds for $T_{d_s a_y}$. This implies that there exists a partition of $T^*_{d_s a_y}$ into $A' = (V(T^*_{d_s a_y}), E(A'))$ and $B' = (V(T^*_{d_s a_y}), E(B'))$ such that:

- (a') the partition of $T^*_{d_s a_u}$ is extendable,
- (b') A' is connected,
- (c') B' has exactly two connected components, one containing b_1 and one containing b_q ,
- (d') the edge a_1d_s is a bridge of A',
- (e') the edge $d_s a_y$ is a side of A',
- (f) the edges $a_i a_{i+1}$, for $i \ge y$, are bridges of B',
- (g') the edges $b_i b_{i+1}$ are bridges of A', and
- (h') the edges $c_i c_{i+1}$ are bridges of B'.

We extend these two COGs in order to obtain a partition of T^* . We distinguish two cases according to the index y of a_y , the case y = 2 and the case y > 2.

Fig. 27. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 27). Let v be the f-vertex of T^* adjacent to a_1, a_2 , and d_s . Let G_A be the connected COG which is the union of the cycle (v, a_1, a_2, d_s) and the edge a_1d_s , and let G_B be the connected COG with only one edge, a_2v . Let $A = A' \cup G_A$ and $B = B' \cup G_B$. The graphs A and B covering all the edges of T^* and having no common edge, they form a partition of T^* . These graphs are COGs and they verify Property 13.

(a) The partition of v's neighborhood being extendable, and the neighborhood of the other f-vertices of T^* being partitioned as in $T^*_{d_s a_2}$, the partition of T^* into A and B is extendable.

The intersection of A' and G_A is the path (a_1, d_s, a_2) . The edge a_1d_s being a bridge of A' and the edge d_sa_2 being a side of both A' and G_A (*c.f.* (d') and (e')), Lemma 12 implies that $A = A' \cup G_A$ is a COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

- (b) Since A' and G_A are connected (c.f. (b')), A is connected.
- (d) The edge a_1a_2 being a side of G_A , it is a side of A.
- (f) The edges $b_i b_{i+1}$ being bridges of A' (*c.f.* (g')), these edges are bridges of A.

The intersection of B' and G_B being the vertex a_2 , Lemma 9 implies that the graph $B = B' \cup G_B$ is a COG that fulfills points (c), (e), and (g) of Property 13. Indeed:

- (c) Since G_B is connected and since B' has two connected components, one containing b_1 and one containing b_q (c.f. (c')), B has two connected components, one containing b_1 and one containing b_q .
- (e)(g) The edges $a_i a_{i+1}$, for $k \ge 2$, and the edges $c_i c_{i+1}$ being bridges of B' (c.f. (f') and (h')), these edges are bridges of B.

Fig. 28. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 28). Let e_1, e_2, \ldots, e_t be the neighbors of d_s in T and inside the cycle $(d_s, a_1, a_2, \ldots, a_y)$, going from a_y to a_1 included. This implies that $e_1 = a_y, e_t = a_1$, and $t \ge 3$. For each $i \in \{2, \ldots, t\}$, let e'_i be the f-vertex of T^* adjacent to d_s, e_i , and e_{i-1} .

Let G_A be the connected COG with the edges $e_i e_{i+1}$, for $1 \leq i < t$, the edges $d_s e_i$, for $1 \leq i \leq t$, the edges $e_i e'_{i+1}$, for $1 \leq i < t - 1$, the edges $e_i e'_i$, for $2 \leq i < t$, and the edges $d_s e'_t$ and $a_1 e'_t$. The intersection of A' and G_A , the path (a_1, d_s, a_y) , is such that the edge $a_1 d_s$ is a bridge of A' and such that the edge $d_s a_y$ is a side in both A' and G_A (*c.f.* (d') and (e')). So Lemma 12 implies that $A'' = A' \cup G_A$ is a COG:

(a") that is connected (c.f. (b')), and

(b") which edges $b_i b_{i+1}$ are bridges (c.f. (g')).

Let G_B be the COG which is the union of the star with edges $d_s e'_i$, for $2 \le i < t$, and the edge $e_{t-1}e'_t$. Since B' and G_B intersect on d_s , Lemma 9 implies that $B'' = B' \cup G_B$ is a COG:

- (c") having three connected components, one containing e_1 , one containing e_{t-1} and one containing e_t (*c.f.* (c'), (f'), (h')),
- (d") which edges $a_i a_{i+1}$, for $i \ge y$, are bridges (*c.f.* (f')), and
- (e") which edges $c_i c_{i+1}$ are bridges (c.f. (h')).

Consider now the W-triangulation T_1 delimited by $(a_2, \ldots, a_y, e_2, \ldots, e_t)$. We have already seen that this graph has less edges than T and is 3-bounded by $(a_2, a_1)-(e_t, \ldots, e_1)-(a_y, \ldots, a_2)$. Thus Property 13 holds for T_1 with the mentioned 3-boundary and there exists a partition of T_1^* into $A_1 = (V(T^*), E(A_1))$ and $B_1 = (V(T^*), E(B_1))$ such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,

- (c1) B_1 has exactly two connected components, one containing a_1 and one containing a_y ,
- (d1) the edge a_1a_2 is a side of A_1 ,
- (f1) the edges $e_i e_{i+1}$, for $1 \leq i < t$, are bridges of A_1 , and
- (g1) the edges $a_i a_{i+1}$, for $2 \le i < y$, are bridges of B_1 .

Let $A = A'' \cup A_1$ and $B = B'' \cup B_1$. The graphs A and B covering all the edges of T^* and having no common edge, they form a partition of T^* . We now prove that these graphs are COGs and that they verify Property 13.

(a) The partition of e'_i 's neighborhoods being extendable, and the neighborhood of the other f-vertices of T^* being partitioned as in $T^*_{d_s a_y}$ or as in T^*_1 , the partition of T^* into A and B is extendable.

The intersection of the COGs A'' and A_1 is the path (e_1, e_2, \ldots, e_t) which edges are all bridges of A_1 (*c.f.* (f1)). So Lemma 10 implies that $A = A'' \cup A_1$ is a COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

- (b) Since A'' and A_1 are connected (*c.f.* (a") and (b1)), A is connected.
- (d) The edge a_1a_2 being a side of A_1 (*c.f.* (d1)), it is a side of A.
- (f) The edges $b_i b_{i+1}$ being bridges of A'' (c.f. (b")), these edges are bridges of A.

The COGs B'' and B_1 intersect on the vertices e_1 , e_{t-1} , and e_t . B'' has three connected components, one containing e_1 , one containing e_{t-1} and one containing e_t (*c.f.* (c")). We consider the union of B'' and B_1 as a succession of three unions in which the graphs intersect on a single vertex. So Lemma 9 implies that $B = B'' \cup B_1$ is a COG that fulfills points (c), (e), and (g) of Property 13. Indeed:

- (c) Since B'' has three connected components, one containing e_1 and b_1 , one containing e_{t-1} , and one containing e_t and b_q (c.f. (c"), (d"), and (e")), and since B_1 has two connected components, one containing e_1 and one containing e_t (c.f. (c1)), B has two connected components, one containing b_1 and one containing b_q .
- (e)(g) The edges $a_i a_{i+1}$, for $k \ge 2$, and the edges $c_i c_{i+1}$ being bridges of B'' or B_1 (*c.f.* (d"), (e"), and (g1)), these edges are bridges of B.

This concludes the proof of Case 1.

Case 2: Proof of Property 14 for a W-triangulation $T_{d_x a_y}$ with m edges. As in Section 2, we consider one case where $d_x a_y = d_1 a_p$ and four cases where $d_x a_y \neq d_1 a_p$.

Case 2.1: $d_x a_y = d_1 a_p$ (see Figure 29). Let T_1 be the W-triangulation delimited by $(d_s, \ldots, d_1, b_2, \ldots, b_q, c_2, \ldots, c_r)$. We have seen that T_1 has less

Fig. 29. Case 2.1.

edges than $T_{d_1a_p}$ and is 3-bounded by (d_1, b_2, \ldots, b_q) - (c_1, \ldots, c_r) - (a_1, d_s, \ldots, d_1) or by $(b_2, d_1, \ldots, d_s, a_1)$ - (c_r, \ldots, c_1) - (b_q, \ldots, b_2) . Applying Property 13 to T_1 for any of these 3-boundaries we obtain a partition of T_1^* , into two COGs $A_1 = (V(T_1^*), E(A_1))$ and $B_1 = (V(T_1^*), E(B_1))$, such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,
- (c1) B_1 has exactly two connected components, one containing c_1 and one containing c_r ,
- (d1) the edge d_1b_2 is a side of A_1 ,
- (e1-g1) the edges $b_i b_{i+1}$, for $i \ge 2$, the edges $d_i d_{i+1}$, and the edge $a_1 d_s$ are bridges of B_1 , and
 - (f1) the edges $c_i c_{i+1}$ are bridges of A_1 .

We extend A_1 and B_1 to obtain the desired partition of $T^*_{d_1a_p}$. Let v be the f-vertex adjacent to a_p , b_2 , and d_1 (see Figure 29). Let G_A be the union of the cycle (d_1, b_1, v) and the edge b_1b_2 , and let G_B be the union of the path (d_1, b_2, v) and the vertex b_1 . Note that G_A and G_B are COGs and let $A = B_1 \cup G_A$ and $B = A_1 \cup G_B$. The graphs A and B covering all the edges of $T^*_{d_1a_p}$ and having no common edge, they form a partition of $T^*_{d_xa_y}$. We now prove that these graphs are COGs and that they verify Property 14.

(a) The partition of v's neighborhood being extendable, and the neighborhood of the other f-vertices of $T^*_{d_1a_p}$ being partitioned as in T^*_1 , the partition of $T^*_{d_1a_p}$ into A and B is extendable.

The COGs B_1 and G_A intersect on d_1 and b_2 . The COG B_1 has two connected components, one containing c_r and d_1 and one containing c_1 and b_2 (*c.f.* (c1) and (e1-g1)). Thus we consider the union of B_1 and G_A as a succession of two unions in which the graphs intersect on a single vertex. So Lemma 9 implies that $A = B_1 \cup G_A$ is a COG that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

(b) Since G_A is connected and since B_1 has two connected components (*c.f.* (c1)), one containing d_1 and one containing b_2 , A is connected.

- (e) The edge d_1a_p being a side of G_A , it is a side of A.
- (d)(g) The edge b_1b_2 being a bridge of G_A ; the edge a_1d_s , the edges d_id_{i+1} and the edges b_ib_{i+1} , for $i \ge 2$, being bridges of B_1 (*c.f.* (e1-g1)), these edges are bridges of A.

The intersection of the COGs A_1 and G_B is the edge d_1b_2 . This edge being a bridge of G_B , Lemma 10 implies that $B = A_1 \cup G_B$ is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

- (c) Since A_1 is connected and contains b_2 and b_q (c.f. (b1)), and since G_B has two connected components, one containing b_1 and one containing b_2 , B has two connected components, one containing b_1 and one containing b_q .
- (f) Since there is no edge $a_i a_{i+1}$ in $T_{d_1 a_p}$, B fulfills point (f) by vacuity.
- (h) The edges $c_i c_{i+1}$ being bridges of A_1 (*c.f.* (f1)), these edges are bridges of B.

Case 2.2: $d_x a_y \neq d_1 a_p$. In this case we consider an edge $d_z a_w \in E(T_{d_x a_y})$ such that $d_z a_w \neq d_x a_y$. Among all the possible edges $d_z a_w$ we choose the one that firstly maximizes z and secondly minimizes w. As we have already seen, such an edge necessarily exists and actually $d_z = d_x$ or $d_z = d_{x+1}$.

We have seen that $T_{d_z a_w}$ is a W-triangulation with less edges than $T_{d_x a_y}$. Thus Property 14 applies and there exists a partition of $T^*_{d_z a_w}$ into $A' = (V(T^*_{d_z a_w}), E(A'))$ and $B' = (V(T^*_{d_z a_w}), E(B'))$ such that:

- (a') the partition of $T^*_{d_z a_w}$ is extendable,
- (b') A' is connected,
- (c') B' has exactly two connected components, one containing b_1 and one containing b_q ,
- (d') the edge a_1d_s and the edges d_id_{i+1} , for $i \ge z$, are bridges of A',
- (e') the edge $d_z a_w$ is a side of A',
- (f') the edges $a_i a_{i+1}$, for $i \ge w$, are bridges of B',
- (g') the edges $b_i b_{i+1}$ are bridges of A', and
- (h') the edges $c_i c_{i+1}$ are bridges of B'.

We now extend this partition of $T^*_{d_z a_w}$ to $T^*_{d_x a_y}$. We proceed by distinguishing 4 cases according to the edge $d_z a_w$.

Case 2.2.1: $d_z = d_x$, and w = y + 1 (see Figure 30). Let v be the f-vertex adjacent to d_x , a_y , and a_w . Let G_A be the cycle (v, d_x, a_y) and G_B be the path (v, a_w, a_y) . Note that G_A and G_B are COGs and let $A = A' \cup G_A$ and $B = B' \cup G_B$. The graphs A and B covering all the edges of $T^*_{d_x a_y}$ and having no common edge, they form a partition of $T^*_{d_x a_y}$. We now prove that these graphs are COGs and that they verify Property 14.

Fig. 30. Case 2.2.1.

(a) The partition of v's neighborhood being extendable, and the neighborhood of the other f-vertices of $T^*_{d_x a_y}$ being partitioned as in $T^*_{d_z a_w}$, the partition of $T^*_{d_x a_y}$ into A and B is extendable.

The intersection of A' and G_A is the vertex d_x , so Lemma 9 implies that $A = A' \cup G_A$ is a COG that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

- (b) Since A' and G_A are connected (*c.f.* (b')), A is connected.
- (e) The edge $d_x a_y$ being a side of G_A , it is a side of A.
- (d)(g) The edge a_1d_s , the edges d_id_{i+1} , for $i \ge x$, and the edges b_ib_{i+1} being bridges of A' (c.f. (d') and (g')), these edges are bridges of A.

The intersection of B' and G_B is the vertex a_w , so Lemma 9 implies that $B = B' \cup G_B$ is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

- (c) Since G_B is connected and since B' has two connected components, one containing b_1 and one containing b_q (c.f. (c')), B has two connected components, one containing b_1 and one containing b_q .
- (f)(h) The edge $a_y a_w$ being a bridge of G_B ; the edges $a_i a_{i+1}$, for $i \ge w$, and the edges $c_i c_{i+1}$ being bridges of B' (c.f. (f') and (h')), these edges are bridges of B.

Case 2.2.2: z = x - 1, and $a_w = a_y$ (see Figure 31). Let v be the f-vertex adjacent to d_x , a_y , and d_z . Let G_A be the cycle (a_y, d_z, v, d_x) and the edge $d_x d_z$ and let G_B be the path (a_y, v) . Note that G_A and G_B are COGs and let $A = A' \cup G_A$ and $B = B' \cup G_B$. The graphs A and B covering all the edges of $T^*_{d_x a_y}$ and having no common edge, they form a partition of $T^*_{d_x a_y}$. We now prove that these graphs are COGs and that they verify Property 14.

(a) The partition of v's neighborhood being extendable, and the neighborhood of the other f-vertices of $T^*_{d_x a_y}$ being partitioned as in $T^*_{d_z a_w}$, the

Fig. 31. Case 2.2.2.

partition of $T^*_{d_x a_y}$ into A and B is extendable.

The intersection of A' and G_A is the path (d_x, d_z, a_y) . The edge $d_x d_z$ is a bridge of A' and the edge $d_z a_y$ is a side of both A' and G_A . So Lemma 12 implies that $A = A' \cup G_A$ is a COG that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

- (b) Since A' and G_A are connected (*c.f.* (b')), A is connected.
- (e) The edge $d_x a_y$ being a side of G_A , it is a side of A.
- (d)(g) The edge a_1d_s , the edges d_id_{i+1} , for $i \ge x$ and the edges b_ib_{i+1} being bridges of A' (c.f. (d') and (g')), these edges are bridges of A.

The COGs B' and G_B intersect on a_y , so Lemma 9 implies that $B = B' \cup G_B$ is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

- (c) Since G_B is connected and since B' has two connected components, one containing b_1 and one containing b_q (c.f. (c')), B has two connected components, one containing b_1 and one containing b_q .
- (f)(h) The edges $a_i a_{i+1}$, for $i \ge y$, and the edges $c_i c_{i+1}$ being bridges of B' (c.f. (f') and (h')), these edges are bridges of B.

Fig. 32. Case 2.2.3.

Case 2.2.3: $d_z = d_x$, and w > y + 1 (see Figure 32). Let $e_1, e_2, \ldots, e_t, e_{t+1}$

be the neighbors of d_x in T and inside the cycle (d_x, a_y, \ldots, a_w) going from a_w to a_y included. This implies that $e_1 = a_w$, $e_{t+1} = a_y$, and $t \ge 2$. For each $i \in \{1, \ldots, t\}$, let e'_i be the f-vertex of T^* adjacent to d_x , e_i , and e_{i+1} .

Let G_A be the connected COG which edges are the edges $e_i e_{i+1}$, for $1 \le i < t$, the edges $d_x e_i$, for $1 \le i \le t+1$, the edges $e_i e'_i$, for $1 \le i \le t$, the edges $e'_i e_{i+1}$, for $1 \le i < t$, and the edge $d_x e'_t$. Since the intersection of A' and G_A , the edge $d_x a_w$, is a side in both of these COGs (*c.f.* (e')), Lemma 11 implies that $A'' = A' \cup G_A$ is a COG:

- (a") that is connected (c.f. (b')),
- (b") which edge a_1d_s and edges d_id_{i+1} , for $i \ge z$, are bridges (c.f. (d')),
- (c") which edge $d_x a_y$ is a side, and
- (d") which edges $b_i b_{i+1}$ are bridges (c.f. (g')).

Let G_B be the COG which is the union of the path (e'_t, e_t, e_{t+1}) and the star with edges $d_x e'_i$, for $1 \leq i < t$. Since B' and G_B intersect on d_x Lemma 9 implies that $B'' = B' \cup G_B$ is a COG:

- (e") having three connected components, one containing a_w and a_p , one containing b_q , and one containing the edge $a_y e_t$ (c.f. (c') and (f')),
- (f") which edge $a_y e_t$ is a bridge,
- (g") which edges $a_i a_{i+1}$, for $i \ge w$, are bridges (c.f. (f')), and
- (h") which edges $c_i c_{i+1}$ are bridges (c.f. (h')).

Consider now the W-triangulation T_1 delimited by $(a_y, \ldots, a_w, e_2, \ldots, e_t)$. We have already seen that this graph has less edges than $T_{d_x a_y}$ and is 3-bounded by (e_t, e_{t+1}) - (a_y, \ldots, a_w) - (e_1, \ldots, e_t) . Thus Property 13 holds for T_1 with the mentioned 3-boundary. This implies that there exists a partition of T_1^* into $A_1 = (V(T_1^*), E(A_1))$ and $B_1 = (V(T_1^*), E(B_1))$ such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,
- (c1) B_1 has exactly two connected components, one containing a_y and one containing a_w ,
- (d1) the edge $a_y e_t$ is a side of A_1 ,
- (f1) the edges $a_i a_{i+1}$, for $y \leq i < w$, are bridges of A_1 , and
- (g1) the edges $e_i e_{i+1}$, for $1 \le i < t$, are bridges of B_1 .

Let $A = A'' \cup B_1$ and $B = B'' \cup A_1$. The graphs A and B covering all the edges of $T^*_{d_x a_y}$ and having no common edge, they form a partition of $T^*_{d_x a_y}$. We now prove that these graphs are COGs and that they verify Property 14.

(a) The partition of e'_i 's neighborhoods being extendable, and the neighborhood of the other f-vertices of $T^*_{d_x a_y}$ being partitioned as in $T^*_{d_z a_w}$ or as in T^*_1 , the partition of $T^*_{d_x a_y}$ into A and B is extendable.

The COGs A'' and B_1 intersect on the path (e_1, e_2, \ldots, e_t) and on the vertex a_y . B_1 has two connected components, one containing the path (e_1, e_2, \ldots, e_t) and one containing the vertex a_y (c.f. (c1) and (g1)). We consider the union of A'' and B_1 as two successive unions, one for each connected component of B_1 . For the union concerning the connected component of B_1 containing the path (e_1, e_2, \ldots, e_t) , the edges of this path being bridges of B_1 , we apply Lemma 10. For the union concerning the other connected component of B_1 we apply Lemma 9. Lemma 10 and Lemma 9 imply that $A = A'' \cup B_1$ is a COG that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

- (b) Since A'' is connected (*c.f.* (a")) and since B_1 has two connected components, one containing the vertex a_y and one containing the path (e_1, \ldots, e_t) (*c.f.* (c1) and (g1)), A is connected.
- (e) The edge $d_x a_y$ being a side of A'' (c.f. (c")), it is a side of A.
- (d)(g) The edge a_1d_s , the edges d_id_{i+1} , for $i \ge x$, and the edges b_ib_{i+1} being bridges of A'' (c.f. (b") and (d")), these edges are bridges of A.

The COGs B'' and A_1 intersect on the edge $a_y e_t$ and on the vertex a_w . B'' has three connected components, one containing the edge $a_y e_t$, one containing a_w and one other (*c.f.* (e")). We consider the union of B'' and A_1 as two successive unions, one with the connected component of B'' containing the edge $e_t a_y$, and one with the rest of the graph B''. For the first union, the edge $e_t a_y$ being a bridge of B'' (*c.f.* (f")), we apply Lemma 10. For the second union, the intersection being the vertex a_w we apply Lemma 9. Lemma 10 and Lemma 9 imply that $B = B'' \cup A_1$ is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

- (c) Since A_1 is connected (c.f. (b1)) and since B'' has three connected components, one containing the edge $a_y e_t$, one containing a_w and b_1 , and one containing b_q (*c.f.* (e") and (g")), B has two connected components, one containing b_1 and one containing b_q .
- (f)(h) The edges $a_i a_{i+1}$, for $i \ge y$, and the edges $c_i c_{i+1}$ being bridges of A_1 or B' (*c.f.* (f1), (g") and (h")), these edges are bridges of B.

Case 2.2.4: z = x-1, and 1 < y < w (see Figure 33). Let $e_1, e_2, \ldots, e_t, e_{t+1}$ (resp. $f_1, f_2, \ldots, f_u, f_{u+1}, f_{u+2}$) be the neighbors of d_z (resp. d_x) in T and inside the cycle $(d_z, d_x, a_y, \ldots, a_w)$ going from a_w to d_x (resp. from a_y to d_z) included. This implies that $e_1 = a_w, e_t = f_{u+1}, e_{t+1} = d_x, f_1 = a_y, f_{u+2} = d_z, t \ge 2$, and $u \ge 1$. For each $i \in \{1, \ldots, t\}$ (resp. $i \in \{1, \ldots, u\}$), let e'_i (resp. f'_i) be the f-vertex of T^* adjacent to d_z, e_i , and e_{i+1} (resp. d_x, f_i , and f_{i+1}).

Let G_A be the connected COG which edges are the edges $e_i e_{i+1}$, for $1 \le i \le t$, the edges $d_z e_i$, for $1 \le i \le t+1$, the edges $e_i e'_i$, for $1 \le i < t$, the edges $e'_i e_{i+1}$, for $1 \le i < t$, the edges $d_x e'_t$ and $d_z e'_t$, the edges $f_i f_{i+1}$, for $1 \le i < u$, the

Fig. 33. Case 2.2.4.

edges $d_x f_i$, for $1 \leq i \leq u$, the edges $f_i f'_i$, for $1 \leq i < u$, the edges $f'_i f_{i+1}$, for $1 \leq i \leq u$, and the edge $d_x f'_u$. The intersection of A' and G_A is the path (d_x, d_z, a_w) which edge $d_x d_z$ is a bridge of A' and which edge $d_z a_w$ is a side of both A' and G_A (*c.f.* (d') and (e')). So Lemma 12 implies that $A'' = A' \cup G_A$ is a COG:

- (a") that is connected (c.f. (a')),
- (b") which edge a_1d_s and edges d_id_{i+1} , for $i \ge x$, are bridges (c.f. (d')),
- (c") which edge $d_x a_y$ is a side, and
- (d") which edges $b_i b_{i+1}$ are bridges (c.f. (g')).

Let G_B be the COG which edges are the edges $d_z e'_i$, for $1 \le i < t$, the edges $d_x f'_i$, for $1 \le i < u$, and the edges $f_u e_t$, $f_u f'_u$, and $e_t e'_t$. The intersection of B' and G_B , the vertices d_x and d_z , are in two distinct connected components of G_B , so Lemma 9 implies that $B'' = B' \cup G_B$ is a COG:

- (e") having three connected components, one containing a_w and b_1 , one containing b_q and one containing the edge $f_u e_t$ (c.f. (c') and (f')),
- (f") which edge $f_u e_t$ is a bridge,
- (g') which edges $a_i a_{i+1}$, for $i \ge w$, are bridges (c.f. (f')), and
- (h") which edges $c_i c_{i+1}$ are bridges (c.f. (h')).

Consider now the W-triangulation T_1 delimited by $(a_y, \ldots, a_w, e_2, \ldots, e_t, f_u, \ldots, f_2)$. We have already seen that this graph has less edges than $T_{d_x a_y}$ and is 3bounded by (e_t, f_u, \ldots, f_1) - (a_y, \ldots, a_w) - (e_1, \ldots, e_t) . Thus Property 13 holds for T_1 with the mentioned 3-boundary. This implies that there exists a partition of T_1^* into $A_1 = (V(T_1^*), E(A_1))$ and $B_1 = (V(T_1^*), E(B_1))$ such that:

- (a1) the partition of T_1^* is extendable,
- (b1) A_1 is connected,
- (c1) B_1 has exactly two connected components, one containing a_y and one

containing a_w ,

- (d1) the edge $f_u e_t$ is a side of A_1 ,
- (e1) the edges $f_i f_{i+1}$, for $1 \le i < u$, are bridges of B_1 ,
- (f1) the edges $a_i a_{i+1}$, for $y \leq i < w$, are bridges of A_1 , and
- (g1) the edges $e_i e_{i+1}$, for $1 \le i < t$, are bridges of B_1 .

Let $A = A'' \cup B_1$ and $B = B'' \cup A_1$. The graphs A and B covering all the edges of $T^*_{d_x a_y}$ and having no common edge, they form a partition of $T^*_{d_x a_y}$. We now prove that these graphs are COGs and that they verify Property 14.

(a) The partition of e'_i 's and f'_j 's neighborhoods being extendable, and the neighborhood of the other *f*-vertices of $T^*_{d_x a_y}$ being partitioned as in $T^*_{d_z a_w}$ or as in T^*_1 , the partition of $T^*_{d_x a_y}$ into *A* and *B* is extendable.

The COGs A'' and B_1 intersect on the paths (e_1, e_2, \ldots, e_t) and (f_1, f_2, \ldots, f_u) . B_1 has two connected components, one containing the path (e_1, e_2, \ldots, e_t) and one containing the path (f_1, f_2, \ldots, f_u) (c.f. (c1), (e1), and (g1)). We consider the union of A'' and B_1 as a succession of two unions in which the graphs intersect on one path. All the edges of these paths being bridges of B_1 (c.f. (e1) and (g1)), we apply Lemma 10 to each of these unions and this implies that $A = A'' \cup B_1$ is a COG that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

- (b) Since A'' is connected (c.f. (a'')) and since B_1 has two connected components, one containing the path (e_1, e_2, \ldots, e_t) and one containing the path (f_1, f_2, \ldots, f_u) (c.f. (c1), (e1), and (g1)), A is connected.
- (e) The edge $d_x a_y$ being a side of A'' (c.f. (c")), it is a side of A.
- (d)(g) The edge a_1d_s , the edges d_id_{i+1} , for $i \ge x$, and the edges b_ib_{i+1} being bridges of A'' (c.f. (b") and (d")), these edges are bridges of A.

The COGs B'' and A_1 intersect on the edge $e_t f_u$ and on the vertex a_w . B'' has three connected components, one containing the edge $e_t f_u$, one containing the vertex a_w and another one $(c.f. (e^{"}))$. We consider the union of B'' and A_1 as a succession of two unions, one with the connected component of B'' containing the edge $e_t f_u$, and one with the rest of B''. In the first union, the edge $e_t f_u$ being a bridge of B'' $(c.f. (f^{"}))$, we apply Lemma 10. In the second union, the intersection of the graphs being the vertex a_w , we apply Lemma 9. These two lemmas imply that $B = B'' \cup A_1$ is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

- (c) Since A_1 is connected (c.f. (b1)) and since B'' has three connected components, one containing the edge $e_t f_u$, one containing a_w and b_1 , and one containing b_q (c.f. (e") and (g")), B has two connected components, one containing b_1 and one containing b_q ,
- (f)(h) The edges $a_i a_{i+1}$, for $i \ge y$, and the edges $c_i c_{i+1}$ being bridges of A_1 or B'' (c.f. (f1), (g") and (h")), these edges are bridges of B.

This concludes the Case 2 of the induction and so the joint proof of Property 13 and Property 14.

5 Partition of triangulations: Proof of Theorem 1

5.1 The case of 4-connected triangulations

Let T be a 4-connected triangulation with outer-vertices a, b, and c. Since Property 13 applies to T according to (a, b)-(b, c)-(c, a), let A and B be the two COGs that form an extendable partition of T^* . This partition induces a partition of T into A' and B' which respectively correspond to the graphs A and B where the f-vertices are deleted. Since the partition of T^* is extendable, the f-vertices are either vertices of degree one in A (resp. B) or vertices of degree two in a 3-cycle of A (resp. B). So Lemma 7 and Lemma 8 imply that A' and B' are two COGs.

The bipartition is hamiltonian. Property 13 and Property 14 are closely related to Property 4 and Property 5, their proofs clearly use the same induction scheme. The reader can observe that by merging these proofs we obtain a proof of the following two properties.

Property 15 Given any 3-bounded W-triangulation T and any of its 3-boundaries, Property 13 and Property 4 hold. Moreover, the path P (going from b_1 to b_q , two vertices on T's outer-boundary) divides T into two parts (say the right and the left according to our figures) in such a way that the edges of $A' = A \cap T$ (resp. $B' = B \cap T$) are on P or on its right (resp. on P or on its left).

Property 16 Given any $T_{d_x a_y}$, Property 14 and Property 5 hold. Moreover, the paths P and Q (being disjoint and both having their ends on $T_{d_x a_y}$'s outerboundary) divide $T_{d_x a_y}$ into three parts (say the middle and the sides) in such a way that the edges of $A \cap T_{d_x a_y}$ (resp. $B \cap T_{d_x a_y}$) are either on P, on Q or in the middle (resp. on P, on Q or in one of the sides).

Property 15 implies that in a 4-connected triangulation T 3-bounded by (a, b)-(b, c)-(c, a), there is a partition of T into the COGs A' and B' such that the edges of A' (resp. B') are on or inside (resp. on or outside) the hamiltonian cycle formed by P and the edge bc.

A' and B' are S-free. Recall that S is the cycle $(x_1, y_1, x_2, y_2, x_3, y_3)$ with chords y_1y_2, y_1y_3 , and y_2y_3 (see Figure 1). If S was a subgraph of A', T having no separating 3-cycle, the cycle (y_1, y_2, y_3) of S would bound a face of T. This face could not be the outer-face since $ab \in A$ and $ac \in B$. So let v be the f-vertex of T^* inside the cycle (y_1, y_2, y_3) . The partition of T^* into A and B being extendable and the three edges y_1y_2 , y_1y_3 , and y_2y_3 being in A, the support edge of v, say y_1y_2 , belongs to A. This implies that the edges vy_1 and vy_2 belongs to A and so that the edges y_1x_2 , y_2x_2 , y_1v , y_2v , y_1y_3 , and y_2y_3 , which form a $K_{2,3}$, all belong to A. This is impossible since outerplanar graphs are $K_{2,3}$ -minor free. Similarly, B' is S-free.

Thus Theorem 1 holds for 4-connected triangulations.

5.2 The case of general triangulations

Now let T be a triangulation having a separating 3-cycle (a, b, c). Let T_{int} (resp. T_{ext}) be the triangulation induced by the vertices on and inside (resp. on and outside) the cycle (a, b, c). Assume that T_{int} (resp. T_{ext}) has an edgepartition into two outerplanar graphs, A_{int} and B_{int} (resp. A_{ext} and B_{ext}). For A_{ext} , B_{ext} , A_{int} and B_{int} being such that the graphs $A_{ext} \cup A_{int}$ and $B_{ext} \cup B_{int}$ are two outerplanar graphs that cover T, they have to verify some properties allowing a gluing along the cycle (a, b, c). Since the cycle (a, b, c) bounds an inner-face of T_{ext} , the partition of T_{ext} into A_{ext} and B_{ext} has to verify some properties for each inner-face of T_{ext} . Similarly since (a, b, c) bounds the outerboundary of T_{int} , the partition of T_{int} into A_{int} and B_{int} has to verify some properties around the outer-face of T_{int} .

Property 17 Given a triangulation T with outer-face abc, there is an edge partition of T^* into two COGs $A = (V(T^*), E(A))$ and $B = (V(T^*), E(B))$ (see Figure 34), such that:

- (a) the partition is extendable,
- (b) A is connected,
- (c) B has exactly two connected components, one containing b and one containing c,
- (d) the edge ab is a side of A,
- (e) the edge bc is a bridge of A, and
- (f) the edge ac is a bridge of B.

This property clearly implies Theorem 1 for general triangulations.

PROOF of Property 17. Let T be any triangulation with outer-face *abc*. We proceed by induction on the number of separating 3-cycles in T. If T has no separating 3-cycle (i.e. T is 4-connected) we apply Property 13 to T for the 3-boundary (a, b)-(b, c)-(c, a). It is easy to see that the obtained partition of T^* fulfills Property 17.

Fig. 34. Property 17.

If T has a separating 3-cycle C, let T_{ext} and T_{int} be the triangulations respectively induced by the vertices on and outside C and by the vertices on and inside C. The cycle C is no more a separating 3-cycle in T_{ext} or T_{int} . So both T_{ext} and T_{int} have less separating 3-cycles than T. Then by induction hypothesis Property 17 applies to both T_{ext}^* and T_{int}^* .

We apply the induction hypothesis to T_{ext} and obtain a partition of T_{ext}^* into two COGs $A_e = (V(T_{ext}^*), E(A_e))$ and $B_e = (V(T_{ext}^*), E(B_e))$ such that:

- (a_e) the partition is extendable,
- (b_e) A_e is connected,
- (c_e) B_e has exactly two connected components, one containing the vertex b and one containing c,
- (d_e) the edge *ab* is a side of A_e ,
- (e_e) the edge bc is a bridge of A_e , and
- (f_e) the edge *ac* is a bridge of B_e .

Let v be the f-vertex inside the face delimited by C in T_{ext}^* . The partition of T_{ext}^* being extendable, it is possible to denote the vertices of C by a', b', and c', so that the support edge of v is a'b'. Without loss of generality let $a'b' \in E(A_e)$. This implies that va' and $vb' \in E(A_e)$ and that $vc' \in E(B_e)$. We now apply the induction hypothesis to the triangulation T_{int} with outer-face a'b'c' and we obtain a partition of T_{int}^* into two COGs $A_i = (V(T_{int}^*), E(A_i))$ and $B_i = (V(T_{int}^*), E(B_i))$ such that:

- (a_i) the partition is extendable,
- (b_i) A_i is connected,
- (c_i) B_i has exactly two connected components, one containing the vertex b' and one containing c',
- (d_i) the edge a'b' is a side of A_i ,
- (e_i) the edge b'c' is a bridge of A_i , and
- (f_i) the edge a'c' is a bridge of B_i .

We now define the partition of T^* into A and B by $A = (A_e \setminus \{v\}) \cup (A_i \setminus \{a'c', b'c'\})$ and $B = (B_e \setminus \{v\}) \cup (B_i \setminus \{a'c', b'c'\})$ (see Figure 35). In the case $a'b' \in E(B_e)$, we would have $A = (A_e \setminus \{v\}) \cup (B_i \setminus \{a'c', b'c'\})$ and

Fig. 35. The COGs A and B.

 $B = (B_e \setminus \{v\}) \cup (A_i \setminus \{a'c', b'c'\})$. The graphs A and B form a partition of T^* . Indeed:

- the cycle C = (a', b', c') does not bound any face of T, so there is no f-vertex v and no edges va', vb', and vc' in T^* ; and
- the edges a'c' and b'c' are covered by A_e or B_e .

Let $A'_e = A_e \setminus v$. By Lemma 8, the graph A'_e is a COG:

- (e1) that is connected,
- (e2) which edge ab is a side,
- (e3) which edge bc is a bridge, and
- (e4) which edge a'b' is a side.

Let $A'_i = A_i \setminus \{a'b', b'c'\}$ which equals to $A_i \setminus \{b'c'\}$ since $a'c' \notin E(A_i)$. By Lemma 7, the graph A'_i is a COG:

- (i1) having two connected components, one containing c' and one containing the edge a'b', and
- (i2) which edge a'b' is a side.

Let $B'_e = B_e \setminus v$. By Lemma 7, the graph B'_e is a COG:

- (e5) having two connected components, one containing b and one containing c, and
- (e6) which edge ac is a bridge.

Let $B'_i = B_i \setminus \{a'c', b'c'\}$ which equals to $B_i \setminus \{a'c'\}$ since $b'c' \notin E(B_i)$. By Lemma 7, the graph B'_i is a COG:

(i3) having three connected components, one containing a', one containing b', and one containing c'.

We prove now that $A = A'_e \cup A'_i$ and $B = B'_e \cup B'_i$ are COGs that fulfill the property.

The partition of T^* is extendable. Most of the *f*-vertices of T^* have their neighborhood partitioned as in T_{int}^* or T_{ext}^* . The only *f*-vertices for which this may not be the case are the *f*-vertex v_1 of T_{int}^* adjacent to b' and c', and the *f*-vertex v_2 of T_{int}^* adjacent to a' and c'. According to (e_i) (resp. (f_i)), the edge b'c' (resp. c'a') is a bridge of A_i (resp. B_i), so the support edge of v_1 (resp. v_2) is not b'c' (resp. a'c'). In such case there would be a cycle (v_1, b', c') $\in A_i$ (resp. (v_2, c', a') $\in B_i$) and the edge b'c' (resp. a'c') would not be a bridge. So the edges incident to v_1 (resp. v_2) and its support edge are partitioned as in T_{int}^* and the partition of v_1 's (resp. v_2 's) neighborhood is extendable. Thus point (a) of the property holds.

The graph A is a COG. We consider the union of A'_e and A'_i as two successive unions. At each step we consider one of the connected components of A'_i . We begin with the union of A'_e and the connected component of A'_i containing a'b'. These two graphs intersect on a'b'. The edge a'b' being a side in both of these COGs (*c.f.* (e4) and (i2)), Lemma 11 applies. Since this graph and the connected component of A'_i containing the vertex c' intersect on c', Lemma 9 applies. Lemma 11 and Lemma 9 imply that the graph A is a COG that fulfills points (b), (d), and (e) of the property:

- (b) Since A'_e is connected (*c.f.* (e1)) and since A'_i has two connected components, one containing c' and one containing a'b' (*c.f.* (i1)), A is connected.
- (d) If $ab \neq a'b'$, the edge ab being a side of A'_e (c.f. (e2)), it is a side of A. If ab = a'b', the edge ab being a side of A_e (c.f. (d_e)), it is a bridge of A'_e . In this case, by applying Lemma 10 instead of Lemma 11, since a'b' is a side of A'_i we obtain that ab is a side of A.
- (e) Since $bc \neq a'b'$ (the support edge of v cannot be a bridge), the edge bc being a bridge of A'_e (c.f. (e3)), it is a bridge of A.

The graph B is a COG. We consider the union of B'_e and B'_i as three successive unions. At each step we consider one of the connected components of B'_i . For each of these unions the two graphs intersect on a single vertex, a', b', or c', so Lemma 9 applies at each step. Lemma 9 implies that the graph Bis a COG that fulfills points (c) and (f) of the property:

- (c) Since B'_e has two connected components, one containing b and one containing c (*c.f.* (e5)), and since B'_i has three connected components, one containing a', one containing b', and one containing c' (*c.f.* (i3)), B has two connected components, one containing b and one containing c.
- (f) The edge *ac* being a bridge of B'_e , it is a bridge of *B* (*c.f.* (e6)).

This concludes the proof of Property 17 and so the proof of Theorem 1.

6 Conclusion

A maximum outerplanar graph on n vertices having 2n-3 edges and a planar graph on n vertices having at most 3n-6 edges, it could be that every planar graph contains p outerplanar subgraphs such that each edge belongs to q of them for some p and q verifying $\frac{3}{2} \leq \frac{p}{q} \leq 2$. For the case of bipartite planar graphs, since they have at most 2n-4 edges, the integers p and q could be such that $1 \leq \frac{p}{q} \leq 2$. The bipartite planar graphs are so sparse that they are the union of two trees [16], which is two graphs trivially outerplanar. However Theorem 1 is optimal even for bipartite planar graphs.

Theorem 18 ([8] p. 58) For any integers p and q with $\frac{p}{q} < 2$, the bipartite planar graph $K_{2,2p+1}$ has no p outerplanar subgraphs covering each edge q times.

The proofs of Property 13, Property 14 and Property 17 being constructive, one could design an algorithm \mathcal{A} with input a planar graph and with output two outerplanar graphs covering it. A planar graph G having at most 3|V(G)| - 6 edges, we can construct a triangulation T containing G in linear time (*i.e.* O(|V(G)|)). Furthermore Richards [17] showed how to decompose a triangulation T into 4-connected triangulations in linear time. Using convenient data structures it makes no doubt that \mathcal{A} could be linear.

The decomposition technique used to prove Property 13 and Property 14 seems to be very ad hoc. Surprisingly, exactly the same decomposition technique allowed the author and J. Chalopin [2] to prove the following conjecture of Scheinerman [19].

Conjecture 19 Every planar graph is the intersection graph of a set of segments in the plane.

In such intersection model of a graph, the vertex set is a set of segments and the edge set corresponds to the pairs of intersecting segments.

In [9] S. Gravier and C. Payan gave a reformulation of the Four Colour Theorem. In this reformulation they consider the outerplanar graph induced by the edges on and inside (resp. on and outside) a hamiltonian cycle in 4-connected triangulations. Theorem 1 implies a restriction on the graphs considered in this reformulation. These graphs are such that we can assign each edge on the hamiltonian cycle to one of the two graphs and obtain two S-free graphs.

It is shown in [5] that every graph embeddable on a surface S is coverable by two graphs with bounded tree-width. Can Theorem 1 be generalized to others surfaces? For each surface S, a graph is *outer*-S if it admits an embedding on S with no crossing edges and such that all the vertices are incident to the same face, the *outer-face*. We propose the following conjecture.

Conjecture 20 Every graph embeddable on S is coverable by two outer-S graphs.

This conjecture holds for 5-connected toroidal graphs (*i.e.* embeddable on the torus). Indeed Brunet and Richter [1] showed that 5-connected toroidal triangulations have a hamiltonian cycle separating the torus into two connected regions. Taking the edges of C and the edges in one of the region we obtain an outer-toroidal graph. Indeed, all the vertices are incident to the same face, the face bounded by C. Another family of embedded graphs is known to be hamiltonian, the family of 4-connected projective-planar graphs [20]. However this result does not imply our conjecture for this family of graphs since the hamiltonian cycles obtained do not necessarily separate the projective plane into two connected regions. Note that Conjecture 20 could not be much strengthened (contradicting a conjecture proposed by the author [8]). Let \mathbb{S}_g denotes the oriented surface of genus g.

Theorem 21 For every $g \ge 24$ such that $n \equiv 0 \pmod{12}$, there exists a graph embeddable in \mathbb{S}_g that does not admit any edge partition into an outer- \mathbb{S}_{g_1} graph and an outer- \mathbb{S}_{g_2} graph when $g_1 + g_2 \le \frac{5}{3}g$.

PROOF.

Claim 22 Consider an outer- \mathbb{S}_g graph G with n vertices, m edges and f faces. For every outer- \mathbb{S}_g graph G^+ such that $G = G^+ \setminus V_2$, for some stable set $V_2 \subseteq \{v \in V(G^+) | d_{G^+}(v) = 2\}$, we have $|V_2| \leq 3n + 6g - m - 3$.

Given any outer- \mathbb{S}_g graph G, let G^+ and V_2 be such that $|V_2|$ is maximized. This clearly implies that G^+ is connected and thus around its outer-face we have a facial walk $W_o = (v_1, v_2, \ldots, v_l)$ of length l. Now let G^* be the multigraph embedded in \mathbb{S}_g , obtained from G^+ by adding a new vertex x incident to each occurrence in W_o . According to the construction, G^* has $n^* = n + |V_2| + 1$ vertices and $m^* = m + 2|V_2| + l$ edges. Although G^* is a multigraph, Euler's formula apply and since all its faces have length at least three we have that $m^* \leq 3n^* + 6(g - 1)$. Furthermore, since G^+ is an outer- \mathbb{S}_g graph and since V_2 is a stable set, all the vertices in V_2 appear in W_o and none of them are consecutive in this walk. Thus $2|V_2| \leq l$ and $m + 4|V_2| \leq m^* \leq 3(n + |V_2| + 1) + 6(g - 1)$ which implies the claim.

The Map Color Theorem says that a complete graph on n vertices has an embedding in \mathbb{S}_g if and only if $g \geq \frac{1}{12}(n-3)(n-4)$ [18]. For any n > 0 such that $n \equiv 0 \pmod{12}$ we have that K_n has an embedding in \mathbb{S}_g , for $g = \frac{1}{12}(n-3)(n-4)$, that is a triangulation of \mathbb{S}_g . For these couples (n,g), let K_n^* be a stellation corresponding to a given embedding of K_n in \mathbb{S}_g . This

means that given this embedding of K_n in \mathbb{S}_g we add a vertex in every face and we link it to the three vertices incident to this face. Let V_3 in K_n^* be the maximum stable set with vertices of degree 3. Note that since K_n triangulates \mathbb{S}_g , K_n has $\frac{2}{3}|E(K_n)|$ triangular faces and thus $|V_3| = \frac{1}{3}n(n-1)$.

Note that if we add pendent vertices in an outer- \mathbb{S}_g graph this graph remains outer- \mathbb{S}_g . So given an edge partition of K_n^* into an outer- \mathbb{S}_{g_1} graph H_1 and an outer- \mathbb{S}_{g_2} graph H_2 , we can consider that every vertex of degree three in K_n^* has degree one in H_i , for $i \in \{1, 2\}$, and degree two in H_{3-i} . Since $|V_3| = \frac{1}{3}n(n-1)$, and since by Claim 22 H_i has at most $3n + 6g_i - |E(H_i)| - 3$ vertices of degree two from V_3 (the remaining vertices of V_3 have degree one in H_i), g_1 and g_2 should be such that $6n + 6(g_1 + g_2) - m - 6 \ge \frac{1}{3}n(n-1)$. Since this inequality does not hold when $\frac{5}{3}g \ge g_1 + g_2$ and $n \ge 24$, this concludes the proof of the theorem.

Acknowledgments

The author is deeply grateful to A. Raspaud, J.-L. Fouquet, D. Amar, E. Sopena, and S. Gravier for helpful discussions.

References

- R. Brunet and R. B. Richter. Hamiltonicity of 5-connected toroidal triangulations. J. Graph Theory, 20(3):267–286, 1995.
- [2] J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of segments in the plane. manuscript.
- [3] G. Chartrand, D. Geller, and S. Hedetniemi. Graphs with forbidden subgraphs. J. Combin. Theory Ser. B, 10:12–41, 1971.
- [4] F. R. K. Chung. Universal graphs and induced-universal graphs. J. Graph Theory, 14(4):443–454, 1990.
- [5] G. Ding, B. Oporowski, D. P. Sanders, and D. Vertigan. Surfaces, tree-width, clique-minors, and partitions. J. Combin. Theory Ser. B, 79(2):221–246, 2000.
- [6] E. S. El-Mallah and C. J. Colbourn. Partitioning the edges of a planar graph into two partial k-trees. *Congr. Numer.*, 66:69–80, 1988. Nineteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1988).
- [7] D. Gonçalves. Edge partition of planar graphs into two outerplanar graphs. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (Baltimore, MD, 2005), 504–512.

- [8] D. Gonçalves. Étude de diffrents problèmes de partition de graphes. *Ph.D. thesis. Université Bordeaux 1*, 2006.
- S. Gravier and C. Payan. Flips signés et triangulations d'un polygone. European J. Combin., 23(7):817–821, 2002.
- [10] G. Gutin, A. V. Kostochka, and B. Toft. On the Hajós number of graphs. *Discrete Math.*, 213(1-3):153–161, 2000. Selected topics in discrete mathematics (Warsaw, 1996).
- [11] L.S. Heath. Edge coloring planar graphs with two outerplanar subgraphs. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (San Fransisco, CA, 1991), 195–202.
- [12] T. R. Jensen and B. Toft. Graph coloring problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1995. A Wiley-Interscience Publication.
- [13] K. S. Kedlaya. Outerplanar partitions of planar graphs. J. Combin. Theory Ser. B, 67(2):238–248, 1996.
- [14] A. V. Kostochka and D. B. West. Every outerplanar graph is the union of two interval graphs. In Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), volume 139, pages 5–8, 1999.
- [15] P. Mutzel, T. Odenthal, and M. Scharbrodt. The thickness of graphs: a survey. *Graphs Combin.*, 14(1):59–73, 1998.
- [16] C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc., 39:12, 1964.
- [17] D.S. Richards. Finding Short Cycles in Planar Graphs Using Separators. J. Algorithms,7(3): 382-394, 1986.
- [18] G. Ringel. Map Color Theorem. Springer, Berlin, 1974.
- [19] E.R. Scheinerman. Intersection classes and multiple intersection parameters of graphs. *Ph.D. thesis. Princeton University*, 1984.
- [20] R. Thomas and X. Yu. 4-Connected Projective-Planar Graphs Are Hamiltonian J. Combin. Theory Ser. B, 62(1): 114-132, 1994.
- [21] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116, 1956.
- [22] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25–30, 1964.
- [23] H. Whitney. A theorem on graphs. Ann. of Math. (2), 32(2):378–390, 1931.