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Abstract

An outerplanar graph is a planar graph that can be embedded in the plane without
crossing edges, in such a way that all the vertices are on the outer-boundary. We
prove that every planar graph G = (V,E) has a bipartition of its edge set E = A∪B
such that the graphs induced by these subsets, G[A] and G[B], are outerplanar. This
proves a conjecture of Chartrand, Geller, and Hedetniemi (J. Combin. Theory Ser.
B, 10 (1971) 12–41).
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1 Introduction

Much work has been done in partitioning the edge sets of graphs such that
each subset induces a subgraph of a certain form. See for example the con-
cepts of chromatic index, arboricity, thickness, or track number. In this vein,
Chartrand, Geller, and Hedetniemi ([3] and Problem 6.3 in [12]) made the
famous [m, n]-conjecture. They defined the graphs with property Pm as the
graphs containing no subdivision of Km+1 or K⌈m/2⌉+1,⌊m/2⌋+1. Observe that
the graphs with property P4 (resp. P3) are the planar graphs (resp. outerpla-
nar graphs). The [m, n]-conjecture was that any graph with property Pm has
an edge partition into m−n+1 graphs with property Pn, for m ≥ n ≥ 2. This
conjecture is false in general. In [10], it is disproved for any n and m > cn2, for
some constant c. In this paper (that is the extended version of [7]) we prove
a special case of the conjecture, the case where n = 3 and m = 4. In other
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words, we prove that every planar graph has an edge bipartition into outerpla-
nar graphs. There have been various results toward this case of the conjecture.
Colbourn and El-Mallah [6] gave a first partial result showing that every pla-
nar graph has an edge bipartition into partial 3-trees. Then Kedlaya [13] and
Ding et al. [5] proved that a bipartition into partial 2-trees exists. Another
result [5] is that every planar graph has an edge partition into two outerpla-
nar graphs and a vee-forest (i.e. a forest in which each connected component
contains at most three vertices). A proof of this case of the [m, n]-conjecture
was already claimed in [11] but finally appeared to be incorrect.

A simple case of planar graphs that can be divided into two outerplanar graphs
are the hamiltonian planar graphs (i.e. containing a cycle going through ev-
ery vertex). In this case, the first outerplanar graph is constructed with the
edges of a hamiltonian cycle together with the edges in the interior of this
cycle, and the second one with the edges of this hamiltonian cycle together
with the edges in the exterior of this cycle. There is a lot of flexibility in this
construction since the edges of the hamiltonian cycle are in both subgraphs.
We say that a bipartition of an embedded planar graph (i.e. a plane graph) is
hamiltonian if there is a hamiltonian cycle C such that all the edges strictly
inside C are in the same subset and all the edges strictly outside C are in the
other subset. Whitney [23] proved that 4-connected triangulations are hamil-
tonian and Tutte [21] generalized this result to 4-connected planar graphs.
So we know that the conjecture holds for 4-connected planar graphs. Note
that with a hamiltonian partition, the graph inside the hamiltonian cycle is
outerplanarly embedded. This means that given an embedding of the planar
graph, the embedding it induces for this subgraph is such that all the vertices
are on its outer-boundary. An interesting result of Kedlaya [13] is that there
exists a planar graphs G such that whatever its embedding, and whatever the
bipartition of G into outerplanar graphs we consider, none of the outerplanar
subgraphs are outerplanarly embedded. This implies for example that there
are planar graphs with no edge partition into an outerplanar graph and a
forest (forests being always outerplanarly embedded).

A triangulation is a plane graph in which all the faces are triangles. Since
every planar graph is a subgraph of a triangulation and since every subgraph
of an outerplanar graph is outerplanar, we restrict our work to triangulations.
A graph G is chordal if every cycle of length l ≥ 4 has a chord, which is an
edge linking two non-consecutive vertices of the cycle. Let S be the graph with
a cycle (x1, y1, x2, y2, x3, y3) and chords y1y2, y1y3 and y2y3 (see Figure 1). A
graph is S-free if it does not contain any subgraph isomorphic to S. The main
result of the paper is the following theorem.

Theorem 1 Every triangulation T has an edge bipartition into chordal out-
erplanar graphs (e.g. COGs). Furthermore, if T is 4-connected there is such
a bipartition that is hamiltonian and for which the two COGs are S-free.
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Fig. 1. The graph S.

In Section 2 we give another proof of the fact that 4-connected triangulations
are hamiltonian. The technique used is inspired on the original proof of Whit-
ney [23] and may yield to the same hamiltonian cycle. This section is necessary
for considering the special case of 4-connected triangulations in Theorem 1.
In Section 3 we give some properties of outerplanar graphs. In Section 4 we
study edge partitions of 4-connected triangulations. This study allows us to
prove Theorem 1 in Section 5. Then we finally discuss some perspectives.

2 Hamiltonian cycle

A near-triangulation is a plane graph in which all the inner faces are triangular
(but not necessarily the outer-face). In a near-triangulation T , a separating
3-cycle C is a cycle of length three with at least one vertex inside C and
one vertex outside C. A W-triangulation is a 2-connected near-triangulation
without separating 3-cycles. Note that the 4-connected triangulations being
triangulations without any separating 3-cycle, they are W-triangulations. The
W-triangulations being 2-connected, they have no articulation vertex (a vertex
whose removal increases the number of connected components). Hence, the
outer-boundary of a W-triangulation is a cycle. A chord of this cycle is also
called a chord of T . The following lemma tells us in which case the subgraph
of a W-triangulation is also a W-triangulation.

Lemma 2 Let T be a W-triangulation and C a cycle of T . The subgraph of
T inside C (i.e. the graph induced by the edges on C and the edges inside C)
is a W-triangulation.

PROOF. Let the near-triangulation T ′ be the subgraph of T delimited by
C. By definition of a W-triangulation, T has no separating 3-cycle, hence T ′

has no separating 3-cycle. So we just have to show that T ′ is 2-connected, this
is that it has no articulation vertex.
For any vertex v of T ′, since T ′ is a near-triangulation, at most one of the faces
incident to v is not triangular, the outer-face. Furthermore, the outer-face
being delimited by a cycle, the vertex v appears at most once on the outer-
boundary. So the neighborhood of v induces a connected graph and thus T ′\v
is connected. Hence T ′ has no articulation vertex and it is a W-triangulation.
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Definition 3 A W-triangulation T is 3-bounded if its outer-boundary is di-
vided into three paths, (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr) verifying the
following conditions:

- The ends of the paths are such that a1 = cr, b1 = ap and c1 = bq.
- The paths are non-trivial, this is p > 1, q > 1 and r > 1.
- The W-triangulation T has no chord aiaj (resp. bibj or cicj) with 1 ≤ i < p

and i + 1 < j ≤ p (resp. 1 ≤ i < q and i + 1 < j ≤ q, or 1 ≤ i < r and
i + 1 < j ≤ r).

Given such a 3-bounded W-triangulation T , (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)
is a 3-boundary of T (see Figure 2).

In a 3-boundary the order and the orientation of the paths matters. Indeed,
(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr), (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap), and (ap, . . . , a1)-
(cr, . . . , c1)-(bq, . . . , b1) are distinct 3-boundaries. A hamiltonian path P of a
graph G is a path of G with vertex set V (P ) = V (G).

Property 4 For any 3-bounded W-triangulation T and any 3-boundary (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) of T , there is a hamiltonian path P in T from c1 to b1

passing through the edge a1a2 (see Figure 2).

c4

a2 b1 = ap

c1 = bq

a1 = cr

a3 a4

b2

b3

b4
c2

c3

Fig. 2. The 3-boundary of T and the path P of Property 4.

Note that P successively goes through c1, a1, a2, and then b1. Property 4
applies to 4-connected triangulations. Indeed, a 4-connected triangulation T
with outer-boundary abc is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a).
So if this property holds for T , there is a hamiltonian path P from c to b.
Adding the edge bc to this path P we obtain a hamiltonian cycle.

We now define the notion of adjacent path of a W-triangulation with respect
to a 3-boundary. Let T ̸= K3 be a W-triangulation 3-bounded by (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr), without chord aibj , with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and
without chord aicj, with 1 ≤ i ≤ p and 1 ≤ j ≤ r. The W-triangulation T hav-
ing at least 4 vertices and having no separating 3-cycle, the vertices b1 and b2

have exactly one common neighbor in V (T )\{a1}, denoted d1. Let Va ! V (T )
be the set of vertices of T adjacent to a vertex ai with i > 1, excluding the ver-
tices ai with i > 1 and the vertex b2. The graph T being a W-triangulation,
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the neighbors of ai in Va, with 1 < i ≤ p, induce a connected graph. Fur-
thermore, the vertices ai and ai+1 have a common neighbor in Va, hence the
set Va induces a connected graph. This set contains the vertices a1 and d1,
which respectively are the neighbors of a2 and ap. Denote (d1, d2, . . . , ds, a1)
the shortest path linking d1 and a1 in the graph T [Va] (see Figure 3). This path
is the adjacent path of T for the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)
and it verifies the following 3 points:

- There is no edge didj, with 1 ≤ i < s and i + 1 < j ≤ s, and no edge a1di,
with 1 ≤ i < s. Indeed, if such edge existed, the path (d1, d2, . . . , ds, a1)
would not be the shortest path linking d1 and a1 in T [Va].

- The W-triangulation T having no chord aibj or aicj, the set Va does not
contain any vertex bi or cj, except cr = a1. Hence the vertices di, with
1 ≤ i ≤ s, are not vertices bj or ck, with 1 ≤ j ≤ q and 1 ≤ k ≤ r.

- Since d1 ̸= a1 this path has length at least 1.

Td2a5

a1
a2

b2ds d1d2

a3

c1 = bq

a4 a5 b1 = ap

a1

b2ds d1d2

c1 = bq

a5 b1 = ap

T

Fig. 3. The adjacent path of T and the graph Td2a5 .

Given a W-triangulation T , with 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr),
without chord aibj or aicj, consider the adjacent path (d1, d2, . . . , ds, a1). For
any edge dxay ∈ E(T ), with 1 ≤ x ≤ s and 1 < y ≤ p, we define Tdxay as the
graph contained inside the cycle C = (ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr)
in T (see Figure 3). Since the vertices di are distinct from the vertices aj, bj

or cj , C is a cycle and Tdxay is a W-triangulation (c.f. Lemma 2).

The following property is needed to prove Property 4.

Property 5 Let T be a W-triangulation 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr), without chord aibj or aicj and with adjacent path (d1, d2, . . . , ds, a1).
For any edge dxay ∈ E(T ), with 1 ≤ x ≤ s and 1 < y ≤ p, there are two dis-
joint paths P and Q in Tdxay , one from c1 to a1 and one from ay to b1, such
that each vertex of Tdxay is contained either in P or in Q (see Figure 4).

We prove these two properties by doing a crossed induction.
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dx

c1 = bq

ay
b1 = ap

a1 = cr

Fig. 4. Property 5.

PROOF of Property 4 and Property 5. We prove, by induction on
m ≥ 3, that the following two statements hold:

- Property 4 holds if T has at most m edges.
- Property 5 holds if Tdxay has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 4 we have to consider all the possible
3-boundaries of K3. Since they are all equivalent, we denote a1, b1, and c1 the
vertices of K3 and we consider the 3-boundary (a1, b1)-(b1, c1)-(c1, a1). In this
case, the path P = (c1, a1, b1) clearly verifies Property 4. For Property 5, since
a W-triangulation Tdxay has at least 4 vertices, a1, b1, c1, and d1, we have
Tdxay ̸= K3 and there is no W-triangulation Tdxay with at most 3 edges. So by
vacuity, Property 5 holds for the W-triangulation Tdxay with at most 3 edges.

The induction step applies to both Property 4 and Property 5. This means
that we prove Property 4 (resp. Property 5) for the W-triangulations T (resp.
Tdxay ) with m edges using both Property 4 and Property 5 on W-triangulations
with less than m edges. We first prove the induction for Property 4.

Case 1: Proof of Property 4 for a W-triangulation T with m edges.
Let (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T . We consider
various cases according to the existence of a chord aibj or aicj in T . We
successively consider the case where there is a chord a1bj , with 1 < j < q, the
case where there is a chord aibj , with 1 < i < p and 1 < j ≤ q, and the case
where there is a chord aicj, with 1 < i ≤ p and 1 < j < r. We then conclude
with the case where there is no chord aibj , with 1 ≤ i ≤ p and 1 ≤ j ≤ q (by
definition of a 3-boundary there is no chord a1bq, aib1 or apbj), and no chord
aicj , with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by definition of a 3-boundary there is no
chord apc1, aicr or a1cj).

Case 1.1: There is a chord a1bi, with 1 < i < q (see Figure 5). Let
T1 (resp. T2) be the W-triangulation (c.f. Lemma 2), subgraph of T , in-
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T2

a1 = cr b1 = ap

c1 = bq

bi
bi

bi

a1
a2 b1 = ap

a1 = cr

c1 = bq

T T1

Fig. 5. Case 1.1: chord a1bi.

side the cycle (bi, . . . , bq, c2, . . . , cr) (resp. (a1, . . . , ap, b2, . . . , bi)). It is clear
that V (T ) = V (T1) ∪ V (T2) and V (T1) ∩ V (T2) = {a1, bi}. Since there is
no chord axay, bxby or cxcy for any x and y, (bicr)-(cr, . . . , c1)-(bq, . . . , bi)
(resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of T1 (resp. T2). Since
a1a2 /∈ E(T1) (resp. c1c2 /∈ E(T2)), the W-triangulation T1 (resp. T2) has less
edges than T , so Property 4 holds for T1 (resp. T2) with the mentioned 3-
boundary. Let P1 (resp. P2) be a hamiltonian path of T1 (resp. T2) going from
c1 to a1 (resp. from bi to b1) and passing through the edge bia1 (resp. a1a2).

Since a1 is an end of P1, this path clearly ends with the edge bia1. Let P ′
1 =

P1 \ {a1}. This path goes from c1 to bi and passes through all the vertices
in V (T1) except a1. Now let P = P ′

1 ∪ P2, this is the graph with vertex set
V (P ) = V (P ′

1) ∪ V (P2) and with edge set E(P ) = E(P ′
1) ∪ E(P2). Since the

unique common vertex of P ′
1 and P2, bi, is an end of both P ′

1 and P2, the
graph P is a path from c1 to b1. Furthermore, this path passes through all
the vertices in V (T ) since V (P ′

1) ∪ V (P2) = (V (T1) \ {a1}) ∪ V (T2) = V (T ).
Finally since a1a2 ∈ E(P2) ⊂ E(P ) the path P fulfills Property 4.

T2T1T

c1 = bq

b1 = ap

b j

ai

b1 = ap

b j

aia1
a2

a1 = cr

c1 = bq

a2 ai

b j

Fig. 6. Case 1.2: chord aibj.

Case 1.2: There is a chord aibj, with 1 < i < p and 1 < j ≤ q
(see Figure 6). If there are several chords aibj consider one that maxi-
mizes j (i.e. such that there is no edge aibk with j < k ≤ q). Let T1 (resp.
T2) be the W-triangulation (c.f. Lemma 2), subgraph of T , inside the cycle
(a2, . . . , ai, bj, . . . , bq, c2, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bj)). It is clear that
V (T ) = V (T1) ∪ V (T2) and V (T1) ∩ V (T2) = {ai, bj}. Since there is no
chord axay, bxby, cxcy or aibk with k > j, (a1, . . . , ai)-(ai, bj , . . . , bq)-(c1, . . . , cr)
(resp. (ai, bj)-(bj, . . . , b1)-(ap, . . . , ai)) is a 3-boundary of T1 (resp. T2). Since
b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), the W-triangulation T1 (resp. T2) has less
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edges than T so Property 4 holds for T1 (resp. T2) with the mentioned 3-
boundary. Let P1 (resp. P2) be a hamiltonian path of T1 (resp. T2) going from
c1 to ai (resp. from b1 to bj) and passing through the edge a1a2 (resp. aibj).

Since bj is an end of P2, this path clearly ends with the edge aibj . Let P ′
2 =

P2 \ {bj}. This path goes from b1 to ai and passes through all the vertices
in V (T2) except bj . Now let P = P1 ∪ P ′

2. Since the unique common vertex
of P1 and P ′

2, ai, is an end of both P1 and P ′
2, the graph P is a path from

c1 to b1. Furthermore, this path passes through all the vertices in V (T ) since
V (P1)∪V (P ′

2) = V (T1)∪ (V (T2)\{bj}) = V (T ). Finally since a1a2 ∈ E(P1) ⊂
E(P ) the path P fulfills Property 4.

T2T1T

a1 = cr b1

c1

a1

ai

c j
c j

a2 ai

c j

a2 ai
b1 = ap

c1 = bq

Fig. 7. Case 1.3: chord aicj.

Case 1.3: There is a chord aicj, with 1 < i ≤ p and 1 < j < r
(see Figure 7). If there are several chords aicj consider one that maxi-
mizes i (i.e. such that there is no edge akcj with i < k ≤ p). Let T1 (resp.
T2) be the W-triangulation (c.f. Lemma 2), subgraph of T , inside the cycle
(a2, . . . , ai, cj, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). It is clear that
V (T ) = V (T1) ∪ V (T2) and V (T1) ∩ V (T2) = {ai, cj}. Since there is no
chord axay, bxby, cxcy or akcj with k > i, (a1, . . . , ai)-(ai, cj)-(cj, . . . , cr) (resp.
(cj, ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj)) is a 3-boundary of T1 (resp. T2). Since
b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), the W-triangulation T1 (resp. T2) has less
edges than T , so Property 4 holds for T1 (resp. T2) with the mentioned 3-
boundary. Let P1 (resp. P2) be a hamiltonian path of T1 (resp. T2) going from
cj to ai (resp. from c1 to b1) and passing through the edge a1a2 (resp. cjai).

Let P ′
2 = P2 \ {cjai}. This graph is a union of two vertex disjoint paths, one

from c1 to cj and one from ai to b1. Now let P = P1 ∪ P ′
2. Since the common

vertices of P1 and P ′
2, ai and cj, are ends of P1, and are ends in distinct

components of P ′
2, the graph P is a path from c1 to b1. Furthermore, this path

passes through all the vertices in V (T ) since V (P1)∪V (P ′
2) = V (T1)∪V (T2) =

V (T ). Finally since a1a2 ∈ E(P1) ⊂ E(P ) the path P fulfills Property 4.

Case 1.4: There is no chord aibj or aicj. In this case we consider the ad-
jacent path (d1, . . . , ds, a1) (see Figure 3) of T with respect to the 3-boundary
(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Let dsay ∈ E(T ) be the edge with 1 < y ≤
p such that y is minimum. There is such an edge since the vertex ds is, by
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definition, adjacent to a vertex ay with y > 1. The W-triangulation Tdsay has
less edges than T (a1a2 /∈ E(Tdsay)), so Property 5 holds for Tdsay . Let P ′ and
Q′ be the paths of Tdsay going respectively from c1 to a1 and from ay to b1.
We distinguish two cases according to the index y of ay, the case y = 2 and
the case y > 2.

T

b1 = ap

a1 = cr

c1 = bq

a2
b1 = ap

a1 = cr

c1 = bq

a2

ds

Tdsa2

Fig. 8. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 8). The graph T being a W-triangulation,
the cycle (a1, a2, ds) bounds a face of T , so V (T ) = V (Tdsa2). Let P = P ′ ∪
{a1a2} ∪ Q′. Since a1 and a2 are ends of respectively P ′ and Q′ the graph P
is a path from c1 to b1. Finally since V (P ) = V (T ) and a1a2 ∈ E(P ) the path
P fulfills Property 4.

T1

ds

a1 = cr

c1 = bq

ay

ds

b1 = ap

cr−1

a2

ay = e1

ay = e1

a1 = et

a1 = et

e2

e2

Tdsay

Fig. 9. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 9). Let e1, e2, . . . , et be the neighbors of ds in
T and inside the cycle (ds, a1, a2, . . . , ay), going from ay to a1 included. This
implies that e1 = ay and et = a1. Furthermore since T has no chord a1ay,
we have t ≥ 3. The index y being minimum we have ei ̸= aj for all i and
j such that 1 < i < t and 1 < j < y. Consider now the W-triangulation
T1 (c.f. Lemma 2), subgraph of T inside the cycle (a2, . . . , ay, e2, . . . , et). It
is clear that V (T ) = V (Tdsay ) ∪ V (T1) and V (Tdsay) ∩ V (T1) = {a1, ay}. The
W-triangulation T having no separating 3-cycle (ds, ei, ej) there is no chord
eiej in T1. Furthermore since y > 2, (a2, a1)-(et, . . . , e1)-(ay, . . . , a2) is a 3-
boundary of T1. Since a1ds /∈ E(T1), the W-triangulation T1 has less edges
than T , so Property 4 holds for T1 with the mentioned 3-boundary. Let P1 be
a hamiltonian path of T1 going from ay to a1 and passing through the edge
a2a1.
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Let P = P ′ ∪P1 ∪Q′. Since a1 and ay are ends of respectively P ′ and Q′, and
since these two vertices are ends of P1, the graph P is a path from c1 to b1.
Finally since V (P ) = V (P ′)∪V (Q′)∪V (P1) = V (Tdsay )∪V (T1) = V (T ), and
since a1a2 ∈ E(P1) ⊂ E(P ), the path P fulfills Property 4.

This concludes the proof of Case 1.

Case 2: Proof of Property 5 for a W-triangulation Tdxay with m edges.
The W-triangulation Tdxay is a subgraph of a W-triangulation T . This W-
triangulation T is 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Further-
more, T has no chord aibj or aicj and its adjacent path is (d1, . . . , ds, a1),
with s ≥ 1. We distinguish the case where dxay = d1ap and the case where
dxay ̸= d1ap.

Td1ap

d1a1

c1

ds

T1

b1 = ap

b2

d1a1
a2

c1

ds
b1 = ap

b2

Fig. 10. Case 2.1.

Case 2.1: dxay = d1ap (see Figure 10). Let T1 be the W-triangulation (c.f.
Lemma 2), subgraph of T inside the cycle (ds, . . . , d1, b2, . . . , bq, c2, . . . , cr).
The graph Td1ap being a W-triangulation, the cycle (d1, ap, b2) bounds a face
of Tdxay and so V (Td1ap) = V (T1)∪{ap}. The W-triangulation T1 has no chord
bibj , cicj , didj or a1dj. We consider two cases according to the existence of an
edge d1bi with 2 < i ≤ q.

- If T1 has no chord d1bi, with 2 < i ≤ q, then (d1, b2, . . . , bq)-(c1, . . . , cr)-
(a1, ds, . . . , d1) is a 3-boundary of T1.

- If T1 has a chord d1bi, with 2 < i ≤ q (so q > 2), then T1 has no chord b2a1

or b2dj, with 1 < j ≤ s. Indeed, this would contradict the planarity of T
(see Figure 10). In this case, (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2) is a
3-boundary of T1.

Since apb2 /∈ E(T1), the W-triangulation T1 has less edges than Td1ap , so Prop-
erty 4 holds for T1 with one of the mentioned 3-boundaries. With both of these
3-boundaries, Property 4 gives a hamiltonian path P1 of T1, from c1 to a1 and
passing through the edge d1b2.

Let Q be the trivial path of length 0 such that V (Q) = {ap}. Since V (P1) ∪
V (Q) = V (T1)∪{ap} = V (Td1ap) and since V (P1)∩V (Q) = V (T1)∩{ap} = ∅,
the paths P1 and Q fulfill Property 5.
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Case 2.2: dxay ̸= d1ap. In this case we consider an edge dzaw ∈ E(Tdxay) such
that dzaw ̸= dxay. Among all the possible edges dzaw we choose the one that
firstly maximizes z and secondly minimizes w. Such an edge necessarily exists
and actually one can see that dz = dx or dz = dx+1. Indeed, if dx = d1 there
is at least one edge d1aw with w > y, the edge d1ap. If x > 1, it is clear by
definition of the adjacent path that the vertex dx−1 is adjacent to at least one
vertex aw with w ≥ y.

Since dxay /∈ E(Tdzaw), the W-triangulation Tdzaw has less edges than Tdxay ,
so Property 5 holds for Tdzaw . Let P ′ and Q′ be the obtained paths, going
respectively from c1 to a1 and from aw to b1.

We distinguish 4 cases according to the edge dzaw. When z = x we consider
the case where w = y + 1 and the case where w > y + 1. When z = x − 1 we
consider the case where w = y and the case where w > y.

ay

dx

b1 = ap

c1 = bq

b1 = ap

c1 = bq

aw

a1 = cr

Fig. 11. Case 2.2.1.

Case 2.2.1: dz = dx, and w = y + 1 (see Figure 11). The graph Tdxay

being a W-triangulation, the cycle (dx, ay, aw) bounds a face of Tdxay and so
V (Tdxay) = V (Tdzaw) ∪ {ay}. Since aw is an end of Q′ let Q = Q′ ∪ {ayaw} be
a path from ay to b1. Since V (P ′) ∪ V (Q) = V (Tdzaw) ∪ {ay} = V (Tdxay) and
since V (P ′) ∩ (V (Q) \ {ayaw}) ⊆ V (Tdzaw) ∩ {ay} = ∅, the paths P ′ and Q
fulfill Property 5.

a1 = cr

c1 = bqc1 = bq

dz

b1 = ap

dx

ay = aw

Fig. 12. Case 2.2.2.

Case 2.2.2: z = x − 1, and aw = ay (see Figure 12). The graph Tdxay

being a W-triangulation, the cycle (dx, ay, dz) bounds a face of Tdxay and so
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V (Tdxay) = V (Tdzaw). Thus the paths P ′ and Q′ already fulfill Property 5.

T1

Tdzaw

ay = et+1

aw = e1

et

et
aw = e1

dx = dz

a1 = cr
b1 = apaw

dz

c1 = bqc1 = bq

ay = et+1

Fig. 13. Case 2.2.3.

Case 2.2.3: dz = dx, and w > y + 1 (see Figure 13). Let e1, e2, . . . , et, et+1

be the neighbors of dx in T and inside the cycle (dx, ay, . . . , aw) going from aw

to ay included. This implies that e1 = aw and et+1 = ay. Furthermore t ≥ 2,
since there is no chord ayaw. By definition of dzaw we have ei ̸= aj for all
i and j such that 1 < i ≤ t and y < j < w. Consider the W-triangulation
T1 (c.f. Lemma 2), subgraph of Tdxay inside the cycle (ay, . . . , aw, e2, . . . , et).
It is clear that V (Tdxay) = V (Tdzaw) ∪ V (T1) and V (Tdzaw) ∩ V (T1) = {aw}.
The W-triangulation Tdxay having no separating 3-cycle (dx, ei, ej), there is no
chord eiej in T1. Furthermore since t ≥ 2, (et, et+1)-(ay, . . . , aw)-(e1, . . . , et) is
a 3-boundary of T1. Since dxay /∈ E(T1), the W-triangulation T1 has less edges
than Tdxay , so Property 4 holds for T1 with the mentioned 3-boundary and let
P1 be a hamiltonian path of T1, going from ay to aw.

Let Q = Q′ ∪ P1. Since aw is an end in both P1 and Q′ the graph Q is a path
from ay to b1. Since V (P ′) ∪ (V (Q′) ∪ V (P1)) = V (Tdzaw) ∪ V (T1) = V (Tdxay)
and since V (P ′) ∩ (V (Q′) ∪ V (P1)) = V (P ′) ∩ (V (P1) \ {aw}) = ∅, the paths
P ′ and Q fulfill Property 5.

T1

dx = et+1

ay = f1

fu

fu

ay = f1

aw = e1

aw = e1dx

b1 = apaw

dz

c1 = bqc1 = bq

Tdzaw

et

et

a1 = cr

dz = fu+2

Fig. 14. Case 2.2.4.

Case 2.2.4: z = x−1, and 1 < y < w (see Figure 14). Let e1, e2, . . . , et, et+1

(resp. f1, f2, . . . , fu, fu+1, fu+2) be the neighbors of dz (resp. dx) in T and inside
the cycle (dz, dx, ay, . . . , aw) going from aw to dx (resp. from ay to dz) included.

12



This implies that e1 = aw, et = fu+1, et+1 = dx, f1 = ay, and fu+2 = dz.
Furthermore, by definition of the edge dzaw, there is no edge dxaw or dzay, so
t ≥ 2 and u ≥ 1. Also by definition of dzaw we have ei ̸= aj (resp. fi ̸= aj) for
all i and j such that 1 < i ≤ t (resp. 1 < i ≤ u) and y < j < w. Since there
is no separating 3-cycle (dx, dz, ei) we have ei ̸= fj for all i and j such that
1 ≤ i < t and 1 ≤ j ≤ u. Consider the W-triangulation T1 (c.f. Lemma 2),
subgraph of Tdxay inside the cycle (ay, . . . , aw, e2, . . . , et, fu, . . . , f2). It is clear
that V (Tdxay) = V (Tdzaw) ∪ V (T1) and V (Tdzaw) ∩ V (T1) = {aw}. The W-
triangulation Tdxay having no separating 3-cycle (dz, ei, ej) or (dx, fi, fj), there
is no chord eiej or fifj in T1. Furthermore since there is no chord aiaj , since
t ≥ 2, and since u ≥ 1, (et, fu, . . . , f1)-(ay, . . . , aw)-(e1, . . . , et) is a 3-boundary
of T1. Since dxay /∈ E(T1), the W-triangulation T1 has less edges than Tdxay

and Property 4 holds for T1 with the mentioned 3-boundary. Let P1 be a
hamiltonian path of T1, going from ay to aw.

Let Q = Q′ ∪ P1. Since aw is an end in both P1 and Q′ the graph Q is a path
from ay to b1. Since V (P ′) ∪ (V (Q′) ∪ V (P1)) = V (Tdzaw) ∪ V (T1) = V (Tdxay)
and since V (P ′)∩ (V (Q′)∪V (P1)) ⊆ (V (Tdzaw)\{aw})∩V (T1) = ∅, the paths
P ′ and Q fulfill Property 5.

This concludes the proof of Case 2 and so the joint proof of Property 4 and
Property 5.

3 Outerplanar graphs

We consider a subclass of outerplanar graphs, the chordal outerplanar graphs
(COGs).

Lemma 6 The set of chordal outerplanar graphs corresponds to the set of
outerplanar graphs that have an outerplanar embedding in which every inner-
face is a triangle.

PROOF. Consider an outerplanarly embedded chordal outerplanar graph G.
If G had an inner-face f bounded by a cycle C of length at least 4, C should
have a chord. In this case, C and its chord would form a graph containing a
cycle with vertices inside, contradicting the definition of outerplanar embed-
ding.

Conversely consider an outerplanarly embedded graph G in which every inner-
face is triangular. Any cycle C ⊆ G of length l ≥ 4 delimits a region of the
plane which is the union of some inner-faces. Since there is no vertex inside C
and since these inner-faces are triangles, the cycle C necessarily has a chord.

13



In an outerplanarly embedded graph G, a side is an edge e ∈ E(G) incident
to the outer-face. It is easy to see that in every outerplanar embedding of a
graph G the set of sides is exactly the same. So we extend the definition of
side to every outerplanar graphs (not necessarily outerplanarly embedded).
In a graph G, two vertices are linked if they belong to the same connected
component. If they belong to distinct connected components these vertices
are unlinked. We observe now that the class of chordal outerplanar graphs is
closed under some operations.

Lemma 7 If A is a COG with c connected components and with a bridge e,
then A\{e} is a COG with c + 1 connected components. Furthermore:

- all the sides (resp. bridges) f ̸= e of A are sides (resp. bridges) of A\{e},
and

- any two vertices unlinked in A are unlinked in A\{e}.

PROOF. Consider an outerplanar embedding of A. It is clear that deleting a
bridge e of A does not modify the length of any inner-face. So the outerplanar
embedding of A\{e} clearly implies the lemma.

Lemma 8 Let A be a COG with c connected components and with a vertex u
of degree 2 and such that its two neighbors, v and w, are adjacent. The graph
A\{u} is a COG with c connected components and such that:

- the edge vw is a side of A\{u},
- any side (resp. bridge) of A that is not incident to u is a side (resp. a bridge)

of A\{u}, and
- any two vertices unlinked in A are unlinked in A\{u}.

PROOF. It is known that the set of chordal graphs is closed under vertex
deletion. Furthermore given an outerplanar embedding of A, if we delete u the
embedding of A\{u} obtained clearly implies the lemma.

The union A ∪ B of two graphs A and B is a graph defined by V (A ∪ B) =
V (A) ∪ V (B) and E(A ∪ B) = E(A) ∪ E(B). The intersection A ∩ B of
two graphs A and B is a graph defined by V (A ∩ B) = V (A) ∩ V (B) and
E(A ∩ B) = E(A) ∩E(B). The following lemmas give us some conditions for
the union of two COGs to be a COG.

Lemma 9 Let A and B be two COGs with respectively cA and cB connected
components and such that their intersection is a single vertex v. Their union
A ∪ B is a COG with cA + cB − 1 connected components such that:
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Fig. 15. Lemma 9.

- any side (resp. bridge) of A or B is a side (resp. a bridge) of A ∪ B, and
- any two vertices unlinked in A (resp. B) are unlinked in A ∪ B.

PROOF. Divide the plane by a line (D). Put the vertex v on (D) and then
outerplanarly draw A and B in distinct half-planes. This gives us an out-
erplanar embedding of A ∪ B. Furthermore, any inner-face of A ∪ B being
an inner-face of A or B, the inner-faces of A ∪ B are all triangular. So the
embedding of A ∪ B clearly implies the lemma.

Fig. 16. Lemma 10.

Lemma 10 Let A and B be two COGs with respectively cA and cB connected
components and such that their intersection is a path P = (v1, . . . , vk). If all
the edges of P are bridges of B, then A ∪ B, is a COG with cA + cB − 1
connected components. Furthermore:

- any side (resp. bridge) e /∈ E(P ) of A or B is a side (resp. a bridge) of
A ∪ B, and

- any two vertices unlinked in A (resp. B) are unlinked in A ∪ B.

PROOF. The edges of P being bridges of B, Lemma 7 implies that the graph
B′ = B\E(P ) is a COG. Since P ⊆ A we have A∪B = A∪B′ and so A∪B
is the union of A and each of the connected components of B′. The edges
of P being bridges of B, each connected component of B′ has at most one
vertex in A. This implies, by Lemma 9 (applied for each union of a connected
component), that A ∪ B is a COG with the desired properties.

Lemma 11 Let A and B be two COGs with respectively cA and cB connected
components and such that their intersection is an edge e. If e is a side of
both A and B then A ∪ B is a COG with cA + cB − 1 connected components.
Furthermore:
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Fig. 17. Lemma 11.

- any side (resp. bridge) f ̸= e of A or B is a side (resp. a bridge) of A∪B,
and

- any two vertices unlinked in A (resp. B) are unlinked in A ∪ B.

PROOF. Divide the plane by a line (D). Put the edge e on (D) and then out-
erplanarly draw A and B in distinct half-planes. This gives us an outerplanar
embedding of A∪B. Furthermore, any inner-face of A∪B being an inner-face
of A or B, the inner-faces of A ∪ B are all triangular. So the embedding of
A ∪ B clearly implies the lemma.

u v w

Fig. 18. Lemma 12.

Lemma 12 Let A and B be two COGs with respectively cA and cB connected
components and such that their intersection is a path (u, v, w). If uv is a bridge
of A and if vw is a side of both A and B then A∪B is a COG with cA +cB−1
connected components. Furthermore:

- any side (resp. bridge) e of A or B, with e ̸= uv and e ̸= vw, is a side (resp.
a bridge) of A ∪ B, and

- any two vertices unlinked in A (resp. B) are unlinked in A ∪ B.

PROOF. The edge uv being a bridge of A, by Lemma 7 the graph A′ =
A\{uv} is a COG with cA +1 connected components. Let A′

u be the connected
component of A′ containing the vertex u and let A′

v be the graph A′\A′
u. The

edge vw being a side of both A′
v and B, Lemma 11 applies to the union A′

v∪B.
Finally, this union having only the vertex u in A′

u, Lemma 9 applies to the
union A′

u ∪ (A′
v ∪ B) and implies the lemma.
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4 Partition of 4-connected triangulations

Since 4-connected triangulations have a hamiltonian cycle, they have a hamil-
tonian partition into two COGs. Let T be a triangulation with k 4-connected
components T1, . . . , Tk. It is known that these 4-connected components are
4-connected triangulations and that we obtain them by cutting T along its
separating 3-cycles. So each Ti has a hamiltonian cycle and let Ai and Bi be
two COGs partitioning Ti, obtained by using the hamiltonian cycle method.
It is not easy to combine the COGs Ai (resp. Bi) to obtain a COG A (resp.
B), such that A and B form an edge-partition of T . For such process being
successfull, each COG Ai or Bi should fulfill some special conditions. We prove
in this section that some W-triangulations (including 4-connected triangula-
tions) admit a partition into two COGs verifying these special conditions. In
the next section we show how these conditions allow us to combine the COGs
Ai and Bi of each 4-connected components of T to obtain the partition of T
described in Theorem 1.

The stellation T ∗ of a near-triangulation T , is the near-triangulation obtained
from T by adding inside each inner-face abc of T a new vertex x and three
new edges xa, xb, and xc. Such a vertex x of T ∗ is called an f -vertex. Given
a partition of a stellation T ∗ into two COGs A and B, a f -vertex v ∈ V (T ∗)
has its neighborhood partitioned in an extendable way (see Figure 19) if its
three neighbors a, b, and c, are such that the edges ab, va, and vb are in the
same COG (e.g. A) and the edge vc in the other one (e.g. B). The edges ac
and bc are either in A or B. In such partition of the edges in the neighborhood
of an f -vertex v, the edge ab is called the support edge of v. A partition of a
stellation T ∗ is extendable if every f -vertex has its neighborhood partitioned
in an extendable way.

v

a b

c

Fig. 19. Neighborhood of an f -vertex v partitioned in an extendable way.

In this section there are many edge partitions depicted. Let us define a drawing
convention for this figures.

Drawing convention for the partitions into two COGs A and B (see
Figure 20). In these figures, the thin edges are edges that are either edges
of A or B. The bold edges are either grey or black, according to which COG
they belong to. In each figure it is indicated which of the colors corresponds
to A or B. There are three types of edges in A (resp. B): the ”normal” ones,
the ”bulging” ones or the ”dotted” ones. The ”normal” edges are bridges of A
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or B. The ”bulging” ones are sides of A or B. The ”dotted” ones are edges of
A or B which nature (bridge, side or other) are not indicated. Since a bridge e
of a COG A is also a side of A, such an edge may be depicted as a ”normal”,
a ”bulging”, or a ”dotted” line.

side of A or B

bridge of A or B

undetermined edge

edge of A or B

Fig. 20. Drawing convention for the figures depicting a partition into two COGs.

The following property concerns bipartitions of 3-bounded W-triangulations
into COGs.

Property 13 For any 3-bounded W-triangulation T and any 3-boundary (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) of T , there is a partition of the stellation T ∗ into two
COGs A = (V (T ∗), E(A)) and B = (V (T ∗), E(B)) (see Figure 21). Further-
more,

(a) this partition is extendable,
(b) A is connected,
(c) B has exactly two connected components, one containing b1 and the other

one containing bq,
(d) the edge a1a2 is a side of A,
(e) the edges aiai+1 for 2 ≤ i < p, are bridges of B,
(f) the edges bibi+1 for 1 ≤ i < q, are bridges of A, and
(g) the edges cici+1 for 1 ≤ i < r, are bridges of B.

a2 b1 = ap

c1 = bq

a1 = cr

A
BT ∗

Fig. 21. Property 13.

Note that Property 13 holds for 4-connected triangulations. Indeed, a 4-
connected triangulation T with outer-boundary abc is a W-triangulation 3-
bounded by (a, b)-(b, c)-(c, a). The following property is related to Property 13.
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Property 14 Let T be a W-triangulation 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr), without chord aibj or aicj and with adjacent path (d1, d2, . . . , ds, a1).
For any edge dxay ∈ E(T ), with 1 ≤ x ≤ s and 1 < y ≤ p, there is a
partition of the stellation T ∗

dxay
into two COGs A = (V (T ∗

dxay
), E(A)) and

B = (V (T ∗
dxay

), E(B)) (see Figure 22). Furthermore,

(a) the partition is extendable,
(b) A is connected,
(c) B has exactly two connected components, one containing b1 and the other

one containing bq,
(d) the edge a1ds and the edges didi+1 for x ≤ i < s, are bridges of A,
(e) the edge dxay is a side of A,
(f) the edges aiai+1 for y ≤ i < p, are bridges of B,
(g) the edges bibi+1 for 1 ≤ i < q, are bridges of A, and
(h) the edges cici+1 for 1 ≤ i < r, are bridges of B.

ds

ay

dx

b1 = ap

a1 = cr

c1 = bq

A

BT ∗
dxay

Fig. 22. Property 14.

We need Property 13 for proving Theorem 1 in the next section. Even if
Property 14 is not used there, this property is needed to prove Property 13.
Indeed, as in Section 2, we prove these two properties by doing a crossed
induction.

PROOF of Property 13 and Property 14. We prove, by induction on
m ≥ 3, that the following two statements hold:

- Property 13 holds if T has at most m edges.
- Property 14 holds if Tdxay has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 13 we have to consider all the possible
3-boundaries of K3. Since they are all equivalent, we denote a1, b1, and c1

the vertices of K3 and we consider the 3-boundary (a1, b1)-(b1, c1)-(c1, a1). In
Figure 23 there is a partitions of K∗

3 verifying Property 13 for the considered
3-boundary. Note in particular that, since V (B) = V (K∗

3) = {a1, b1, c1, v}, the
graph B has two connected components, the path (a1, c1, v) and the vertex b1.
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For Property 14, recall that there is no W-triangulation Tdxay with at most 3
edges. So by vacuity, Property 14 holds for m = 3.

b1

A

B
a1

c1

K∗
3

v

Fig. 23. Initial case of Property 13.

The induction step applies to both Property 13 and Property 14. This means
that we prove Property 13 (resp. Property 14) for the W-triangulations T
(resp. Tdxay) with m edges using both Property 13 and Property 14 on W-
triangulations with less than m edges. We first prove the induction for Prop-
erty 13.

Case 1: Proof of Property 13 for a W-triangulation T with m edges.
Let (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T . As in Section 2
we consider various cases according to the existence of a chord aibj or aicj in
T .

bi

c1 = bq

b1 = ap
a1 = cr

T ∗

b1 = ap

T ∗
2T ∗

1

c1 = bq

a1 = cr

a2
a1

bi

bi

B B1 B2A A1 A2

Fig. 24. Case 1.1: chord a1bi.

Case 1.1: There is a chord a1bi, with 1 < i < q (see Figure 24). Let T1

and T2 be the W-triangulations respectively delimited by (bi, . . . , bq, c2, . . . , cr)
and (a1, a2, . . . , ap, b2, . . . , bi). We have already seen that these graphs have less
edges than T and are respectively 3-bounded by (bia1)-(cr, . . . , c1)-(bq, . . . , bi)
and (a1, . . . , ap)-(b1, . . . , bi)-(bia1). Thus Property 13 holds for T1 and T2 with
the mentioned 3-boundaries. This implies that there exists a partition of T ∗

1

into A1 = (V (T ∗
1 ), E(A1)) and B1 = (V (T ∗

1 ), E(B1)) such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
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(c1) B1 has exactly two connected components, one containing c1 and one
containing cr,

(d1) the edge a1bi is a side of A1,
(f1) the edges cjcj+1 are bridges of A1, and
(g1) the edges bjbj+1, for j ≥ i, are bridges of B1.

Property 13 implies that there exists a partition of T ∗
2 into A2 = (V (T ∗

2 ), E(A2))
and B2 = (V (T ∗

2 ), E(B2)) such that:

(a2) the partition of T ∗
2 is extendable,

(b2) A2 is connected,
(c2) B2 has exactly two connected components, one containing b1 and one

containing bi,
(d2) the edge a1a2 is a side of A2,
(e2) the edges ajaj+1, for j ≥ 2, are bridges of B2,
(f2) the edges bjbj+1, for j < i, are bridges of A2, and
(g2) the edge a1bi is a bridge of B2.

Let A = B1 ∪ A2 and B = A1 ∪ B2. All the edges of T ∗ being in A1, B1, A2

or B2, the graphs A and B cover T ∗. Furthermore, the only edge belonging to
both T ∗

1 and T ∗
2 , a1bi, is in A1 and B2 (c.f. (f1) and (d2)). So the sets E(A)

and E(B) do not intersect and they form a partition of T ∗. We now prove
that A and B are COGs and that they verify Property 13.

(a) Each inner-face of T being an inner-face of T1 or T2, any f -vertex of T ∗

is an f -vertex of T ∗
1 or T ∗

2 . For each f -vertex of T ∗, the partition of its
neighborhood is as in T ∗

1 or T ∗
2 . So the partitions of T ∗

1 and T ∗
2 being

both extendable (c.f. (a1) and (a2)), the partition of T ∗ into A and B is
extendable too. Thus point (a) of Property 13 holds.

The COGs B1 and A2 intersect on two vertices, a1 and bi. B1 has two connected
components, one containing a1 and one containing bi. Indeed, the connected
component containing the vertex c1 also contains the path (bi, . . . , bq) (c.f. (c1)
and (g1)). Let B′

1 (resp. B′′
1 ) be the connected component of B1 containing

the vertex a1 (resp. bi). We consider the union of B1 and A2 as a succession
of two unions in which the graphs intersect on a single vertex: A = A2 ∪B1 =
(A2 ∪ B′

1) ∪ B′′
1 . Lemma 9 holds for each of these unions and it implies that

A = A2 ∪ B1 is a COG that fulfills points (b), (d), and (f) of Property 13.
Indeed:

(b) Since A2, B′
1, and B′′

1 are connected (c.f. (b2) and (c1)), A is connected.
(d) The edge a1a2 being a side of A2 (c.f. (d2)), it is a side of A.
(f) The edges bjbj+1 being bridges of A2 or B1 (c.f. (f2) and (g1)), these

edges are bridges of A.

The intersection of the COGs A1 and B2 is the edge a1bi. This edge being a
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bridge of B2 (c.f. (g2)), Lemma 10 implies that B = A1 ∪ B2 is a COG that
fulfills points (c), (e), and (g) of Property 13. Indeed:

(c) Since A1 is connected and contains the vertices bi and bq (c.f. (b1) and
(g1)) and since B2 has two connected components, one containing b1

and one containing bi (c.f. (c2)), B has two connected components, one
containing b1 and one containing bi. Furthermore since bi and bq are in
the same connected component of B (A1 being connected), the vertices
b1 and bq are in distinct connected components of B.

(e) The edges ajaj+1, for j ≥ 2, being bridges of B2 (c.f. (e2)), these edges
are bridges of B.

(g) The edges cjcj+1 being bridges of A1 (c.f. (f1)), these edges are bridges
of B.

b1 = ap

b j

ai
b1 = ap

b j

ai

T ∗ T ∗
2

a1
a2

T ∗
1

a1 = cr

c1 = bq

a2 ai

b j

c1 = bq

B B1 B2A2A1A

Fig. 25. Case 1.2: chord aibj .

Case 1.2: There is a chord aibj, with 1 < i < p and 1 < j ≤ q
(see Figure 25). If there are several chords aibj consider one that max-
imizes j. Let T1 and T2 be the W-triangulations respectively delimited by
(a2, . . . , ai, bj, . . . , bq, c2, . . . , cr) and (ai, . . . , ap, b2, . . . , bj). We have already seen
that these graphs have less edges than T and are respectively 3-bounded by
(a1, . . . , ai)-(ai, bj , . . . , bq)-(c1, . . . , cr) and (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai). Thus
Property 13 holds for T1 and T2 with the mentioned 3-boundaries. This im-
plies that there exists a partition of T ∗

1 into A1 = (V (T ∗
1 ), E(A1)) and B1 =

(V (T ∗
1 ), E(B1)) such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
(c1) B1 has exactly two connected components, one containing ai and one

containing bq,
(d1) the edge a1a2 is a side of A1,
(e1) the edges akak+1, for 2 ≤ k < i, are bridges of B1,
(f1) the edge aibj and the edges bkbk+1, for k ≥ j, are bridges of A1, and
(g1) the edges ckck+1 are bridges of B1.
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Property 13 implies that there exists a partition of T ∗
2 into A2 = (V (T ∗

2 ), E(A2))
and B2 = (V (T ∗

2 ), E(B2)) such that:

(a2) the partition of T ∗
2 is extendable,

(b2) A2 is connected,
(c2) B2 has exactly two connected components, one containing b1 and one

containing bj ,
(d2) the edge aibj is a side of A2,
(f2) the edges bkbk+1, for k < j, are bridges of A2, and
(g2) the edges akak+1, for k ≥ i, are bridges of B2.

Let A = A1 ∪ A2 and B = B1 ∪ B2. The graphs A and B covering all the
edges of T ∗ and having no common edge (aibj ∈ E(A) \ E(B)), they form a
partition of T ∗. We now prove that A and B are COGs and that they verify
Property 13.

(a) The neighborhood of every f -vertex of T ∗ is partitioned as in T ∗
1 or as

in T ∗
2 . Thus (c.f. (a1) and (a2)) the partition of T ∗ into A and B is

extendable.

The intersection of the COGs A1 and A2 is the edge aibj . This edge being a
bridge of A1 (c.f. (e1)), Lemma 10 implies that A = A1 ∪ A2 is a COG that
fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A1 and A2 are connected (c.f. (b1) and (b2)), A is connected.
(d) The edge a1a2 being a side of A1 (c.f. (d1)), it is a side of A.
(f) The edges bkbk+1 being bridges of A1 or A2 (c.f. (f1) and (f2)), these edges

are bridges of A.

The COGs B1 and B2 intersect on two vertices, ai and bj . The COG B2 has
two connected components, one containing b1 and ai and one containing bj

(c.f. (c2) and (g2)). We consider the union of B1 and B2 as a succession of
two unions in which the graphs intersect on a single vertex. Lemma 9 implies
that B = B1∪B2 is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since B1 has two connected components, one containing ai and one con-
taining bq (c.f. (c1)), and since B2 has two connected components, one
containing b1 and ai and one containing bj (c.f. (c2) and (g2)), B has two
connected components, one containing b1 and one containing bq.

(e)(g) The edges akak+1, for k ≥ 2, being bridges of B1 or B2 (c.f. (e1) and
(g2)), and the edges ckck+1 being bridges of B1 (c.f. (g1)), these edges
are bridges of B.

Case 1.3: There is a chord aicj, with 1 < i ≤ p and 1 < j < r (see Fig-
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Fig. 26. Case 1.3: chord aicj .

ure 26). If there are several chords aicj consider one that maximizes i. Let T1

and T2 be the W-triangulations respectively delimited by (a2, . . . , ai, cj, . . . , cr)
and (ai, . . . , ap, b2, . . . , bq, c2, . . . , cj). We have already seen that these graphs
have less edges than T and are respectively 3-bounded by (a1, . . . , ai)-(ai, cj)-
(cj, . . . , cr) and (cj, ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj). Thus Property 13 holds
for T1 and T2 with the mentioned 3-boundaries. This implies that there exists
a partition of T ∗

1 into A1 = (V (T ∗
1 ), E(A1)) and B1 = (V (T ∗

1 ), E(B1)) such
that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
(c1) B1 has exactly two connected components, one containing ai and one

containing cj ,
(d1) the edge a1a2 is a side of A1,
(e1) the edges akak+1, for 2 ≤ k < i, are bridges of B1,
(f1) the edge aicj is a bridge of A1, and
(g1) the edges ckck+1, for k ≥ j, are bridges of B1.

Property 13 implies that there exists a partition of T ∗
2 into A2 = (V (T ∗

2 ), E(A2))
and B2 = (V (T ∗

2 ), E(B2)) such that:

(a2) the partition of T ∗
2 is extendable,

(b2) A2 is connected,
(c2) B2 has exactly two connected components, one containing b1 and one

containing bq,
(d2) the edge aicj is a side of A2,
(e2) the edges akak+1, for k ≥ i, are bridges of B2,
(f2) the edges bkbk+1 are bridges of A2, and
(g2) the edges ckck+1, for k < j, are bridges of B2.

Let A = A1 ∪ A2 and B = B1 ∪ B2. The graphs A and B covering all the
edges of T ∗ and having no common edge (aicj ∈ E(A) \ E(B)), they form a
partition of T ∗. We now prove that A and B are COGs and that they verify
Property 13.
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(a) The neighborhood of every f -vertex of T ∗ is partitioned as in T ∗
1 or as

in T ∗
2 . Thus (c.f. (a1) and (a2)) the partition of T ∗ into A and B is

extendable.

The intersection of the COGs A1 and A2 is the edge aicj . This edge being a
bridge of A1 (c.f. (f1)), Lemma 10 implies that A = A1 ∪ A2 is a COG that
fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A1 and A2 are connected (c.f. (b1) and (b2)), A is connected.
(d) The edge a1a2 being a side of A1 (c.f. (d1)), it is a side of A.
(f) The edges bkbk+1 being bridges of A2 (c.f. (f2)), these edges are bridges

of A.

The COGs B1 and B2 intersect on two vertices, ai and cj. The COG B1 has
two connected components, one containing the vertex ai and one containing
the vertex cj (c.f. (c1)). We consider the union of B1 and B2 as a succession of
two unions in which the graphs intersect on a single vertex. Lemma 9 implies
that B = B1∪B2 is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since B1 has two connected components, one containing ai and one con-
taining cj (c.f. (c1)), and since B2 has two connected components, one
containing b1 and ai and one containing bq and cj (c.f. (c2), (e2), and
(g2)), B has two connected components, one containing b1 and one con-
taining bq.

(e)(g) The edges akak+1, for k ≥ 2, being bridges of B1 or B2 (c.f. (e1) and
(e2)), and the edges ckck+1 being bridges of B1 or B2 (c.f. (g1) and (g2)),
these edges are bridges of B.

Case 1.4: There is no chord aibj or aicj. As in Section 2 we consider the ad-
jacent path (d1, . . . , ds, a1) (see Figure 3) of T for the 3-boundary (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr). Let dsay ∈ E(T ) be the edge with 1 < y ≤ p such that
y is minimum. The W-triangulation Tdsay having less edges than T , Prop-
erty 14 holds for Tdsay . This implies that there exists a partition of T ∗

dsay
into

A′ = (V (T ∗
dsay

), E(A′)) and B′ = (V (T ∗
dsay

), E(B′)) such that:

(a’) the partition of T ∗
dsay

is extendable,
(b’) A′ is connected,
(c’) B′ has exactly two connected components, one containing b1 and one

containing bq,
(d’) the edge a1ds is a bridge of A′,
(e’) the edge dsay is a side of A′,
(f’) the edges aiai+1, for i ≥ y, are bridges of B′,
(g’) the edges bibi+1 are bridges of A′, and
(h’) the edges cici+1 are bridges of B′.
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We extend these two COGs in order to obtain a partition of T ∗. We distinguish
two cases according to the index y of ay, the case y = 2 and the case y > 2.

a2
b1 = ap

a1 = cr

c1 = bq

ds

A′ and A

B′ and B T ∗
dsay

v

cr−1

a1 a2

ds

Fig. 27. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 27). Let v be the f -vertex of T ∗ adjacent
to a1, a2, and ds. Let GA be the connected COG which is the union of the
cycle (v, a1, a2, ds) and the edge a1ds, and let GB be the connected COG with
only one edge, a2v. Let A = A′ ∪ GA and B = B′ ∪ GB. The graphs A and B
covering all the edges of T ∗ and having no common edge, they form a partition
of T ∗. These graphs are COGs and they verify Property 13.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f -vertices of T ∗ being partitioned as in T ∗

dsa2
, the par-

tition of T ∗ into A and B is extendable.

The intersection of A′ and GA is the path (a1, ds, a2). The edge a1ds being a
bridge of A′ and the edge dsa2 being a side of both A′ and GA (c.f. (d’) and
(e’)), Lemma 12 implies that A = A′ ∪ GA is a COG that fulfills points (b),
(d), and (f) of Property 13. Indeed:

(b) Since A′ and GA are connected (c.f. (b’)), A is connected.
(d) The edge a1a2 being a side of GA, it is a side of A.
(f) The edges bibi+1 being bridges of A′ (c.f. (g’)), these edges are bridges of

A.

The intersection of B′ and GB being the vertex a2, Lemma 9 implies that the
graph B = B′∪GB is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since GB is connected and since B′ has two connected components, one
containing b1 and one containing bq (c.f. (c’)), B has two connected com-
ponents, one containing b1 and one containing bq.

(e)(g) The edges aiai+1, for k ≥ 2, and the edges cici+1 being bridges of B′ (c.f.
(f’) and (h’)), these edges are bridges of B.
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Fig. 28. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 28). Let e1, e2, . . . , et be the neighbors of
ds in T and inside the cycle (ds, a1, a2, . . . , ay), going from ay to a1 included.
This implies that e1 = ay, et = a1, and t ≥ 3. For each i ∈ {2, . . . , t}, let e′i be
the f -vertex of T ∗ adjacent to ds, ei, and ei−1.

Let GA be the connected COG with the edges eiei+1, for 1 ≤ i < t, the edges
dsei, for 1 ≤ i ≤ t, the edges eie′i+1, for 1 ≤ i < t − 1, the edges eie′i, for
2 ≤ i < t, and the edges dse′t and a1e′t. The intersection of A′ and GA, the
path (a1, ds, ay), is such that the edge a1ds is a bridge of A′ and such that the
edge dsay is a side in both A′ and GA (c.f. (d’) and (e’)). So Lemma 12 implies
that A′′ = A′ ∪ GA is a COG:

(a”) that is connected (c.f. (b’)), and
(b”) which edges bibi+1 are bridges (c.f. (g’)).

Let GB be the COG which is the union of the star with edges dse′i, for 2 ≤ i < t,
and the edge et−1e′t. Since B′ and GB intersect on ds, Lemma 9 implies that
B′′ = B′ ∪ GB is a COG:

(c”) having three connected components, one containing e1, one containing
et−1 and one containing et (c.f. (c’), (f’), (h’)),

(d”) which edges aiai+1, for i ≥ y, are bridges (c.f. (f’)), and
(e”) which edges cici+1 are bridges (c.f. (h’)).

Consider now the W-triangulation T1 delimited by (a2, . . . , ay, e2, . . . , et). We
have already seen that this graph has less edges than T and is 3-bounded by
(a2, a1)-(et, . . . , e1)-(ay, . . . , a2). Thus Property 13 holds for T1 with the men-
tioned 3-boundary and there exists a partition of T ∗

1 into A1 = (V (T ∗), E(A1))
and B1 = (V (T ∗), E(B1)) such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
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(c1) B1 has exactly two connected components, one containing a1 and one
containing ay,

(d1) the edge a1a2 is a side of A1,
(f1) the edges eiei+1, for 1 ≤ i < t, are bridges of A1, and
(g1) the edges aiai+1, for 2 ≤ i < y, are bridges of B1.

Let A = A′′ ∪ A1 and B = B′′ ∪ B1. The graphs A and B covering all the
edges of T ∗ and having no common edge, they form a partition of T ∗. We now
prove that these graphs are COGs and that they verify Property 13.

(a) The partition of e′i’s neighborhoods being extendable, and the neighbor-
hood of the other f -vertices of T ∗ being partitioned as in T ∗

dsay
or as in

T ∗
1 , the partition of T ∗ into A and B is extendable.

The intersection of the COGs A′′ and A1 is the path (e1, e2, . . . , et) which edges
are all bridges of A1 (c.f. (f1)). So Lemma 10 implies that A = A′′ ∪ A1 is a
COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A′′ and A1 are connected (c.f. (a”) and (b1)), A is connected.
(d) The edge a1a2 being a side of A1 (c.f. (d1)), it is a side of A.
(f) The edges bibi+1 being bridges of A′′ (c.f. (b”)), these edges are bridges

of A.

The COGs B′′ and B1 intersect on the vertices e1, et−1, and et. B′′ has three
connected components, one containing e1, one containing et−1 and one con-
taining et (c.f. (c”)). We consider the union of B′′ and B1 as a succession of
three unions in which the graphs intersect on a single vertex. So Lemma 9
implies that B = B′′ ∪ B1 is a COG that fulfills points (c), (e), and (g) of
Property 13. Indeed:

(c) Since B′′ has three connected components, one containing e1 and b1, one
containing et−1, and one containing et and bq (c.f. (c”), (d”), and (e”)),
and since B1 has two connected components, one containing e1 and one
containing et (c.f. (c1)), B has two connected components, one containing
b1 and one containing bq.

(e)(g) The edges aiai+1, for k ≥ 2, and the edges cici+1 being bridges of B′′ or
B1 (c.f. (d”), (e”), and (g1)), these edges are bridges of B.

This concludes the proof of Case 1.

Case 2: Proof of Property 14 for a W-triangulation Tdxay with m
edges. As in Section 2, we consider one case where dxay = d1ap and four
cases where dxay ̸= d1ap.

Case 2.1: dxay = d1ap (see Figure 29). Let T1 be the W-triangulation
delimited by (ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). We have seen that T1 has less
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Fig. 29. Case 2.1.

edges than Td1ap and is 3-bounded by (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1)
or by (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2). Applying Property 13 to T1

for any of these 3-boundaries we obtain a partition of T ∗
1 , into two COGs

A1 = (V (T ∗
1 ), E(A1)) and B1 = (V (T ∗

1 ), E(B1)), such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
(c1) B1 has exactly two connected components, one containing c1 and one

containing cr,
(d1) the edge d1b2 is a side of A1,

(e1-g1) the edges bibi+1, for i ≥ 2, the edges didi+1, and the edge a1ds are bridges
of B1, and

(f1) the edges cici+1 are bridges of A1.

We extend A1 and B1 to obtain the desired partition of T ∗
d1ap

. Let v be the
f -vertex adjacent to ap, b2, and d1 (see Figure 29). Let GA be the union of the
cycle (d1, b1, v) and the edge b1b2, and let GB be the union of the path (d1, b2, v)
and the vertex b1. Note that GA and GB are COGs and let A = B1 ∪GA and
B = A1 ∪GB. The graphs A and B covering all the edges of T ∗

d1ap
and having

no common edge, they form a partition of T ∗
dxay

. We now prove that these
graphs are COGs and that they verify Property 14.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f -vertices of T ∗

d1ap
being partitioned as in T ∗

1 , the par-
tition of T ∗

d1ap
into A and B is extendable.

The COGs B1 and GA intersect on d1 and b2. The COG B1 has two connected
components, one containing cr and d1 and one containing c1 and b2 (c.f. (c1)
and (e1-g1)). Thus we consider the union of B1 and GA as a succession of
two unions in which the graphs intersect on a single vertex. So Lemma 9
implies that A = B1 ∪ GA is a COG that fulfills points (b), (d), (e), and (g)
of Property 14. Indeed:

(b) Since GA is connected and since B1 has two connected components (c.f.
(c1)), one containing d1 and one containing b2, A is connected.
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(e) The edge d1ap being a side of GA, it is a side of A.
(d)(g) The edge b1b2 being a bridge of GA; the edge a1ds, the edges didi+1 and

the edges bibi+1, for i ≥ 2, being bridges of B1 (c.f. (e1-g1)), these edges
are bridges of A.

The intersection of the COGs A1 and GB is the edge d1b2. This edge being
a bridge of GB, Lemma 10 implies that B = A1 ∪ GB is a COG that fulfills
points (c), (f), and (h) of Property 14. Indeed:

(c) Since A1 is connected and contains b2 and bq (c.f. (b1)), and since GB

has two connected components, one containing b1 and one containing b2,
B has two connected components, one containing b1 and one containing
bq.

(f) Since there is no edge aiai+1 in Td1ap , B fulfills point (f) by vacuity.
(h) The edges cici+1 being bridges of A1 (c.f. (f1)), these edges are bridges of

B.

Case 2.2: dxay ̸= d1ap. In this case we consider an edge dzaw ∈ E(Tdxay) such
that dzaw ̸= dxay. Among all the possible edges dzaw we choose the one that
firstly maximizes z and secondly minimizes w. As we have already seen, such
an edge necessarily exists and actually dz = dx or dz = dx+1.

We have seen that Tdzaw is a W-triangulation with less edges than Tdxay .
Thus Property 14 applies and there exists a partition of T ∗

dzaw
into A′ =

(V (T ∗
dzaw

), E(A′)) and B′ = (V (T ∗
dzaw

), E(B′)) such that:

(a’) the partition of T ∗
dzaw

is extendable,
(b’) A′ is connected,
(c’) B′ has exactly two connected components, one containing b1 and one

containing bq,
(d’) the edge a1ds and the edges didi+1, for i ≥ z, are bridges of A′,
(e’) the edge dzaw is a side of A′,
(f’) the edges aiai+1, for i ≥ w, are bridges of B′,
(g’) the edges bibi+1 are bridges of A′, and
(h’) the edges cici+1 are bridges of B′.

We now extend this partition of T ∗
dzaw

to T ∗
dxay

. We proceed by distinguishing
4 cases according to the edge dzaw.

Case 2.2.1: dz = dx, and w = y +1 (see Figure 30). Let v be the f -vertex
adjacent to dx, ay, and aw. Let GA be the cycle (v, dx, ay) and GB be the
path (v, aw, ay). Note that GA and GB are COGs and let A = A′ ∪ GA and
B = B′ ∪GB. The graphs A and B covering all the edges of T ∗

dxay
and having

no common edge, they form a partition of T ∗
dxay

. We now prove that these
graphs are COGs and that they verify Property 14.
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T ∗
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Fig. 30. Case 2.2.1.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f -vertices of T ∗

dxay
being partitioned as in T ∗

dzaw
, the

partition of T ∗
dxay

into A and B is extendable.

The intersection of A′ and GA is the vertex dx, so Lemma 9 implies that
A = A′∪GA is a COG that fulfills points (b), (d), (e), and (g) of Property 14.
Indeed:

(b) Since A′ and GA are connected (c.f. (b’)), A is connected.
(e) The edge dxay being a side of GA, it is a side of A.

(d)(g) The edge a1ds, the edges didi+1, for i ≥ x, and the edges bibi+1 being
bridges of A′ (c.f. (d’) and (g’)), these edges are bridges of A.

The intersection of B′ and GB is the vertex aw, so Lemma 9 implies that
B = B′ ∪ GB is a COG that fulfills points (c), (f), and (h) of Property 14.
Indeed:

(c) Since GB is connected and since B′ has two connected components, one
containing b1 and one containing bq (c.f. (c’)), B has two connected com-
ponents, one containing b1 and one containing bq.

(f)(h) The edge ayaw being a bridge of GB; the edges aiai+1, for i ≥ w, and
the edges cici+1 being bridges of B′ (c.f. (f’) and (h’)), these edges are
bridges of B.

Case 2.2.2: z = x− 1, and aw = ay (see Figure 31). Let v be the f -vertex
adjacent to dx, ay, and dz. Let GA be the cycle (ay, dz, v, dx) and the edge
dxdz and let GB be the path (ay, v). Note that GA and GB are COGs and let
A = A′ ∪ GA and B = B′ ∪ GB. The graphs A and B covering all the edges
of T ∗

dxay
and having no common edge, they form a partition of T ∗

dxay
. We now

prove that these graphs are COGs and that they verify Property 14.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f -vertices of T ∗

dxay
being partitioned as in T ∗

dzaw
, the
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Fig. 31. Case 2.2.2.

partition of T ∗
dxay

into A and B is extendable.

The intersection of A′ and GA is the path (dx, dz, ay). The edge dxdz is a bridge
of A′ and the edge dzay is a side of both A′ and GA. So Lemma 12 implies that
A = A′∪GA is a COG that fulfills points (b), (d), (e), and (g) of Property 14.
Indeed:

(b) Since A′ and GA are connected (c.f. (b’)), A is connected.
(e) The edge dxay being a side of GA, it is a side of A.

(d)(g) The edge a1ds, the edges didi+1, for i ≥ x and the edges bibi+1 being
bridges of A′ (c.f. (d’) and (g’)), these edges are bridges of A.

The COGs B′ and GB intersect on ay, so Lemma 9 implies that B = B′ ∪GB

is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

(c) Since GB is connected and since B′ has two connected components, one
containing b1 and one containing bq (c.f. (c’)), B has two connected com-
ponents, one containing b1 and one containing bq.

(f)(h) The edges aiai+1, for i ≥ y, and the edges cici+1 being bridges of B′ (c.f.
(f’) and (h’)), these edges are bridges of B.

A′, A′′ and B1

T ∗
1

B′, B′′ and A1
et

aw = e1

dx = dz

a1 = cr
b1 = apaw

dz

c1 = bqc1 = bq

T ∗
dzaw

e′t
e′1

ay = et+1

aw = e1

et
ay = et+1

Fig. 32. Case 2.2.3.

Case 2.2.3: dz = dx, and w > y + 1 (see Figure 32). Let e1, e2, . . . , et, et+1
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be the neighbors of dx in T and inside the cycle (dx, ay, . . . , aw) going from
aw to ay included. This implies that e1 = aw, et+1 = ay, and t ≥ 2. For each
i ∈ {1, . . . , t}, let e′i be the f -vertex of T ∗ adjacent to dx, ei, and ei+1.

Let GA be the connected COG which edges are the edges eiei+1, for 1 ≤ i < t,
the edges dxei, for 1 ≤ i ≤ t+1, the edges eie′i, for 1 ≤ i ≤ t, the edges e′iei+1,
for 1 ≤ i < t, and the edge dxe′t. Since the intersection of A′ and GA, the
edge dxaw, is a side in both of these COGs (c.f. (e’)), Lemma 11 implies that
A′′ = A′ ∪ GA is a COG:

(a”) that is connected (c.f. (b’)),
(b”) which edge a1ds and edges didi+1, for i ≥ z, are bridges (c.f. (d’)),
(c”) which edge dxay is a side, and
(d”) which edges bibi+1 are bridges (c.f. (g’)).

Let GB be the COG which is the union of the path (e′t, et, et+1) and the star
with edges dxe′i, for 1 ≤ i < t. Since B′ and GB intersect on dx Lemma 9
implies that B′′ = B′ ∪ GB is a COG:

(e”) having three connected components, one containing aw and ap, one con-
taining bq, and one containing the edge ayet (c.f. (c’) and (f’)),

(f”) which edge ayet is a bridge,
(g”) which edges aiai+1, for i ≥ w, are bridges (c.f. (f’)), and
(h”) which edges cici+1 are bridges (c.f. (h’)).

Consider now the W-triangulation T1 delimited by (ay, . . . , aw, e2, . . . , et). We
have already seen that this graph has less edges than Tdxay and is 3-bounded
by (et, et+1)-(ay, . . . , aw)-(e1, . . . , et). Thus Property 13 holds for T1 with the
mentioned 3-boundary. This implies that there exists a partition of T ∗

1 into
A1 = (V (T ∗

1 ), E(A1)) and B1 = (V (T ∗
1 ), E(B1)) such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
(c1) B1 has exactly two connected components, one containing ay and one

containing aw,
(d1) the edge ayet is a side of A1,
(f1) the edges aiai+1, for y ≤ i < w, are bridges of A1, and
(g1) the edges eiei+1, for 1 ≤ i < t, are bridges of B1.

Let A = A′′∪B1 and B = B′′∪A1. The graphs A and B covering all the edges
of T ∗

dxay
and having no common edge, they form a partition of T ∗

dxay
. We now

prove that these graphs are COGs and that they verify Property 14.

(a) The partition of e′i’s neighborhoods being extendable, and the neighbor-
hood of the other f -vertices of T ∗

dxay
being partitioned as in T ∗

dzaw
or as

in T ∗
1 , the partition of T ∗

dxay
into A and B is extendable.
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The COGs A′′ and B1 intersect on the path (e1, e2, . . . , et) and on the vertex
ay. B1 has two connected components, one containing the path (e1, e2, . . . , et)
and one containing the vertex ay (c.f. (c1) and (g1)). We consider the union
of A′′ and B1 as two successive unions, one for each connected component
of B1. For the union concerning the connected component of B1 containing
the path (e1, e2, . . . , et), the edges of this path being bridges of B1, we apply
Lemma 10. For the union concerning the other connected component of B1 we
apply Lemma 9. Lemma 10 and Lemma 9 imply that A = A′′ ∪ B1 is a COG
that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

(b) Since A′′ is connected (c.f. (a”)) and since B1 has two connected compo-
nents, one containing the vertex ay and one containing the path (e1, . . . , et)
(c.f. (c1) and (g1)), A is connected.

(e) The edge dxay being a side of A′′ (c.f. (c”)), it is a side of A.
(d)(g) The edge a1ds, the edges didi+1, for i ≥ x, and the edges bibi+1 being

bridges of A′′ (c.f. (b”) and (d”)), these edges are bridges of A.

The COGs B′′ and A1 intersect on the edge ayet and on the vertex aw. B′′

has three connected components, one containing the edge ayet, one containing
aw and one other (c.f. (e”)). We consider the union of B′′ and A1 as two
successive unions, one with the connected component of B′′ containing the
edge etay, and one with the rest of the graph B′′. For the first union, the
edge etay being a bridge of B′′ (c.f. (f”)), we apply Lemma 10. For the second
union, the intersection being the vertex aw we apply Lemma 9. Lemma 10 and
Lemma 9 imply that B = B′′ ∪ A1 is a COG that fulfills points (c), (f), and
(h) of Property 14. Indeed:

(c) Since A1 is connected (c.f. (b1)) and since B′′ has three connected com-
ponents, one containing the edge ayet, one containing aw and b1, and one
containing bq (c.f. (e”) and (g”)), B has two connected components, one
containing b1 and one containing bq.

(f)(h) The edges aiai+1, for i ≥ y, and the edges cici+1 being bridges of A1 or
B′ (c.f. (f1), (g”) and (h”)), these edges are bridges of B.

Case 2.2.4: z = x−1, and 1 < y < w (see Figure 33). Let e1, e2, . . . , et, et+1

(resp. f1, f2, . . . , fu, fu+1, fu+2) be the neighbors of dz (resp. dx) in T and inside
the cycle (dz, dx, ay, . . . , aw) going from aw to dx (resp. from ay to dz) included.
This implies that e1 = aw, et = fu+1, et+1 = dx, f1 = ay, fu+2 = dz, t ≥ 2,
and u ≥ 1. For each i ∈ {1, . . . , t} (resp. i ∈ {1, . . . , u}), let e′i (resp. f ′

i) be
the f -vertex of T ∗ adjacent to dz, ei, and ei+1 (resp. dx, fi, and fi+1).

Let GA be the connected COG which edges are the edges eiei+1, for 1 ≤ i ≤ t,
the edges dzei, for 1 ≤ i ≤ t + 1, the edges eie′i, for 1 ≤ i < t, the edges e′iei+1,
for 1 ≤ i < t, the edges dxe′t and dze′t, the edges fifi+1, for 1 ≤ i < u, the
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B′, B′′ and A1

A′, A′′ and B1

T ∗
1

c1 = bq

et

e′t

e′1
c1 = bq

T ∗
dzaw

a1 = cr

dz = fu+2dx = et+1

et

ay = f1

fu

fu

ay = f1

aw = e1

aw = e1dx

b1 = apaw

dz

Fig. 33. Case 2.2.4.

edges dxfi, for 1 ≤ i ≤ u, the edges fif ′
i , for 1 ≤ i < u, the edges f ′

ifi+1,
for 1 ≤ i ≤ u, and the edge dxf ′

u. The intersection of A′ and GA is the path
(dx, dz, aw) which edge dxdz is a bridge of A′ and which edge dzaw is a side of
both A′ and GA (c.f. (d’) and (e’)). So Lemma 12 implies that A′′ = A′ ∪ GA

is a COG:

(a”) that is connected (c.f. (a’)),
(b”) which edge a1ds and edges didi+1, for i ≥ x, are bridges (c.f. (d’)),
(c”) which edge dxay is a side, and
(d”) which edges bibi+1 are bridges (c.f. (g’)).

Let GB be the COG which edges are the edges dze′i, for 1 ≤ i < t, the edges
dxf ′

i , for 1 ≤ i < u, and the edges fuet, fuf ′
u, and ete′t. The intersection of B′

and GB, the vertices dx and dz, are in two distinct connected components of
GB, so Lemma 9 implies that B′′ = B′ ∪ GB is a COG:

(e”) having three connected components, one containing aw and b1, one con-
taining bq and one containing the edge fuet (c.f. (c’) and (f’)),

(f”) which edge fuet is a bridge,
(g”) which edges aiai+1, for i ≥ w, are bridges (c.f. (f’)), and
(h”) which edges cici+1 are bridges (c.f. (h’)).

Consider now the W-triangulation T1 delimited by (ay, . . . , aw, e2, . . . , et, fu, . . . , f2).
We have already seen that this graph has less edges than Tdxay and is 3-
bounded by (et, fu, . . . , f1)-(ay, . . . , aw)-(e1, . . . , et). Thus Property 13 holds
for T1 with the mentioned 3-boundary. This implies that there exists a parti-
tion of T ∗

1 into A1 = (V (T ∗
1 ), E(A1)) and B1 = (V (T ∗

1 ), E(B1)) such that:

(a1) the partition of T ∗
1 is extendable,

(b1) A1 is connected,
(c1) B1 has exactly two connected components, one containing ay and one
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containing aw,
(d1) the edge fuet is a side of A1,
(e1) the edges fifi+1, for 1 ≤ i < u, are bridges of B1,
(f1) the edges aiai+1, for y ≤ i < w, are bridges of A1, and
(g1) the edges eiei+1, for 1 ≤ i < t, are bridges of B1.

Let A = A′′∪B1 and B = B′′∪A1. The graphs A and B covering all the edges
of T ∗

dxay
and having no common edge, they form a partition of T ∗

dxay
. We now

prove that these graphs are COGs and that they verify Property 14.

(a) The partition of e′i’s and f ′
j ’s neighborhoods being extendable, and the

neighborhood of the other f -vertices of T ∗
dxay

being partitioned as in T ∗
dzaw

or as in T ∗
1 , the partition of T ∗

dxay
into A and B is extendable.

The COGs A′′ and B1 intersect on the paths (e1, e2, . . . , et) and (f1, f2, . . . , fu).
B1 has two connected components, one containing the path (e1, e2, . . . , et) and
one containing the path (f1, f2, . . . , fu) (c.f. (c1), (e1), and (g1)). We consider
the union of A′′ and B1 as a succession of two unions in which the graphs
intersect on one path. All the edges of these paths being bridges of B1 (c.f.
(e1) and (g1)), we apply Lemma 10 to each of these unions and this implies
that A = A′′ ∪ B1 is a COG that fulfills points (b), (d), (e), and (g) of
Property 14. Indeed:

(b) Since A′′ is connected (c.f. (a”)) and since B1 has two connected com-
ponents, one containing the path (e1, e2, . . . , et) and one containing the
path (f1, f2, . . . , fu) (c.f. (c1), (e1), and (g1)), A is connected.

(e) The edge dxay being a side of A′′ (c.f. (c”)), it is a side of A.
(d)(g) The edge a1ds, the edges didi+1, for i ≥ x, and the edges bibi+1 being

bridges of A′′ (c.f. (b”) and (d”)), these edges are bridges of A.

The COGs B′′ and A1 intersect on the edge etfu and on the vertex aw. B′′

has three connected components, one containing the edge etfu, one containing
the vertex aw and another one (c.f. (e”)). We consider the union of B′′ and
A1 as a succession of two unions, one with the connected component of B′′

containing the edge etfu, and one with the rest of B′′. In the first union, the
edge etfu being a bridge of B′′ (c.f. (f”)), we apply Lemma 10. In the second
union, the intersection of the graphs being the vertex aw, we apply Lemma 9.
These two lemmas imply that B = B′′ ∪ A1 is a COG that fulfills points (c),
(f), and (h) of Property 14. Indeed:

(c) Since A1 is connected (c.f. (b1)) and since B′′ has three connected com-
ponents, one containing the edge etfu, one containing aw and b1, and one
containing bq (c.f. (e”)and (g”)), B has two connected components, one
containing b1 and one containing bq,

(f)(h) The edges aiai+1, for i ≥ y, and the edges cici+1 being bridges of A1 or
B′′ (c.f. (f1), (g”) and (h”)), these edges are bridges of B.
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This concludes the Case 2 of the induction and so the joint proof of Property 13
and Property 14.

5 Partition of triangulations: Proof of Theorem 1

5.1 The case of 4-connected triangulations

Let T be a 4-connected triangulation with outer-vertices a, b, and c. Since
Property 13 applies to T according to (a, b)-(b, c)-(c, a), let A and B be the
two COGs that form an extendable partition of T ∗. This partition induces a
partition of T into A′ and B′ which respectively correspond to the graphs A
and B where the f -vertices are deleted. Since the partition of T ∗ is extendable,
the f -vertices are either vertices of degree one in A (resp. B) or vertices of
degree two in a 3-cycle of A (resp. B). So Lemma 7 and Lemma 8 imply that
A′ and B′ are two COGs.

The bipartition is hamiltonian. Property 13 and Property 14 are closely
related to Property 4 and Property 5, their proofs clearly use the same induc-
tion scheme. The reader can observe that by merging these proofs we obtain
a proof of the following two properties.

Property 15 Given any 3-bounded W-triangulation T and any of its 3-boundaries,
Property 13 and Property 4 hold. Moreover, the path P (going from b1 to bq,
two vertices on T ’s outer-boundary) divides T into two parts (say the right and
the left according to our figures) in such a way that the edges of A′ = A ∩ T
(resp. B′ = B ∩ T ) are on P or on its right (resp. on P or on its left).

Property 16 Given any Tdxay , Property 14 and Property 5 hold. Moreover,
the paths P and Q (being disjoint and both having their ends on Tdxay ’s outer-
boundary) divide Tdxay into three parts (say the middle and the sides) in such
a way that the edges of A ∩ Tdxay (resp. B ∩ Tdxay) are either on P , on Q or
in the middle (resp. on P , on Q or in one of the sides).

Property 15 implies that in a 4-connected triangulation T 3-bounded by (a, b)-
(b, c)-(c, a), there is a partition of T into the COGs A′ and B′ such that the
edges of A′ (resp. B′) are on or inside (resp. on or outside) the hamiltonian
cycle formed by P and the edge bc.

A′ and B′ are S-free. Recall that S is the cycle (x1, y1, x2, y2, x3, y3) with
chords y1y2, y1y3, and y2y3 (see Figure 1). If S was a subgraph of A′, T having
no separating 3-cycle, the cycle (y1, y2, y3) of S would bound a face of T . This
face could not be the outer-face since ab ∈ A and ac ∈ B. So let v be the
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f -vertex of T ∗ inside the cycle (y1, y2, y3). The partition of T ∗ into A and
B being extendable and the three edges y1y2, y1y3, and y2y3 being in A, the
support edge of v, say y1y2, belongs to A. This implies that the edges vy1 and
vy2 belongs to A and so that the edges y1x2, y2x2, y1v, y2v, y1y3, and y2y3,
which form a K2,3, all belong to A. This is impossible since outerplanar graphs
are K2,3-minor free. Similarly, B′ is S-free.

Thus Theorem 1 holds for 4-connected triangulations.

5.2 The case of general triangulations

Now let T be a triangulation having a separating 3-cycle (a, b, c). Let Tint

(resp. Text) be the triangulation induced by the vertices on and inside (resp.
on and outside) the cycle (a, b, c). Assume that Tint (resp. Text) has an edge-
partition into two outerplanar graphs, Aint and Bint (resp. Aext and Bext). For
Aext, Bext, Aint and Bint being such that the graphs Aext∪Aint and Bext∪Bint

are two outerplanar graphs that cover T , they have to verify some properties
allowing a gluing along the cycle (a, b, c). Since the cycle (a, b, c) bounds an
inner-face of Text, the partition of Text into Aext and Bext has to verify some
properties for each inner-face of Text. Similarly since (a, b, c) bounds the outer-
boundary of Tint, the partition of Tint into Aint and Bint has to verify some
properties around the outer-face of Tint.

Property 17 Given a triangulation T with outer-face abc, there is an edge
partition of T ∗ into two COGs A = (V (T ∗), E(A)) and B = (V (T ∗), E(B))
(see Figure 34), such that:

(a) the partition is extendable,
(b) A is connected,
(c) B has exactly two connected components, one containing b and one con-

taining c,
(d) the edge ab is a side of A,
(e) the edge bc is a bridge of A, and
(f) the edge ac is a bridge of B.

This property clearly implies Theorem 1 for general triangulations.

PROOF of Property 17. Let T be any triangulation with outer-face abc.
We proceed by induction on the number of separating 3-cycles in T . If T has
no separating 3-cycle (i.e. T is 4-connected) we apply Property 13 to T for
the 3-boundary (a, b)-(b, c)-(c, a). It is easy to see that the obtained partition
of T ∗ fulfills Property 17.
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T ∗

A

B

Fig. 34. Property 17.

If T has a separating 3-cycle C, let Text and Tint be the triangulations re-
spectively induced by the vertices on and outside C and by the vertices on
and inside C. The cycle C is no more a separating 3-cycle in Text or Tint. So
both Text and Tint have less separating 3-cycles than T . Then by induction
hypothesis Property 17 applies to both T ∗

ext and T ∗
int.

We apply the induction hypothesis to Text and obtain a partition of T ∗
ext into

two COGs Ae = (V (T ∗
ext), E(Ae)) and Be = (V (T ∗

ext), E(Be)) such that:

(ae) the partition is extendable,
(be) Ae is connected,
(ce) Be has exactly two connected components, one containing the vertex b

and one containing c,
(de) the edge ab is a side of Ae,
(ee) the edge bc is a bridge of Ae, and
(fe) the edge ac is a bridge of Be.

Let v be the f -vertex inside the face delimited by C in T ∗
ext. The partition

of T ∗
ext being extendable, it is possible to denote the vertices of C by a′, b′,

and c′, so that the support edge of v is a′b′. Without loss of generality let
a′b′ ∈ E(Ae). This implies that va′ and vb′ ∈ E(Ae) and that vc′ ∈ E(Be). We
now apply the induction hypothesis to the triangulation Tint with outer-face
a′b′c′ and we obtain a partition of T ∗

int into two COGs Ai = (V (T ∗
int), E(Ai))

and Bi = (V (T ∗
int), E(Bi)) such that:

(ai) the partition is extendable,
(bi) Ai is connected,
(ci) Bi has exactly two connected components, one containing the vertex b′

and one containing c′,
(di) the edge a′b′ is a side of Ai,
(ei) the edge b′c′ is a bridge of Ai, and
(fi) the edge a′c′ is a bridge of Bi.

We now define the partition of T ∗ into A and B by A = (Ae \ {v}) ∪ (Ai \
{a′c′, b′c′}) and B = (Be \ {v}) ∪ (Bi \ {a′c′, b′c′}) (see Figure 35). In the
case a′b′ ∈ E(Be), we would have A = (Ae \ {v}) ∪ (Bi \ {a′c′, b′c′}) and
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T ∗
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T ∗
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v
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ext

T ∗
int

Be BiBA Ae Ai

Fig. 35. The COGs A and B.

B = (Be \ {v}) ∪ (Ai \ {a′c′, b′c′}). The graphs A and B form a partition of
T ∗. Indeed:

- the cycle C = (a′, b′, c′) does not bound any face of T , so there is no f -vertex
v and no edges va′, vb′, and vc′ in T ∗; and

- the edges a′c′ and b′c′ are covered by Ae or Be.

Let A′
e = Ae\v. By Lemma 8, the graph A′

e is a COG:

(e1) that is connected,
(e2) which edge ab is a side,
(e3) which edge bc is a bridge, and
(e4) which edge a′b′ is a side.

Let A′
i = Ai\{a′b′, b′c′} which equals to Ai\{b′c′} since a′c′ /∈ E(Ai). By

Lemma 7, the graph A′
i is a COG:

(i1) having two connected components, one containing c′ and one containing
the edge a′b′, and

(i2) which edge a′b′ is a side.

Let B′
e = Be\v. By Lemma 7, the graph B′

e is a COG:

(e5) having two connected components, one containing b and one containing
c, and

(e6) which edge ac is a bridge.

Let B′
i = Bi\{a′c′, b′c′} which equals to Bi\{a′c′} since b′c′ /∈ E(Bi). By

Lemma 7, the graph B′
i is a COG:

(i3) having three connected components, one containing a′, one containing b′,
and one containing c′.

We prove now that A = A′
e ∪ A′

i and B = B′
e ∪ B′

i are COGs that fulfill the
property.
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The partition of T ∗ is extendable. Most of the f -vertices of T ∗ have their
neighborhood partitioned as in T ∗

int or T ∗
ext. The only f -vertices for which this

may not be the case are the f -vertex v1 of T ∗
int adjacent to b′ and c′, and the

f -vertex v2 of T ∗
int adjacent to a′ and c′. According to (ei) (resp. (fi)), the edge

b′c′ (resp. c′a′) is a bridge of Ai (resp. Bi), so the support edge of v1 (resp. v2)
is not b′c′ (resp. a′c′). In such case there would be a cycle (v1, b′, c′) ∈ Ai (resp.
(v2, c′, a′) ∈ Bi) and the edge b′c′ (resp. a′c′) would not be a bridge. So the
edges incident to v1 (resp. v2) and its support edge are partitonned as in T ∗

int

and the partition of v1’s (resp. v2’s) neighborhood is extendable. Thus point
(a) of the property holds.

The graph A is a COG. We consider the union of A′
e and A′

i as two successive
unions. At each step we consider one of the connected components of A′

i. We
begin with the union of A′

e and the connected component of A′
i containing

a′b′. These two graphs intersect on a′b′. The edge a′b′ being a side in both of
these COGs (c.f. (e4) and (i2)), Lemma 11 applies. Since this graph and the
connected component of A′

i containing the vertex c′ intersect on c′, Lemma 9
applies. Lemma 11 and Lemma 9 imply that the graph A is a COG that fulfills
points (b), (d), and (e) of the property:

(b) Since A′
e is connected (c.f. (e1)) and since A′

i has two connected compo-
nents, one containing c′ and one containing a′b′ (c.f. (i1)), A is connected.

(d) If ab ̸= a′b′, the edge ab being a side of A′
e (c.f. (e2)), it is a side of A. If

ab = a′b′, the edge ab being a side of Ae (c.f. (de)), it is a bridge of A′
e.

In this case, by applying Lemma 10 instead of Lemma 11, since a′b′ is a
side of A′

i we obtain that ab is a side of A.
(e) Since bc ̸= a′b′ (the support edge of v cannot be a bridge), the edge bc

being a bridge of A′
e (c.f. (e3)), it is a bridge of A.

The graph B is a COG. We consider the union of B′
e and B′

i as three
successive unions. At each step we consider one of the connected components
of B′

i. For each of these unions the two graphs intersect on a single vertex, a′,
b′, or c′, so Lemma 9 applies at each step. Lemma 9 implies that the graph B
is a COG that fulfills points (c) and (f) of the property:

(c) Since B′
e has two connected components, one containing b and one con-

taining c (c.f. (e5)), and since B′
i has three connected components, one

containing a′, one containing b′, and one containing c′ (c.f. (i3)), B has
two connected components, one containing b and one containing c.

(f) The edge ac being a bridge of B′
e, it is a bridge of B (c.f. (e6)).

This concludes the proof of Property 17 and so the proof of Theorem 1.
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6 Conclusion

A maximum outerplanar graph on n vertices having 2n−3 edges and a planar
graph on n vertices having at most 3n−6 edges, it could be that every planar
graph contains p outerplanar subgraphs such that each edge belongs to q of
them for some p and q verifying 3

2 ≤ p
q ≤ 2. For the case of bipartite planar

graphs, since they have at most 2n − 4 edges, the integers p and q could be
such that 1 ≤ p

q ≤ 2. The bipartite planar graphs are so sparse that they are
the union of two trees [16], which is two graphs trivially outerplanar. However
Theorem 1 is optimal even for bipartite planar graphs.

Theorem 18 ([8] p. 58) For any integers p and q with p
q < 2, the bipartite

planar graph K2,2p+1 has no p outerplanar subgraphs covering each edge q
times.

The proofs of Property 13, Property 14 and Property 17 being constructive,
one could design an algorithm A with input a planar graph and with out-
put two outerplanar graphs covering it. A planar graph G having at most
3|V (G)|− 6 edges, we can construct a triangulation T containing G in linear
time (i.e. O(|V (G)|)). Furthermore Richards [17] showed how to decompose
a triangulation T into 4-connected triangulations in linear time. Using conve-
nient data structures it makes no doubt that A could be linear.

The decomposition technique used to prove Property 13 and Property 14 seems
to be very ad hoc. Surprisingly, exactly the same decomposition technique
allowed the author and J. Chalopin [2] to prove the following conjecture of
Scheinerman [19].

Conjecture 19 Every planar graph is the intersection graph of a set of seg-
ments in the plane.

In such intersection model of a graph, the vertex set is a set of segments and
the edge set corresponds to the pairs of intersecting segments.

In [9] S. Gravier and C. Payan gave a reformulation of the Four Colour Theo-
rem. In this reformulation they consider the outerplanar graph induced by the
edges on and inside (resp. on and outside) a hamiltonian cycle in 4-connected
triangulations. Theorem 1 implies a restriction on the graphs considered in
this reformulation. These graphs are such that we can assign each edge on the
hamiltonian cycle to one of the two graphs and obtain two S-free graphs.

It is shown in [5] that every graph embeddable on a surface S is coverable by
two graphs with bounded tree-width. Can Theorem 1 be generalized to others
surfaces? For each surface S, a graph is outer-S if it admits an embedding
on S with no crossing edges and such that all the vertices are incident to the
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same face, the outer-face. We propose the following conjecture.

Conjecture 20 Every graph embeddable on S is coverable by two outer-S
graphs.

This conjecture holds for 5-connected toroidal graphs (i.e. embeddable on the
torus). Indeed Brunet and Richter [1] showed that 5-connected toroidal tri-
angulations have a hamiltonian cycle separating the torus into two connected
regions. Taking the edges of C and the edges in one of the region we obtain an
outer-toroidal graph. Indeed, all the vertices are incident to the same face, the
face bounded by C. Another family of embedded graphs is known to be hamil-
tonian, the family of 4-connected projective-planar graphs [20]. However this
result does not imply our conjecture for this family of graphs since the hamil-
tonian cycles obtained do not necessarily separate the projective plane into
two connected regions. Note that Conjecture 20 could not be much strength-
ened (contradicting a conjecture proposed by the author [8]). Let Sg denotes
the oriented surface of genus g.

Theorem 21 For every g ≥ 24 such that n ≡ 0 (mod 12), there exists a
graph embeddable in Sg that does not admit any edge partition into an outer-
Sg1 graph and an outer-Sg2 graph when g1 + g2 ≤ 5

3g.

PROOF.

Claim 22 Consider an outer-Sg graph G with n vertices, m edges and f faces.
For every outer-Sg graph G+ such that G = G+ \ V2, for some stable set
V2 ⊆ {v ∈ V (G+)|dG+(v) = 2}, we have |V2| ≤ 3n + 6g − m − 3.

Given any outer-Sg graph G, let G+ and V2 be such that |V2| is maximized. This
clearly implies that G+ is connected and thus around its outer-face we have
a facial walk Wo = (v1, v2, . . . , vl) of length l. Now let G∗ be the multigraph
embedded in Sg, obtained from G+ by adding a new vertex x incident to each
occurrence in Wo. According to the construction, G∗ has n∗ = n + |V2| + 1
vertices and m∗ = m + 2|V2| + l edges. Although G∗ is a multigraph, Euler’s
formula apply and since all its faces have length at least three we have that
m∗ ≤ 3n∗ + 6(g − 1). Furthermore, since G+ is an outer-Sg graph and since
V2 is a stable set, all the vertices in V2 appear in Wo and none of them are
consecutive in this walk. Thus 2|V2| ≤ l and m + 4|V2| ≤ m∗ ≤ 3(n + |V2| +
1) + 6(g − 1) which implies the claim.

The Map Color Theorem says that a complete graph on n vertices has an
embedding in Sg if and only if g ≥ 1

12(n − 3)(n − 4) [18]. For any n > 0
such that n ≡ 0 (mod 12) we have that Kn has an embedding in Sg, for
g = 1

12(n − 3)(n − 4), that is a triangulation of Sg. For these couples (n, g),
let K∗

n be a stellation corresponding to a given embedding of Kn in Sg. This
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means that given this embedding of Kn in Sg we add a vertex in every face
and we link it to the three vertices incident to this face. Let V3 in K∗

n be the
maximum stable set with vertices of degree 3. Note that since Kn triangulates
Sg, Kn has 2

3 |E(Kn)| triangular faces and thus |V3| = 1
3n(n − 1).

Note that if we add pendent vertices in an outer-Sg graph this graph remains
outer-Sg. So given an edge partition of K∗

n into an outer-Sg1 graph H1 and an
outer-Sg2 graph H2, we can consider that every vertex of degree three in K∗

n has
degree one in Hi, for i ∈ {1, 2}, and degree two in H3−i. Since |V3| = 1

3n(n−1),
and since by Claim 22 Hi has at most 3n+6gi− |E(Hi)|−3 vertices of degree
two from V3 (the remaining vertices of V3 have degree one in Hi), g1 and g2

should be such that 6n+6(g1 + g2)−m− 6 ≥ 1
3n(n− 1). Since this inequality

does not hold when 5
3g ≥ g1 + g2 and n ≥ 24, this concludes the proof of the

theorem.
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[7] D. Gonçalves. Edge partition of planar graphs into two outerplanar
graphs. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing (Baltimore, MD, 2005), 504–512.

44
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