Edge partition of planar graphs into
two outerplanar graphs!

D. Gongalves

LIRMM, U.M.R. 5506, Université Montpellier 2,
161 rue Ada 34392 Montpellier Cedex 5, France.

Abstract

An outerplanar graph is a planar graph that can be embedded in the plane without
crossing edges, in such a way that all the vertices are on the outer-boundary. We
prove that every planar graph G = (V, E) has a bipartition of its edge set E = AUB
such that the graphs induced by these subsets, G[A] and G[B], are outerplanar. This
proves a conjecture of Chartrand, Geller, and Hedetniemi (J. Combin. Theory Ser.
B, 10 (1971) 12-41).
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1 Introduction

Much work has been done in partitioning the edge sets of graphs such that
each subset induces a subgraph of a certain form. See for example the con-
cepts of chromatic index, arboricity, thickness, or track number. In this vein,
Chartrand, Geller, and Hedetniemi ([3] and Problem 6.3 in [12]) made the
famous [m, n]-conjecture. They defined the graphs with property P,, as the
graphs containing no subdivision of K1 or Ky, 2141, m/2)+1- Observe that
the graphs with property P, (resp. P3) are the planar graphs (resp. outerpla-
nar graphs). The [m, n]-conjecture was that any graph with property P,, has
an edge partition into m —n+1 graphs with property P,, for m > n > 2. This
conjecture is false in general. In [10], it is disproved for any n and m > cn?, for
some constant c. In this paper (that is the extended version of [7]) we prove
a special case of the conjecture, the case where n = 3 and m = 4. In other
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words, we prove that every planar graph has an edge bipartition into outerpla-
nar graphs. There have been various results toward this case of the conjecture.
Colbourn and El-Mallah [6] gave a first partial result showing that every pla-
nar graph has an edge bipartition into partial 3-trees. Then Kedlaya [13] and
Ding et al. [5] proved that a bipartition into partial 2-trees exists. Another
result [5] is that every planar graph has an edge partition into two outerpla-
nar graphs and a vee-forest (i.e. a forest in which each connected component
contains at most three vertices). A proof of this case of the [m, n]-conjecture
was already claimed in [11] but finally appeared to be incorrect.

A simple case of planar graphs that can be divided into two outerplanar graphs
are the hamiltonian planar graphs (i.e. containing a cycle going through ev-
ery vertex). In this case, the first outerplanar graph is constructed with the
edges of a hamiltonian cycle together with the edges in the interior of this
cycle, and the second one with the edges of this hamiltonian cycle together
with the edges in the exterior of this cycle. There is a lot of flexibility in this
construction since the edges of the hamiltonian cycle are in both subgraphs.
We say that a bipartition of an embedded planar graph (i.e. a plane graph) is
hamiltonian if there is a hamiltonian cycle C' such that all the edges strictly
inside C' are in the same subset and all the edges strictly outside C' are in the
other subset. Whitney [23] proved that 4-connected triangulations are hamil-
tonian and Tutte [21] generalized this result to 4-connected planar graphs.
So we know that the conjecture holds for 4-connected planar graphs. Note
that with a hamiltonian partition, the graph inside the hamiltonian cycle is
outerplanarly embedded. This means that given an embedding of the planar
graph, the embedding it induces for this subgraph is such that all the vertices
are on its outer-boundary. An interesting result of Kedlaya [13] is that there
exists a planar graphs G such that whatever its embedding, and whatever the
bipartition of G into outerplanar graphs we consider, none of the outerplanar
subgraphs are outerplanarly embedded. This implies for example that there
are planar graphs with no edge partition into an outerplanar graph and a
forest (forests being always outerplanarly embedded).

A triangulation is a plane graph in which all the faces are triangles. Since
every planar graph is a subgraph of a triangulation and since every subgraph
of an outerplanar graph is outerplanar, we restrict our work to triangulations.
A graph G is chordal if every cycle of length [ > 4 has a chord, which is an
edge linking two non-consecutive vertices of the cycle. Let S be the graph with
a cycle (z1,y1, T2, Y2, x3,y3) and chords y,y2, y1ys and yoy3 (see Figure 1). A
graph is S-free if it does not contain any subgraph isomorphic to S. The main
result of the paper is the following theorem.

Theorem 1 Fvery triangulation T' has an edge bipartition into chordal out-
erplanar graphs (e.qg. COGs). Furthermore, if T is jJ-connected there is such
a bipartition that is hamiltonian and for which the two COGs are S-free.
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Fig. 1. The graph S.

In Section 2 we give another proof of the fact that 4-connected triangulations
are hamiltonian. The technique used is inspired on the original proof of Whit-
ney [23] and may yield to the same hamiltonian cycle. This section is necessary
for considering the special case of 4-connected triangulations in Theorem 1.
In Section 3 we give some properties of outerplanar graphs. In Section 4 we
study edge partitions of 4-connected triangulations. This study allows us to
prove Theorem 1 in Section 5. Then we finally discuss some perspectives.

2 Hamiltonian cycle

A near-triangulation is a plane graph in which all the inner faces are triangular
(but not necessarily the outer-face). In a near-triangulation 7', a separating
3-cycle C' is a cycle of length three with at least one vertex inside C' and
one vertex outside C'. A W-triangulation is a 2-connected near-triangulation
without separating 3-cycles. Note that the 4-connected triangulations being
triangulations without any separating 3-cycle, they are W-triangulations. The
W-triangulations being 2-connected, they have no articulation vertex (a vertex
whose removal increases the number of connected components). Hence, the
outer-boundary of a W-triangulation is a cycle. A chord of this cycle is also
called a chord of T'. The following lemma tells us in which case the subgraph
of a W-triangulation is also a W-triangulation.

Lemma 2 Let T be a W-triangulation and C' a cycle of T'. The subgraph of
T inside C' (i.e. the graph induced by the edges on C' and the edges inside C')
1s a W-triangulation.

PROOF. Let the near-triangulation 7" be the subgraph of T delimited by
C'. By definition of a W-triangulation, 7" has no separating 3-cycle, hence T’
has no separating 3-cycle. So we just have to show that 7" is 2-connected, this
is that it has no articulation vertex.

For any vertex v of T”, since T" is a near-triangulation, at most one of the faces
incident to v is not triangular, the outer-face. Furthermore, the outer-face
being delimited by a cycle, the vertex v appears at most once on the outer-
boundary. So the neighborhood of v induces a connected graph and thus 7"\v
is connected. Hence T” has no articulation vertex and it is a W-triangulation.



Definition 3 A W-triangulation T is 3-bounded if its outer-boundary is di-
vided into three paths, (a1, ...,ap,), (bi,...,b,), and (c1,...,c,) verifying the
following conditions:

- The ends of the paths are such that a; = c,, by = a, and c¢; = b,.

- The paths are non-trivial, this isp > 1, ¢ > 1 and r > 1.

- The W-triangulation T' has no chord a;a; (resp. b;b; or c;c;) with 1 < i <p
andi+1 < j<p(resp.1<i<qandi+1<j<gq, orl<i<rand
i+1<j<r).

Given such a 3-bounded W-triangulation T, (a1, ..., ap)-(b1, ..., by)-(c1,...,¢)
is a 3-boundary of T' (see Figure 2).

In a 3-boundary the order and the orientation of the paths matters. Indeed,
(ar,...,ap)-(by, ..., bg)-(c1,. .. ¢), (b1, by)-(cry. .. en)-(a, ..., ap), and (ap, ..., a1)-
(¢ry...,c1)-(bg, ..., by) are distinct 3-boundaries. A hamiltonian path P of a

graph G is a path of G with vertex set V(P) = V(G).

Property 4 For any 3-bounded W-triangulation T and any 3-boundary (ay, . . ., ay)-
(by,...,by)-(c1,...,¢c) of T, there is a hamiltonian path P inT from c; to by
passing through the edge ayay (see Figure 2).
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Fig. 2. The 3-boundary of T" and the path P of Property 4.

Note that P successively goes through ¢y, a;, as, and then b;. Property 4
applies to 4-connected triangulations. Indeed, a 4-connected triangulation T’
with outer-boundary abc is a W-triangulation 3-bounded by (a, b)-(b, ¢)-(c, a).
So if this property holds for 7', there is a hamiltonian path P from c to b.
Adding the edge bc to this path P we obtain a hamiltonian cycle.

We now define the notion of adjacent path of a W-triangulation with respect
to a 3-boundary. Let T' # K3 be a W-triangulation 3-bounded by (ay, ..., a,)-
(b1,...,bg)-(c1,..., ¢ ), without chord a;b;, with 1 <i <pand1<j <g, and
without chord a;cj, with 1 <7 < pand 1 < j <r. The W-triangulation 7" hav-
ing at least 4 vertices and having no separating 3-cycle, the vertices b; and b
have exactly one common neighbor in V(7T')\{a,}, denoted d;. Let V, C V(T)
be the set of vertices of T" adjacent to a vertex a; with ¢ > 1, excluding the ver-
tices a; with ¢ > 1 and the vertex by. The graph T' being a W-triangulation,



the neighbors of a; in V,, with 1 < ¢ < p, induce a connected graph. Fur-
thermore, the vertices a; and a;.; have a common neighbor in V,, hence the
set V, induces a connected graph. This set contains the vertices a; and dj,
which respectively are the neighbors of as and a,. Denote (dy,ds, ..., ds, a1)
the shortest path linking d; and a; in the graph T[V,] (see Figure 3). This path
is the adjacent path of T for the 3-boundary (aq, ..., a,)-(b1,...,b,)-(c1,...,¢r)
and it verifies the following 3 points:

- There is no edge d;d;, with 1 <i < sand ¢+ 1 < j < s, and no edge a,d;,
with 1 < i < s. Indeed, if such edge existed, the path (dy,ds, ..., ds, a;)
would not be the shortest path linking d; and ay in T[V,].

- The W-triangulation 7" having no chord a;b; or a;c;, the set V,, does not
contain any vertex b; or c;, except ¢, = a;,. Hence the vertices d;, with
1 <1 < s, are not vertices b; or ¢, with 1 < j <gand 1 <k <.

- Since dy # a; this path has length at least 1.

Fig. 3. The adjacent path of 7" and the graph T}, .

Given a W-triangulation 7', with 3-boundary (a, ..., a,)-(b1, ..., by)-(c1, ..., ),
without chord a;b; or a;c;, consider the adjacent path (dy,ds,...,ds, a1). For
any edge dya, € E(T), with 1 <2 < sand 1 <y < p, we define Ty, ,, as the
graph contained inside the cycle C' = (ds, ..., dy, @y, . .., Gp, bo, ... by, Coy o0 Cy)
in T" (see Figure 3). Since the vertices d; are distinct from the vertices a;, b;
or ¢j, C'is a cycle and Ty, ,, is a W-triangulation (c.f. Lemma 2).

The following property is needed to prove Property 4.

Property 5 LetT be a W-triangulation 3-bounded by (a1, . .., a,)-(b1, ..., b,)-
(¢1,...,¢), without chord a;b; or a;c; and with adjacent path (dy, da, . . ., ds, a).
For any edge dya, € E(T), with1 <z <s and 1 <y < p, there are two dis-
joint paths P and Q) in Ty,,,, one from ¢, to a1 and one from a, to by, such
that each vertex of Ty,q, s contained either in P or in Q (see Figure 4).

We prove these two properties by doing a crossed induction.



Fig. 4. Property 5.

PROOF of Property 4 and Property 5. We prove, by induction on
m > 3, that the following two statements hold:

- Property 4 holds if 7" has at most m edges.
- Property 5 holds if Ty,,, has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 4 we have to consider all the possible
3-boundaries of K3. Since they are all equivalent, we denote ay, by, and ¢; the
vertices of K3 and we consider the 3-boundary (ay, by)-(b1, c1)-(¢1,a1). In this
case, the path P = (¢q, ay, by) clearly verifies Property 4. For Property 5, since
a W-triangulation 7§, ,, has at least 4 vertices, ai, by, ci, and d;, we have
Ty,a, # K3 and there is no W-triangulation 75, ,, with at most 3 edges. So by
vacuity, Property 5 holds for the W-triangulation T, ,, with at most 3 edges.

The induction step applies to both Property 4 and Property 5. This means
that we prove Property 4 (resp. Property 5) for the W-triangulations 7" (resp.
T4,q,) with m edges using both Property 4 and Property 5 on W-triangulations
with less than m edges. We first prove the induction for Property 4.

Case 1: Proof of Property 4 for a W-triangulation 7" with m edges.
Let (aq,...,ap)-(b1,...,by)-(c1,...,¢) be the 3-boundary of 7. We consider
various cases according to the existence of a chord a;b; or a;c; in T. We
successively consider the case where there is a chord a,b;, with 1 < j < ¢, the
case where there is a chord a;b;, with 1 <7 <p and 1 < j < ¢, and the case
where there is a chord a;c;, with 1 <7 <pand 1 < j <r. We then conclude
with the case where there is no chord a;b;, with 1 <i <pand 1< j <gq (by
definition of a 3-boundary there is no chord a1b,, a;b; or a,b;), and no chord
a;cj, with 1 <7 <pand 1 <j <r (by definition of a 3-boundary there is no
chord aycy, a;c, or ajc;).

Case 1.1: There is a chord a;b;, with 1 < i < ¢ (see Figure 5). Let
Ty (resp. Ty) be the W-triangulation (c.f. Lemma 2), subgraph of T, in-
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Fig. 5. Case 1.1: chord a1b;.

side the cycle (b;,...,bg, c2,...,¢.) (resp. (ai,...,ap, by, ..., b;)). It is clear
that V(T) = V(Ty) U V(Ty) and V(T1) N V(Tz) = {ai,b;}. Since there is
no chord a,a,, b,b, or cmcy for any = and y, (bic,)-(cr,...,c1)-(bg, .., ;)
(resp. (ai,...,ap)- (bl, ..., bi)-(b;ay)) is a 3-boundary of T (resp. T»). Since
ajay ¢ E(Tl) (resp cice ¢ E(Ty)), the W-triangulation 77 (resp. T5) has less
edges than T, so Property 4 holds for T} (resp. T3) with the mentioned 3-
boundary. Let P, (resp. P») be a hamiltonian path of 7} (resp. T3) going from
c1 to a; (resp. from b; to by) and passing through the edge b;a; (resp. ajas).

Since a; is an end of Pj, this path clearly ends with the edge b;a;. Let P| =
P\ {a,}. This path goes from ¢; to b; and passes through all the vertices
in V(11) except a;. Now let P = P| U P», this is the graph with vertex set
V(P) = V(P]) UV (P) and with edge set E(P) = E(P]) U E(P,). Since the
unique common vertex of P/ and Ps, b;, is an end of both P and Ps, the
graph P is a path from ¢; to b;. Furthermore, this path passes through all
the vertices in V(T') since V(P)) UV (P) = (V(T1) \ {a1}) UV (Ty) = V(T).
Finally since ajay € E(P2) C E(P) the path P fulfills Property 4.

A
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Fig. 6. Case 1.2: chord a;b;.

Case 1.2: There is a chord a;b;, with 1 < ¢ < pand 1 < j < ¢
(see Figure 6). If there are several chords a;b; consider one that maxi-
mizes j (i.e. such that there is no edge a;b; with j < k < ¢). Let T (resp.
T3) be the W-triangulation (c.f. Lemma 2), subgraph of T, inside the cycle
(ag,...,a;,b;, ... by, coy. .. cp) (vesp. (ai,...,ap, ba, ..., b;)). It is clear that
V(T) = V(Ty) U V(L) and V(T1) N V(T2) = {a;,b;}. Since there is no
chord aay, byby, cyc, or a;b, with k > j, (aq,...,a;)-(a;, b5, ..., by)-(c1,...,¢p)
(resp. (@i, b;)-(bj,...,b1)-(ap,...,q;)) is a 3-boundary of T; (resp. T5). Since
biby ¢ E(T1) (resp. ajas ¢ E(T3)), the W-triangulation T (resp. T3) has less



edges than T so Property 4 holds for T} (resp. T3) with the mentioned 3-
boundary. Let P, (resp. P») be a hamiltonian path of 7} (resp. T3) going from
c1 to a; (resp. from by to b;) and passing through the edge ajas (resp. a;b;).

Since b; is an end of P, this path clearly ends with the edge a;b;. Let Py =
Py \ {b;}. This path goes from b; to a; and passes through all the vertices
in V(13) except b;. Now let P = P U Pj. Since the unique common vertex
of P, and P}, a;, is an end of both P, and P}, the graph P is a path from
¢1 to by. Furthermore, this path passes through all the vertices in V(T') since
V(P )UV(Py) =V (Th)J(V(T2)\{b;}) = V(T'). Finally since ajas, € E(P;) C
E(P) the path P fulfills Property 4.

cp=by Cy

— L

Fig. 7. Case 1.3: chord a;c;.

Case 1.3: There is a chord a;c;, with 1 < ¢ < pand 1 < j < r
(see Figure 7). If there are several chords a;c; consider one that maxi-
mizes i (i.e. such that there is no edge axc; with ¢ < k& < p). Let T (resp.
T3) be the W-triangulation (c.f. Lemma 2), subgraph of T, inside the cycle

(ag,...,a;, ¢, ... ) (resp. (@i, ..., ap,ba, ... by Co,. .. ¢;)). It is clear that
V(T) = V(T1) U V(L) and V(T1) N V(T2) = {ai,c;}. Since there is no
chord aza,, byby, cicy or ape; with k >4, (aq, ..., a;)-(a;, ¢j)-(¢j, ..., ¢) (resp.

(¢j, @iy .. ap)-(by,...,by)-(c1,...,¢;)) is a 3-boundary of T} (resp. T3). Since
biby ¢ E(T1) (resp. ajay ¢ E(T3)), the W-triangulation T (resp. T3) has less
edges than T, so Property 4 holds for T} (resp. T3) with the mentioned 3-
boundary. Let P, (resp. P») be a hamiltonian path of T (resp. T5) going from
¢; to a; (resp. from ¢; to by) and passing through the edge ajay (resp. ¢;a;).

Let Py = P5\ {cja;}. This graph is a union of two vertex disjoint paths, one
from ¢; to ¢; and one from a; to b;. Now let P = P, U P;. Since the common
vertices of P, and Pj, a; and ¢;, are ends of P, and are ends in distinct
components of Py, the graph P is a path from ¢; to b;. Furthermore, this path
passes through all the vertices in V' (T") since V (P)UV (Py) = V(1) UV (T3) =
V(T). Finally since ayas € E(P;) C E(P) the path P fulfills Property 4.

Case 1.4: There is no chord a;b; or a,c;. In this case we consider the ad-
jacent path (dy,...,ds, a1) (see Figure 3) of T' with respect to the 3-boundary
(a1, ...,ap)-(by,...,by)-(c1,-..,¢). Let dsa, € E(T) be the edge with 1 <y <
p such that y is minimum. There is such an edge since the vertex dy is, by



definition, adjacent to a vertex a, with y > 1. The W-triangulation T} ,, has
less edges than T (ayas ¢ E(14,q,)), so Property 5 holds for T,,,,. Let P’ and
Q" be the paths of Ty ,, going respectively from ¢; to a; and from a, to b;.
We distinguish two cases according to the index y of a,, the case y = 2 and
the case y > 2.

by =ap

Fig. 8. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 8). The graph T being a W-triangulation,
the cycle (aq,as,ds) bounds a face of T', so V(T') = V(Ty,a,). Let P = P'U
{a1as} U Q'. Since a; and ay are ends of respectively P’ and @’ the graph P
is a path from ¢y to by. Finally since V(P) = V(T) and ajay € E(P) the path
P fulfills Property 4.

Fig. 9. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 9). Let ey, €9, . .., €; be the neighbors of d; in
T and inside the cycle (ds, a1, a9, ..., a,), going from a, to a; included. This
implies that e; = a, and e, = a;. Furthermore since 7" has no chord a;a,,
we have ¢ > 3. The index y being minimum we have e; # a; for all ¢ and
j such that 1 <72 < t and 1 < j < y. Consider now the W-triangulation
Ty (c.f. Lemma 2), subgraph of T inside the cycle (ag,...,ay, €2, ...,¢€;). It
is clear that V(T') = V(T4,q,) UV (T1) and V(Ty,q.,) NV (T1) = {a1,a,}. The
W-triangulation 7" having no separating 3-cycle (ds,e;, ;) there is no chord
e;e; in Ty. Furthermore since y > 2, (az,a1)-(ey, ..., e1)-(ay,...,a2) is a 3-
boundary of T7. Since a;ds ¢ E(17), the W-triangulation 7} has less edges
than 7', so Property 4 holds for T} with the mentioned 3-boundary. Let P; be
a hamiltonian path of 7} going from a, to a; and passing through the edge
a0 .



Let P = P'UP,U(Q’ . Since a; and a, are ends of respectively P’ and (), and
since these two vertices are ends of Py, the graph P is a path from ¢; to b;.
Finally since V(P) = V(P)UV(Q)UV(P) =V (T4,.,) VUV (1) = V(T), and
since ajay € E(Py) C E(P), the path P fulfills Property 4.

This concludes the proof of Case 1.

Case 2: Proof of Property 5 for a W-triangulation T;,,, with m edges.
The W-triangulation Ty, ,, is a subgraph of a W-triangulation T'. This W-
triangulation 7" is 3-bounded by (a4, ..., a,)-(b1,...,b,)-(c1, ..., ¢ ). Further-
more, 7" has no chord a;b; or a;c; and its adjacent path is (dy,...,ds, a1),
with s > 1. We distinguish the case where d,a, = dya, and the case where
dya, # dia,.

C1 Cl

bz b2
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by =ay by =ap

Fig. 10. Case 2.1.

Case 2.1: d,a, = dya, (see Figure 10). Let 77 be the W-triangulation (c.f.
Lemma 2), subgraph of 7 inside the cycle (ds,...,dy,ba, ..., by, Co,. .., Cp).
The graph Tj,,, being a W-triangulation, the cycle (dy, ap, by) bounds a face
of Ty,a, and so V(Tq,q4,) = V(T1) U{a,}. The W-triangulation 77 has no chord
bibj, cic;, did; or a;d;. We consider two cases according to the existence of an
edge dib; with 2 <1 <gq.

- If 7} has no chord dyb;, with 2 < i < ¢, then (dy,bs,...,b))-(c1,...,¢)-
(ay,ds, ...,dy) is a 3-boundary of T7.

- If T} has a chord dib;, with 2 <i < ¢ (so ¢ > 2), then T} has no chord bya,
or bad;, with 1 < j < s. Indeed, this would contradict the planarity of T'
(see Figure 10). In this case, (by,dy, ..., ds,a1)-(cp,...,c1)-(bg, ..., b2) is a
3-boundary of T7.

Since ayby ¢ E(T1), the W-triangulation 77 has less edges than Ty,,,, so Prop-
erty 4 holds for 7} with one of the mentioned 3-boundaries. With both of these
3-boundaries, Property 4 gives a hamiltonian path P; of T}, from ¢; to a; and
passing through the edge dibs.

Let @ be the trivial path of length 0 such that V(Q) = {a,}. Since V(P;) U

V(Q) =V(Th)U{ay} = V(Tu,q,) and since V(P)NV(Q) = V(T1) N{a,} = 0,
the paths P, and @ fulfill Property 5.
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Case 2.2: d,a, # da,. In this case we consider an edge d.a,, € E(T4,q,) such
that d.a,, # dya,. Among all the possible edges d.a,, we choose the one that
firstly maximizes z and secondly minimizes w. Such an edge necessarily exists
and actually one can see that d, = d, or d, = d, 1. Indeed, if d, = d; there
is at least one edge dia,, with w > y, the edge dya,. If > 1, it is clear by
definition of the adjacent path that the vertex d,_; is adjacent to at least one
vertex a,, with w > y.

Since dya, ¢ E(14.q,), the W-triangulation Tj,,, has less edges than Tj,,,,
so Property 5 holds for T, ,, . Let P’ and @’ be the obtained paths, going
respectively from ¢; to a; and from a,, to b;.

We distinguish 4 cases according to the edge d,a,. When z = x we consider
the case where w = y 4+ 1 and the case where w > y + 1. When z =z — 1 we
consider the case where w = y and the case where w > y.

C1 qu

asa A’ by =ap

ay Ay
Fig. 11. Case 2.2.1.

Case 2.2.1: d. = d,, and w = y + 1 (see Figure 11). The graph Ty,,,
being a W-triangulation, the cycle (d,,a,,a,) bounds a face of Tj,,, and so
V(T4,a,) = V(Ty.a,) U{ay}. Since a, is an end of Q' let @ = Q" U {aya,} be
a path from a, to b;. Since V(P") UV(Q) =V (T4.a,) U {ay} = V(T4,q,) and
since V(P') N (V(Q) \ {ayaw}) € V(Ty.q,) N{a,} = 0, the paths P’ and @
fulfill Property 5.

=it N

1=4a
ay = ay P

Fig. 12. Case 2.2.2.

Case 2.2.2: z = v — 1, and a, = a, (see Figure 12). The graph Ty,,,
being a W-triangulation, the cycle (d,a,,d,) bounds a face of T4,q, and so

11



V(T4,a,) = V(T4i.q,). Thus the paths P’ and Q" already fulfill Property 5.

Fig. 13. Case 2.2.3.

Case 2.2.3: d, = d,, and w > y+1 (see Figure 13). Let ey, ¢es,..., €, €41
be the neighbors of d, in T" and inside the cycle (d,, ay, . . ., a,) going from a,,
to a, included. This implies that ¢; = a,, and e;41 = a,. Furthermore ¢ > 2,
since there is no chord aya,. By definition of d.a,, we have e; # a; for all
1 and j such that 1 < ¢ <t and y < j < w. Consider the W-triangulation
Ty (c.f. Lemma 2), subgraph of Ty, ,, inside the cycle (ay, ..., ay,e2,...,¢€).
It is clear that V(Ty,q,) = V(Tu.a,) U V(T1) and V(Tyq,) N V(Th) = {aw}
The W-triangulation T3, ,, having no separating 3-cycle (d,, €;, ¢;), there is no
chord e;e; in T7. Furthermore since t > 2, (e, €141)-(ay, - - ., ay)-(€1, ..., €) is
a 3-boundary of 7}. Since d,a, ¢ E(T}), the W-triangulation 77 has less edges
than Tj,,,, so Property 4 holds for T} with the mentioned 3-boundary and let
Py be a hamiltonian path of T}, going from a, to a,.

Let Q = Q" U P;. Since a,, is an end in both P; and @’ the graph @ is a path
from a, to by. Since V(P ) U (V(Q") UV (P)) = V(T4.q,) UV (T1) = V(Ty,q,)
and since V(PN (V(Q)UV(P)) =V(P)N(V(P)\ {aw,}) = 0, the paths
P’ and @ fulfill Property 5.

dx = ey dy = fut2

er

Ju

»
ay = fi ﬁ ay = €]

er

*_.\é i
ay —@V =

Fig. 14. Case 2.2.4.

Case2.24: 2z =z—1,and 1 < y < w (see Figure 14). Let ey, ¢es,...,€;, €41
(resp. fi1, fo, - fu, fus1, fus2) be the neighbors of d, (resp. d,) in T" and inside
the cycle (d., d,, ay, . .., a,) going from a,, to d, (resp. from a, to d.) included.
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This implies that e; = ay, e: = fut1, ery1 = da, [1 = ay, and fy10 = d..
Furthermore, by definition of the edge d.a,,, there is no edge d,a,, or d.a,, so
t > 2 and u > 1. Also by definition of d.a,, we have e; # a; (resp. f; # a;) for
all ¢ and 7 such that 1 < <t (resp. 1 <i <wu) and y < j < w. Since there
is no separating 3-cycle (d,,d.,e;) we have e; # f; for all ¢ and j such that
1 <i<tand 1l < j < u. Consider the W-triangulation 73 (c.f. Lemma 2),
subgraph of Tj,,, inside the cycle (ay, ..., aw, €2, ... € fu,-. ., f2). It is clear
that V(T4,q,) = V(Ti.q,) U V(Th) and V(Tya,) N V(T1) = {aw}. The W-
triangulation Ty, ,, having no separating 3-cycle (d., e;, ¢;) or (d, fi, f;), there
is no chord e;e; or f;f; in T7. Furthermore since there is no chord a,a;, since
t > 2, and since u > 1, (e, fu, .-, fi)-(ay, ..., ay)-(€1,...,e) is a 3-boundary
of T. Since dya, ¢ E(T}), the W-triangulation T3 has less edges than Tj,,,
and Property 4 holds for 7} with the mentioned 3-boundary. Let P, be a
hamiltonian path of 77, going from a, to a,.

Let Q = Q" U P;. Since a,, is an end in both P; and @' the graph @ is a path
from a, to by. Since V(P") U (V(Q)UV(F)) =V (T4.a,) UV (1) =V (T4,a,)
and since V(P )N(V(QUV(FP1)) € (V(Tu.ay) \{aw}) NV (T1) = 0, the paths
P’ and @ fulfill Property 5.

This concludes the proof of Case 2 and so the joint proof of Property 4 and
Property 5.

3 Outerplanar graphs

We consider a subclass of outerplanar graphs, the chordal outerplanar graphs

(COGs).

Lemma 6 The set of chordal outerplanar graphs corresponds to the set of
outerplanar graphs that have an outerplanar embedding in which every inner-
face is a triangle.

PROOF. Consider an outerplanarly embedded chordal outerplanar graph G.
If G had an inner-face f bounded by a cycle C' of length at least 4, C' should
have a chord. In this case, C' and its chord would form a graph containing a
cycle with vertices inside, contradicting the definition of outerplanar embed-
ding.

Conversely consider an outerplanarly embedded graph G in which every inner-
face is triangular. Any cycle C' C G of length | > 4 delimits a region of the
plane which is the union of some inner-faces. Since there is no vertex inside C
and since these inner-faces are triangles, the cycle C' necessarily has a chord.
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In an outerplanarly embedded graph G, a side is an edge e € F(G) incident
to the outer-face. It is easy to see that in every outerplanar embedding of a
graph G the set of sides is exactly the same. So we extend the definition of
side to every outerplanar graphs (not necessarily outerplanarly embedded).
In a graph G, two vertices are linked if they belong to the same connected
component. If they belong to distinct connected components these vertices
are unlinked. We observe now that the class of chordal outerplanar graphs is
closed under some operations.

Lemma 7 If A is a COG with ¢ connected components and with a bridge e,
then A\{e} is a COG with ¢+ 1 connected components. Furthermore:

- all the sides (resp. bridges) f # e of A are sides (resp. bridges) of A\{e},
and
- any two vertices unlinked in A are unlinked in A\{e}.

PROOF. Consider an outerplanar embedding of A. It is clear that deleting a
bridge e of A does not modify the length of any inner-face. So the outerplanar
embedding of A\{e} clearly implies the lemma.

Lemma 8 Let A be a COG with ¢ connected components and with a vertex u
of degree 2 and such that its two neighbors, v and w, are adjacent. The graph
A\{u} is a COG with ¢ connected components and such that:

- the edge vw is a side of A\{u},
- any side (resp. bridge) of A that is not incident to u is a side (resp. a bridge)
of A\{u}, and

- any two vertices unlinked in A are unlinked in A\{u}.

PROOF. It is known that the set of chordal graphs is closed under vertex
deletion. Furthermore given an outerplanar embedding of A, if we delete u the
embedding of A\{u} obtained clearly implies the lemma.

The union AU B of two graphs A and B is a graph defined by V(AU B) =
V(A)UV(B) and E(AU B) = E(A) U E(B). The intersection AN B of
two graphs A and B is a graph defined by V(AN B) = V(A) N V(B) and
E(ANB) = E(A)N E(B). The following lemmas give us some conditions for
the union of two COGs to be a COG.

Lemma 9 Let A and B be two COGs with respectively c4 and cg connected

components and such that their intersection is a single vertex v. Their union
AUB is a COG with cy + cg — 1 connected components such that:
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Fig. 15. Lemma 9.

- any side (resp. bridge) of A or B is a side (resp. a bridge) of AU B, and
- any two vertices unlinked in A (resp. B) are unlinked in AU B.

PROOF. Divide the plane by a line (D). Put the vertex v on (D) and then
outerplanarly draw A and B in distinct half-planes. This gives us an out-
erplanar embedding of A U B. Furthermore, any inner-face of A U B being
an inner-face of A or B, the inner-faces of A U B are all triangular. So the
embedding of AU B clearly implies the lemma.

Fig. 16. Lemma 10.

Lemma 10 Let A and B be two COGs with respectively c4 and cg connected
components and such that their intersection is a path P = (vy,...,vg). If all
the edges of P are bridges of B, then AU B, is a COG with cy + cg — 1
connected components. Furthermore:

- any side (resp. bridge) e ¢ E(P) of A or B is a side (resp. a bridge) of
AUB, and
- any two vertices unlinked in A (resp. B) are unlinked in AU B.

PROOF. The edges of P being bridges of B, Lemma 7 implies that the graph
B’ = B\E(P) is a COG. Since P C A we have AUB = AU B andso AUB
is the union of A and each of the connected components of B’. The edges
of P being bridges of B, each connected component of B’ has at most one
vertex in A. This implies, by Lemma 9 (applied for each union of a connected
component), that AU B is a COG with the desired properties.

Lemma 11 Let A and B be two COGs with respectively c4 and cg connected
components and such that their intersection is an edge e. If e is a side of
both A and B then AU B is a COG with cy + cg — 1 connected components.
Furthermore:
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Fig. 17. Lemma 11.

- any side (resp. bridge) f # e of A or B is a side (resp. a bridge) of AU B,
and
- any two vertices unlinked in A (resp. B) are unlinked in AU B.

PROOF. Divide the plane by a line (D). Put the edge e on (D) and then out-
erplanarly draw A and B in distinct half-planes. This gives us an outerplanar
embedding of AU B. Furthermore, any inner-face of AU B being an inner-face
of A or B, the inner-faces of AU B are all triangular. So the embedding of
AU B clearly implies the lemma.

Fig. 18. Lemma 12.

Lemma 12 Let A and B be two COGs with respectively c4 and cg connected
components and such that their intersection is a path (u,v,w). If uv is a bridge
of A and if vw s a side of both A and B then AUB is a COG with c4+cp—1
connected components. Furthermore:

- any side (resp. bridge) e of A or B, with e # uv and e # vw, is a side (resp.
a bridge) of AU B, and
- any two vertices unlinked in A (resp. B) are unlinked in AU B.

PROOF. The edge uv being a bridge of A, by Lemma 7 the graph A’ =
A\{uv} is a COG with ¢4+ 1 connected components. Let A/, be the connected
component of A’ containing the vertex v and let A] be the graph A"\ A!,. The
edge vw being a side of both A! and B, Lemma 11 applies to the union Al UB.
Finally, this union having only the vertex u in A/, Lemma 9 applies to the
union A/, U (A U B) and implies the lemma.
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4 Partition of 4-connected triangulations

Since 4-connected triangulations have a hamiltonian cycle, they have a hamil-
tonian partition into two COGs. Let T be a triangulation with k& 4-connected
components 77,...,Ty. It is known that these 4-connected components are
4-connected triangulations and that we obtain them by cutting T along its
separating 3-cycles. So each T; has a hamiltonian cycle and let A; and B; be
two COGs partitioning 7}, obtained by using the hamiltonian cycle method.
It is not easy to combine the COGs A; (resp. B;) to obtain a COG A (resp.
B), such that A and B form an edge-partition of 7. For such process being
successfull, each COG A; or B; should fulfill some special conditions. We prove
in this section that some W-triangulations (including 4-connected triangula-
tions) admit a partition into two COGs verifying these special conditions. In
the next section we show how these conditions allow us to combine the COGs
A; and B; of each 4-connected components of T' to obtain the partition of T’
described in Theorem 1.

The stellation T™ of a near-triangulation 7', is the near-triangulation obtained
from T by adding inside each inner-face abc of T" a new vertex x and three
new edges xa, xb, and zc. Such a vertex x of T™ is called an f-vertex. Given
a partition of a stellation 7™ into two COGs A and B, a f-vertex v € V(T™)
has its neighborhood partitioned in an extendable way (see Figure 19) if its
three neighbors a, b, and ¢, are such that the edges ab, va, and vb are in the
same COG (e.g. A) and the edge vc in the other one (e.g. B). The edges ac
and bc are either in A or B. In such partition of the edges in the neighborhood
of an f-vertex v, the edge ab is called the support edge of v. A partition of a
stellation T™ is extendable if every f-vertex has its neighborhood partitioned
in an extendable way.

a b

Fig. 19. Neighborhood of an f-vertex v partitioned in an extendable way.

In this section there are many edge partitions depicted. Let us define a drawing
convention for this figures.

Drawing convention for the partitions into two COGs A and B (see
Figure 20). In these figures, the thin edges are edges that are either edges
of A or B. The bold edges are either grey or black, according to which COG
they belong to. In each figure it is indicated which of the colors corresponds
to A or B. There are three types of edges in A (resp. B): the "normal” ones,
the "bulging” ones or the "dotted” ones. The "normal” edges are bridges of A
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or B. The ”bulging” ones are sides of A or B. The "dotted” ones are edges of
A or B which nature (bridge, side or other) are not indicated. Since a bridge e
of a COG A is also a side of A, such an edge may be depicted as a "normal”,
a "bulging”, or a "dotted” line.

undetermined edge

(TR R T edgeoonrB
— bridge of A or B
L — side of A or B

Fig. 20. Drawing convention for the figures depicting a partition into two COGs.

The following property concerns bipartitions of 3-bounded W-triangulations
into COGs.

Property 13 For any 3-bounded W-triangulation T and any 3-boundary (aq, . . .

(by,...,by)-(c1,...,¢.) of T, there is a partition of the stellation T™ into two
COGs A= (V(T*),E(A)) and B = (V(T™), E(B)) (see Figure 21). Further-

more,

(a) this partition is extendable,

(b) A is connected,

(¢) B has ezactly two connected components, one containing by and the other
one containing by,

(d) the edge ayas is a side of A,

(e) the edges a;a; 1 for 2 <1 < p, are bridges of B,

(f) the edges bibiy1 for 1 <i < q, are bridges of A, and

(g) the edges c;ciyq for 1 < i <r, are bridges of B.

C1 :bq
[
A I
f B
*
4 T
ap = cC, ‘
ap [ blzap

Fig. 21. Property 13.

Note that Property 13 holds for 4-connected triangulations. Indeed, a 4-
connected triangulation 7" with outer-boundary abc is a W-triangulation 3-
bounded by (a, b)-(b, ¢)-(¢, a). The following property is related to Property 13.
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Property 14 LetT be a W-triangulation 3-bounded by (ay, . .., ap,)-(b1, ..., by)-
(¢1,...,¢), without chord a;b; or a;c; and with adjacent path (dy, da, . . ., ds, a).
For any edge dya, € E(T), with 1 < z < s and 1 <y < p, there is a
partition of the stellation Ty , —into two COGs A = (V(Tj, ), E(A)) and
B = (V(T,,,), E(B)) (see Figure 22). Furthermore,

(a) the partition is extendable,

(b) A is connected,

(¢) B has ezactly two connected components, one containing by and the other
one containing by,

(d) the edge ayds and the edges d;d;+1 for v <1 < s, are bridges of A,

(e) the edge d,a, is a side of A,

(f) the edges a;a; 41 fory <i < p, are bridges of B,

(g) the edges bbiy1 for 1 <1i < q, are bridges of A, and

(h) the edges c;c;vq for 1 <i <r, are bridges of B.

blzap

Fig. 22. Property 14.

We need Property 13 for proving Theorem 1 in the next section. Even if
Property 14 is not used there, this property is needed to prove Property 13.
Indeed, as in Section 2, we prove these two properties by doing a crossed
induction.

PROOF of Property 13 and Property 14. We prove, by induction on
m > 3, that the following two statements hold:

- Property 13 holds if T" has at most m edges.
- Property 14 holds if T}, ,, has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 13 we have to consider all the possible
3-boundaries of Kj3. Since they are all equivalent, we denote ay, by, and ¢
the vertices of K3 and we consider the 3-boundary (aq,by)-(b1,c1)-(c1,a1). In
Figure 23 there is a partitions of K3 verifying Property 13 for the considered
3-boundary. Note in particular that, since V(B) = V(K3) = {ay, b1, ¢1,v}, the
graph B has two connected components, the path (a, c1,v) and the vertex b;.
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For Property 14, recall that there is no W-triangulation Tj,,, with at most 3
edges. So by vacuity, Property 14 holds for m = 3.

Fig. 23. Initial case of Property 13.

The induction step applies to both Property 13 and Property 14. This means
that we prove Property 13 (resp. Property 14) for the W-triangulations T
(resp. Tg,q,) with m edges using both Property 13 and Property 14 on W-
triangulations with less than m edges. We first prove the induction for Prop-
erty 13.

Case 1: Proof of Property 13 for a W-triangulation 7" with m edges.

Let (ay,...,a,)-(b1,...,by)-(c1,...,¢c.) bethe 3-boundary of T'. As in Section 2
we consider various cases according to the existence of a chord a;b; or a;c; in

Az — Bz

T* Ty Ty
Fig. 24. Case 1.1: chord aqb;.

Case 1.1: There is a chord a,b;, with 1 < i < g (see Figure 24). Let T}
and T3 be the W-triangulations respectively delimited by (b;, ..., by, ¢, ..., ¢p)
and (a1, ag, ..., ap, ba, ..., b;). We have already seen that these graphs have less
edges than 7" and are respectively 3-bounded by (b;a1)-(c,, ..., c1)-(by, ..., b;)
and (ai, ..., ap)-(b1,...,b;)-(bja1). Thus Property 13 holds for 7 and 75 with
the mentioned 3-boundaries. This implies that there exists a partition of 77
into Ay = (V(T7), E(Ay)) and By = (V(T7), E(B;)) such that:

(al) the partition of 77 is extendable,
(bl) A; is connected,
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(cl) B; has exactly two connected components, one containing ¢; and one
containing c,.,

(d1) the edge a1b; is a side of Ay,

(f1) the edges c¢jc;y1 are bridges of A;, and

(gl) the edges bjbjiq, for j > i, are bridges of B;.

Property 13 implies that there exists a partition of 7 into Ay = (V(T5), E(A3))
and By = (V(Ty), E(Bz)) such that:

(a2) the partition of T is extendable,

(b2) A, is connected,

(c2) By has exactly two connected components, one containing b; and one
containing b;,

(d2) the edge ajas is a side of A,

(€2) the edges aja;iq, for j > 2, are bridges of B,

(f2) the edges b;b,41, for j < 4, are bridges of Ay, and

(g2) the edge aib; is a bridge of Bs.

Let A= By UAy; and B = A; U B,. All the edges of T™ being in Ay, By, A
or By, the graphs A and B cover T*. Furthermore, the only edge belonging to
both T} and T3, a1b;, is in A; and By (c.f. (f1) and (d2)). So the sets E(A)
and E(B) do not intersect and they form a partition of 7*. We now prove
that A and B are COGs and that they verify Property 13.

(a) Each inner-face of T" being an inner-face of 77 or Ty, any f-vertex of T
is an f-vertex of T} or 7. For each f-vertex of T, the partition of its
neighborhood is as in 77 or 7. So the partitions of 77 and 73 being
both extendable (c.f. (al) and (a2)), the partition of 7% into A and B is
extendable too. Thus point (a) of Property 13 holds.

The COGs B; and A, intersect on two vertices, a; and b;. By has two connected
components, one containing a; and one containing b;. Indeed, the connected
component containing the vertex ¢; also contains the path (b;, ..., b,) (c.f. (c1)
and (gl)). Let B} (resp. BY) be the connected component of By containing
the vertex a; (resp. b;). We consider the union of B; and A, as a succession
of two unions in which the graphs intersect on a single vertex: A = A, U By =
(A2 U By) U BY. Lemma 9 holds for each of these unions and it implies that
A = Ay U By is a COG that fulfills points (b), (d), and (f) of Property 13.
Indeed:

(b) Since Ay, Bi, and BY are connected (c.f. (b2) and (cl)), A is connected.

(d) The edge ajay being a side of Ay (c.f. (d2)), it is a side of A.

(f) The edges b;bj1 being bridges of Ay or By (c.f. (f2) and (gl)), these
edges are bridges of A.

The intersection of the COGs A; and Bs is the edge a1b;. This edge being a
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bridge of By (c.f. (g2)), Lemma 10 implies that B = A; U By is a COG that
fulfills points (c), (e), and (g) of Property 13. Indeed:

(c) Since A; is connected and contains the vertices b; and b, (c.f. (bl) and
(gl)) and since By has two connected components, one containing by
and one containing b; (c.f. (¢2)), B has two connected components, one
containing b; and one containing b;. Furthermore since b; and b, are in
the same connected component of B (A; being connected), the vertices
by and b, are in distinct connected components of B.

(e) The edges ajajiq, for j > 2, being bridges of By (c.f. (€2)), these edges
are bridges of B.

(g) The edges cjcjyq being bridges of Ay (c.f. (f1)), these edges are bridges
of B.

A = B A2—32

bA
° J
[
o
ay :CN a; by =a,
ay
*
T2

Fig. 25. Case 1.2: chord a;b;.

Case 1.2: There is a chord a;b;, with 1 < ¢ < pand 1 < j < ¢
(see Figure 25). If there are several chords a;b; consider one that max-
imizes j. Let T} and 715 be the W-triangulations respectively delimited by
(ag,...,ai,b;,...,bg,Co,...,c;)and (ai, ..., ap, by, ..., b;). We have already seen
that these graphs have less edges than 7" and are respectively 3-bounded by
(ar,...,a;)-(a;,bj,....by)-(c1,...,¢)and (a;, bj)-(b;, ..., b1)-(ap, ..., a;). Thus
Property 13 holds for 77 and T, with the mentioned 3-boundaries. This im-
plies that there exists a partition of T} into A; = (V(17), E(A4;)) and By =
(V(TY), E(By)) such that:

(al) the partition of 77 is extendable,

(bl) A; is connected,

(c1) By has exactly two connected components, one containing a; and one
containing by,

(d1) the edge ajas is a side of Ay,

(el) the edges agayy1, for 2 < k < 7, are bridges of By,

(f1) the edge a;b; and the edges byby+1, for k > j, are bridges of A, and
(gl) the edges cpcyy1 are bridges of By.
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Property 13 implies that there exists a partition of T3 into Ay = (V (1), E(Az2))
and By = (V(Ty), E(B2)) such that:

(a2) the partition of 75 is extendable,

(b2) A, is connected,

(c2) By has exactly two connected components, one containing b; and one
containing b;,

(d2) the edge a;b; is a side of Ay,

(f2) the edges bpbii1, for k < j, are bridges of Ay, and

(g2) the edges apayy1, for k > i, are bridges of Bs.

Let A = A; U Ay and B = B; U By. The graphs A and B covering all the
edges of T and having no common edge (a;b; € E(A) \ E(B)), they form a
partition of T*. We now prove that A and B are COGs and that they verify
Property 13.

(a) The neighborhood of every f-vertex of T* is partitioned as in T} or as
in 7. Thus (c.f. (al) and (a2)) the partition of 7% into A and B is
extendable.

The intersection of the COGs A; and Aj is the edge a;b;. This edge being a
bridge of A; (c.f. (el)), Lemma 10 implies that A = A; U Ay is a COG that
fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A; and Ay are connected (c.f. (bl) and (b2)), A is connected.

(d) The edge ajay being a side of Ay (c.f. (d1)), it is a side of A.

(f) The edges byby1 being bridges of Ay or A, (c.f. (f1) and (f2)), these edges
are bridges of A.

The COGs B; and B, intersect on two vertices, a; and b;. The COG B, has
two connected components, one containing b; and a; and one containing b,
(c.f. (c2) and (g2)). We consider the union of B; and B, as a succession of
two unions in which the graphs intersect on a single vertex. Lemma 9 implies
that B = B; U By is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since Bj has two connected components, one containing a; and one con-
taining b, (c.f. (cl1)), and since By has two connected components, one
containing b; and a; and one containing b; (c.f. (c2) and (g2)), B has two
connected components, one containing b; and one containing b,.

(e)(g) The edges aragi1, for k > 2, being bridges of B; or By (c.f. (el) and
(g2)), and the edges cxcrr1 being bridges of By (c.f. (gl)), these edges
are bridges of B.

Case 1.3: There is a chord a,c;, with 1 <i <pand 1 < j <r (see Fig-
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Al = B Ay = B

Q!

[ ]
Cj
Cj
. 4
aj \
a a;
b1 =ap ! a; [ ] bl
% %
Tl T2

Fig. 26. Case 1.3: chord a;c;.

ure 26). If there are several chords a;c; consider one that maximizes i. Let T}
and 75 be the W-triangulations respectively delimited by (as, ..., a;,¢;, ..., ¢)
and (a;,...,ap,ba, ..., by, ca2,...,c;). We have already seen that these graphs
have less edges than 7" and are respectively 3-bounded by (a4, ..., a;)-(a;, ¢;)-
(¢j,...,¢)and (¢j, ai, ... ap)-(b1, ..., b,)-(c1,...,c;j). Thus Property 13 holds
for T} and T, with the mentioned 3-boundaries. This implies that there exists
a partition of 77 into Ay = (V(T7}), E(Ay)) and By = (V(T7), E(By)) such
that:

(al) the partition of 77 is extendable,

(b1) A; is connected,

(cl) B; has exactly two connected components, one containing a; and one
contalning c;,

(d1) the edge ajas is a side of Ay,

(el) the edges arag1, for 2 < k < i, are bridges of By,

(1)

(g1)

the edge a;c; is a bridge of A, and
the edges crcpiq, for k > 7, are bridges of B;.

Property 13 implies that there exists a partition of T3 into Ay = (V (1), E(Az2))
and By = (V(T%), E(Bs)) such that:

(a2) the partition of T is extendable,

(b2) A, is connected,

(c2) Bs has exactly two connected components, one containing b; and one
containing b,

(d2) the edge a;c; is a side of Ay,

(€2) the edges apag1, for k > i, are bridges of B,

(f2) the edges byby1 are bridges of Ay, and

(g2) the edges cxcpyq, for k < j, are bridges of Bs.

Let A = A; U Ay and B = B; U By. The graphs A and B covering all the
edges of T and having no common edge (a;,c; € E(A) \ E(B)), they form a
partition of 7. We now prove that A and B are COGs and that they verify
Property 13.

24



(a) The neighborhood of every f-vertex of T* is partitioned as in T} or as
in 7. Thus (c.f. (al) and (a2)) the partition of 7% into A and B is
extendable.

The intersection of the COGs A; and A, is the edge a;c;. This edge being a
bridge of A; (c.f. (f1)), Lemma 10 implies that A = A; U A, is a COG that
fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A; and Ay are connected (c.f. (bl) and (b2)), A is connected.

(d) The edge ajas being a side of A; (c.f. (d1)), it is a side of A.

(f) The edges bibyy1 being bridges of Ay (c.f. (f2)), these edges are bridges
of A.

The COGs B; and B, intersect on two vertices, a; and ¢;. The COG B; has
two connected components, one containing the vertex a; and one containing
the vertex ¢; (c.f. (c1)). We consider the union of B; and B; as a succession of
two unions in which the graphs intersect on a single vertex. Lemma 9 implies
that B = B; U By is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since Bj has two connected components, one containing a; and one con-
taining ¢; (c.f. (c1)), and since B has two connected components, one
containing b; and a; and one containing b, and ¢; (c.f. (c2), (e2), and
(g2)), B has two connected components, one containing b; and one con-
taining b,.

(e)(g) The edges aragi1, for k > 2, being bridges of By or By (c.f. (el) and
(€2)), and the edges cicr11 being bridges of By or By (c.f. (gl) and (g2)),
these edges are bridges of B.

Case 1.4: There is no chord a;b; or a;c;. As in Section 2 we consider the ad-
jacent path (di, ..., ds, a1) (see Figure 3) of T" for the 3-boundary (a4, ..., a,)-
(by,...,by)-(c1,...,¢). Let dya, € E(T') be the edge with 1 < y < p such that
y is minimum. The W-triangulation T§,,, having less edges than T', Prop-
erty 14 holds for 7j,,,. This implies that there exists a partition of T , “into
A= (V(Ty, ), E(A)) and B' = (V(T},, ), E(B)) such that: '

(a’) the partition of 77 , is extendable,

(b’) A’ is connected,

(¢’) B’ has exactly two connected components, one containing b; and one
containing by,

the edges b;b; .1 are bridges of A’ and

)
(€)
(f’) the edges a;a;41, for i > y, are bridges of B’,
)
) the edges ¢;c;1 are bridges of B'.
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We extend these two COGs in order to obtain a partition of 7. We distinguish
two cases according to the index y of a,, the case y = 2 and the case y > 2.

A and A =—

B’ and B

Fig. 27. Case 1.4.1.

Case 1.4.1: y = 2 (see Figure 27). Let v be the f-vertex of T adjacent
to a1, as, and d,. Let G4 be the connected COG which is the union of the
cycle (v,ay,aq,ds) and the edge aids, and let G be the connected COG with
only one edge, asv. Let A= A" UG, and B = B'UGp. The graphs A and B
covering all the edges of T and having no common edge, they form a partition
of T™*. These graphs are COGs and they verify Property 13.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f-vertices of T™ being partitioned as in T , , the par-
tition of 7™ into A and B is extendable.

The intersection of A" and G 4 is the path (aq,ds, as). The edge a;ds being a
bridge of A" and the edge dsay being a side of both A" and G4 (c.f. (d’) and
(€)), Lemma 12 implies that A = A’ U G4 is a COG that fulfills points (b),
(d), and (f) of Property 13. Indeed:

(b) Since A’ and G4 are connected (c.f. (b")), A is connected.

(d) The edge ajas being a side of G 4, it is a side of A.

(f) The edges b;b; 41 being bridges of A’ (c.f. (g")), these edges are bridges of
A.

The intersection of B” and Gz being the vertex a, Lemma 9 implies that the
graph B = B'UGp is a COG that fulfills points (c), (e), and (g) of Property 13.
Indeed:

(c) Since Gp is connected and since B’ has two connected components, one
containing b; and one containing b, (c.f. (¢’)), B has two connected com-
ponents, one containing b; and one containing b,.

(e)(g) The edges a;a;+1, for k > 2, and the edges ¢;c;1 being bridges of B’ (c.f.
(f) and (h")), these edges are bridges of B.
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A A" and A =
B', B" and B,

Fig. 28. Case 1.4.2.

Case 1.4.2: y > 2 (see Figure 28). Let ey,es,...,¢; be the neighbors of
ds in T" and inside the cycle (ds, aq, as, ..., a,), going from a, to a; included.
This implies that e; = a,, e, = a1, and t > 3. For each i € {2,...,t}, let €] be
the f-vertex of T™ adjacent to ds, e;, and e; ;.

Let G4 be the connected COG with the edges e;e; i1, for 1 < i < ¢, the edges
dse;, for 1 < i < t, the edges ee;,,, for 1 < 7 < ¢ — 1, the edges e;e}, for
2 < i < t, and the edges dse; and a,e;. The intersection of A" and G4, the
path (ai,ds, ay), is such that the edge a,d; is a bridge of A" and such that the
edge dsa, is a side in both A" and G4 (c.f. (d") and (e’)). So Lemma 12 implies
that A” = A’ UG 4 is a COG:

(a”) that is connected (c.f. (b’)), and
(b”) which edges b;b; 1 are bridges (c.f. (g)).

Let G be the COG which is the union of the star with edges dse,, for 2 < i < t,
and the edge e;_i€}. Since B’ and G intersect on d,s, Lemma 9 implies that

B" = B"UGpg is a COG:

(¢”) having three connected components, one containing ej, one containing
e;—1 and one containing e; (c.f. (¢), (f"), (h")),

(d”) which edges a;a;.1, for i > y, are bridges (c.f. (f")), and

(€”) which edges ¢;c;11 are bridges (c.f. (h)).

Consider now the W-triangulation 77 delimited by (as, ..., ay, €2, ..., e). We
have already seen that this graph has less edges than 7" and is 3-bounded by
(ag,a1)-(es, ... e1)-(ay,...,az). Thus Property 13 holds for 77 with the men-
tioned 3-boundary and there exists a partition of 77 into A; = (V(T), E(A1))
and By = (V/(T*), E(By)) such that:

(al) the partition of 77 is extendable,
(bl) A; is connected,
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(c1) B; has exactly two connected components, one containing a; and one
contalning a,,

(d1) the edge ajas is a side of Ay,

(f1) the edges e;e;11, for 1 < i < t, are bridges of A;, and

(gl) the edges a;a;11, for 2 < i < y, are bridges of B;.

Let A = A"UA; and B = B” U By. The graphs A and B covering all the
edges of T and having no common edge, they form a partition of 7. We now
prove that these graphs are COGs and that they verify Property 13.

(a) The partition of €’s neighborhoods being extendable, and the neighbor-
hood of the other f-vertices of T being partitioned as in 77 , or as in
Ty, the partition of 7" into A and B is extendable.

The intersection of the COGs A” and A; is the path (eq, e, . .., €;) which edges
are all bridges of A; (c.f. (f1)). So Lemma 10 implies that A = A" U A, is a
COG that fulfills points (b), (d), and (f) of Property 13. Indeed:

(b) Since A” and A; are connected (c.f. (a”) and (bl)), A is connected.

(d) The edge ajay being a side of Ay (c.f. (d1)), it is a side of A.

(f) The edges b;b; 11 being bridges of A” (c.f. (b”)), these edges are bridges
of A.

The COGs B” and B intersect on the vertices e, ¢;_1, and e;. B” has three
connected components, one containing e;, one containing e; ; and one con-
taining e; (c.f. (¢”)). We consider the union of B” and B; as a succession of
three unions in which the graphs intersect on a single vertex. So Lemma 9
implies that B = B” U By is a COG that fulfills points (c), (e), and (g) of
Property 13. Indeed:

(c) Since B” has three connected components, one containing e; and by, one
containing e;_;, and one containing e, and b, (c.f. (¢”), (d”), and (e”)),
and since B; has two connected components, one containing e; and one
containing e; (c.f. (c1)), B has two connected components, one containing
b; and one containing b,.

(e)(g) The edges a;a;y1, for k > 2, and the edges ¢;c; 11 being bridges of B” or
By (c.f. (d7), (¢”), and (gl)), these edges are bridges of B.

This concludes the proof of Case 1.

Case 2: Proof of Property 14 for a W-triangulation 7j,,, with m
edges. As in Section 2, we consider one case where dya, = dia, and four
cases where d,a, # dya,.

Case 2.1: d,a, = dja, (see Figure 29). Let 77 be the W-triangulation
delimited by (ds,...,dy,ba, ..., by Cao,...,¢,). We have seen that 7} has less
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Fig. 29. Case 2.1.

edges than Tj,,, and is 3-bounded by (dy, ba, . .., by)-(c1, ..., ¢r)-(a1,ds, . .., dy)
or by (b, dy,...,ds,a1)-(¢cp,...,c1)-(by,--.,b2). Applying Property 13 to T}
for any of these 3-boundaries we obtain a partition of 77, into two COGs

Ay = (V(TY), E(Ay)) and By = (V(TY), E(By)), such that:

(al) the partition of 77 is extendable,

(b1) A; is connected,

(cl) By has exactly two connected components, one containing ¢; and one
containing c,,

(d1) the edge dybs is a side of A,

(el-gl) the edges b;b;11, for i > 2, the edges d;d;;1, and the edge a,d; are bridges

of By, and

(f1) the edges c;c;q1 are bridges of A;.

We extend A; and B to obtain the desired partition of 77 , . Let v be the
f-vertex adjacent to a,, by, and d; (see Figure 29). Let G 4 be the union of the
cycle (dy, by, v) and the edge b by, and let G’ be the union of the path (dy, by, v)
and the vertex b;. Note that G4 and G are COGs and let A = B; UG 4 and
B = Ay UGpg. The graphs A and B covering all the edges of T, dia, and having

no common edge, they form a partition of 77 , . We now prove that these
graphs are COGs and that they verify Property 14.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f-vertices of 77, being partitioned as in 77, the par-
tition of 777, into A and B is extendable.

The COGs B; and G4 intersect on d; and by. The COG By has two connected
components, one containing ¢, and d; and one containing ¢; and by (c.f. (cl)
and (el-gl)). Thus we consider the union of B; and G4 as a succession of
two unions in which the graphs intersect on a single vertex. So Lemma 9
implies that A = By UG 4 is a COG that fulfills points (b), (d), (e), and (g)
of Property 14. Indeed:

(b) Since G4 is connected and since By has two connected components (c.f.
(c1)), one containing d; and one containing by, A is connected.
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(e) The edge dya, being a side of G4, it is a side of A.
(d)(g) The edge b1by being a bridge of G 4; the edge aid;, the edges d;d; 1 and
the edges b;b;11, for i > 2, being bridges of B; (c.f. (el-gl)), these edges
are bridges of A.

The intersection of the COGs A; and Gp is the edge diby. This edge being
a bridge of G, Lemma 10 implies that B = A; U Gp is a COG that fulfills
points (c), (f), and (h) of Property 14. Indeed:

(c) Since A; is connected and contains by and b, (c.f. (bl)), and since G'p
has two connected components, one containing b; and one containing b,,
B has two connected components, one containing b; and one containing
by.

(f) Since there is no edge a;a;41 in Ty,,,, B fulfills point (f) by vacuity.

(h) The edges c;c;11 being bridges of A; (c.f. (f1)), these edges are bridges of
B.

Case 2.2: d,a, # dya,. In this case we consider an edge d.a,, € E(T4,q,) such
that d.a,, # dya,. Among all the possible edges d.a,, we choose the one that
firstly maximizes z and secondly minimizes w. As we have already seen, such
an edge necessarily exists and actually d, = d, or d, = d ;.

We have seen that Ty ,, is a W-triangulation with less edges than Tg,,, .
Thus Property 14 applies and there exists a partition of T , into A" =
(V(T3.,.,), E(A)) and B = (V(T}; ,,), E(B")) such that:

(a’) the partition of T , is extendable,

(b”) A’ is connected,

(¢’) B’ has exactly two connected components, one containing b; and one
containing by,

(d') the edge a1ds and the edges d;d; 1, for i > z, are bridges of A’,

(e") the edge d.a, is a side of A’,

(f’) the edges a;a;41, for i > w, are bridges of B,

(g’) the edges b;b; 1 are bridges of A, and

(h’) the edges ¢;c;4q are bridges of B'.

We now extend this partition of Ty , to T , . We proceed by distinguishing

4 cases according to the edge d.a,,.

Case 2.2.1: d, = d,, and w = y+ 1 (see Figure 30). Let v be the f-vertex
adjacent to d,, a,, and a,. Let G4 be the cycle (v,d,,a,) and Gp be the
path (v, ay,ay,). Note that G4 and Gp are COGs and let A = A"U G4 and
B = B’ UGpg. The graphs A and B covering all the edges of 13, ,, and having
no common edge, they form a partition of 77 , . We now prove that these
graphs are COGs and that they verify Property 14.
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Fig. 30. Case 2.2.1.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f-vertices of T7 , being partitioned as in 77 , ., the
partition of T7 , into A and B is extendable.

The intersection of A" and G4 is the vertex d,, so Lemma 9 implies that
A= A"UG, is a COG that fulfills points (b), (d), (e), and (g) of Property 14.
Indeed:

(b) Since A" and G4 are connected (c.f. (b")), A is connected.
(e) The edge d,a, being a side of G4, it is a side of A.
(d)(g) The edge aids, the edges d;d;i1, for i > x, and the edges b;b;;1 being
bridges of A’ (c.f. (d’) and (g’)), these edges are bridges of A.

The intersection of B’ and Gp is the vertex a,, so Lemma 9 implies that
B = B"UGp is a COG that fulfills points (c), (f), and (h) of Property 14.
Indeed:

(c) Since G is connected and since B’ has two connected components, one
containing b; and one containing b, (c.f. (¢’)), B has two connected com-
ponents, one containing b; and one containing b,.

(f)(h) The edge aya, being a bridge of Gp; the edges a;a;41, for ¢ > w, and
the edges c¢;c;41 being bridges of B’ (c.f. (f) and (h’)), these edges are
bridges of B.

Case 2.2.2: z =2z —1, and a,, = a, (see Figure 31). Let v be the f-vertex
adjacent to d,, a,, and d,. Let G4 be the cycle (a,,d.,v,d,) and the edge
d,d, and let G be the path (a,,v). Note that G4 and G are COGs and let
A=A UG, and B = B'UGp. The graphs A and B covering all the edges
of T ,, and having no common edge, they form a partition of 7j , . We now
prove that these graphs are COGs and that they verify Property 14.

(a) The partition of v’s neighborhood being extendable, and the neighbor-
hood of the other f-vertices of 77 , being partitioned as in Tj , , the
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- Aand A’
B and B’

Fig. 31. Case 2.2.2.

partition of T7 , into A and B is extendable.

The intersection of A" and G 4 is the path (d,, d., a,). The edge d,d. is a bridge
of A" and the edge d.a, is a side of both A" and G 4. So Lemma 12 implies that
A=A UG, is a COG that fulfills points (b), (d), (e), and (g) of Property 14.
Indeed:

(b) Since A" and G4 are connected (c.f. (b")), A is connected.
(e) The edge d,a, being a side of G 4, it is a side of A.
(d)(g) The edge aids, the edges d;d;iq1, for i > = and the edges b;b;11 being
bridges of A’ (c.f. (d’) and (g’)), these edges are bridges of A.

The COGs B’ and G intersect on a,, so Lemma 9 implies that B = B'UGp
is a COG that fulfills points (c), (f), and (h) of Property 14. Indeed:

(c) Since Gp is connected and since B’ has two connected components, one
containing b; and one containing b, (c.f. (¢’)), B has two connected com-
ponents, one containing b; and one containing b,.

(f)(h) The edges a;a;41, for ¢ >y, and the edges ¢;c;11 being bridges of B’ (c.f.
(f) and (h")), these edges are bridges of B.

Cl — bq dx = dz
P — A’, A" and B,
'\
y . ‘;/ I ,\\e’]; B',B" and A;
d:a,, w )
° ¢ et SN\
d
z ay =epq| /ﬂ\ ay =ej
-5 :
® b=a
<t ay = el .Tl*\
L o o ® 4,=¢

Fig. 32. Case 2.2.3.

Case 2.2.3: d, = d,, and w > y+1 (see Figure 32). Let e, es,...,€;, €41
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be the neighbors of d, in 7" and inside the cycle (d,,ay,...,a,) going from
a, to a, included. This implies that e; = a,, ery1 = ay, and ¢ > 2. For each
i€ {l,...,t}, let e, be the f-vertex of T* adjacent to d,, e;, and e; 1.

Let G 4 be the connected COG which edges are the edges e;e; 1, for 1 <1 < ¢,
the edges d.e;, for 1 <i < t+1, the edges e;el, for 1 <i <, the edges €le; 1,
for 1 < i < t, and the edge d,e;. Since the intersection of A" and G4, the
edge d,a,, is a side in both of these COGs (c.f. (¢’)), Lemma 11 implies that
A" =A" UG, is a COG:

(a”) that is connected (c.f. (b)),

(b”) which edge a;ds and edges d;d; 1, for i > z, are bridges (c.f. (d")),
(¢”) which edge d,a, is a side, and

(d”) which edges b;b; 11 are bridges (c.f. (g')).

Let Gp be the COG which is the union of the path (e}, e;, €;41) and the star
with edges d,e;, for 1 < i < t. Since B’ and Gp intersect on d, Lemma 9
implies that B” = B"UGp is a COG:

(€”) having three connected components, one containing a,, and a,, one con-
taining b,, and one containing the edge aye; (c.f. (¢’) and (f’)),

(f”) which edge aye; is a bridge,

(g7) which edges a;a;41, for i > w, are bridges (c.f. (")), and

(h”) which edges ¢;c;1 are bridges (c.f. (h')).

Consider now the W-triangulation 73 delimited by (ay, ..., ay, €2, ..., e;). We
have already seen that this graph has less edges than 7j,,, and is 3-bounded
by (er, ers1)-(ay, ..., ay)-(e1,...,e). Thus Property 13 holds for 77 with the
mentioned 3-boundary. This implies that there exists a partition of 77 into

Ay = (V(T}),E(Ay)) and By = (V(TY), E(B1)) such that:

(al) the partition of 77 is extendable,

(bl) A; is connected,

(cl) By has exactly two connected components, one containing a, and one
containing a,,

(d1) the edge aye; is a side of Ay,

(f1) the edges a;a;11, for y < i < w, are bridges of A;, and

(gl) the edges e;e;11, for 1 < i < t, are bridges of B;.

Let A= A"UB; and B = B"UA;. The graphs A and B covering all the edges
of T ,, and having no common edge, they form a partition of 7j , . We now
prove that these graphs are COGs and that they verify Property 14.

(a) The partition of €,’s neighborhoods being extendable, and the neighbor-
hood of the other f-vertices of T , being partitioned as in Tj , —or as
in 77, the partition of 7j , "into A and B is extendable.
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The COGs A” and Bj intersect on the path (e, e, ..., ¢e;) and on the vertex
a,. By has two connected components, one containing the path (e, e, ..., e;)
and one containing the vertex a, (c.f. (c1) and (gl)). We consider the union
of A” and B; as two successive unions, one for each connected component
of B;. For the union concerning the connected component of B; containing
the path (e, e, ..., e;), the edges of this path being bridges of By, we apply
Lemma 10. For the union concerning the other connected component of B; we
apply Lemma 9. Lemma 10 and Lemma 9 imply that A = A” U B; is a COG
that fulfills points (b), (d), (e), and (g) of Property 14. Indeed:

(b) Since A” is connected (c.f. (a”)) and since By has two connected compo-
nents, one containing the vertex a, and one containing the path (eq, ..., e;)
(c.f. (c1) and (gl)), A is connected.
(e) The edge d,a, being a side of A” (c.f. (¢”)), it is a side of A.
(d)(g) The edge aids, the edges d;d;. 1, for i > =z, and the edges b;b;1; being
bridges of A” (c.f. (b”) and (d”)), these edges are bridges of A.

The COGs B” and A, intersect on the edge a,e, and on the vertex a,. B”
has three connected components, one containing the edge a,e;, one containing
a,, and one other (c.f. (¢”)). We consider the union of B” and A; as two
successive unions, one with the connected component of B” containing the
edge e;a,, and one with the rest of the graph B”. For the first union, the
edge e;a, being a bridge of B” (c.f. (7)), we apply Lemma 10. For the second
union, the intersection being the vertex a,, we apply Lemma 9. Lemma 10 and
Lemma 9 imply that B = B” U A; is a COG that fulfills points (c), (f), and
(h) of Property 14. Indeed:

(c) Since A; is connected (c.f. (bl)) and since B” has three connected com-
ponents, one containing the edge a,e;, one containing a,, and b;, and one
containing b, (c.f. (¢”) and (g”)), B has two connected components, one
containing b; and one containing b,.

(f)(h) The edges a;a;y1, for i > y, and the edges c¢;c;41 being bridges of Ay or
B’ (c.f. (f1), (g"”) and (h”)), these edges are bridges of B.

Case2.2.4: z =z—1,and 1 < y < w (see Figure 33). Let ey, es,..., €, €41
(resp. fi, fa, -« fus fut1, fur2) be the neighbors of d, (resp. d,) in T" and inside
the cycle (d, d,, ay, . . ., a,) going from a,, to d, (resp. from a, to d,) included.
This implies that e; = ay, ¢ = fut1, €41 = dy f1 = @y, fuso = d., t > 2,
and u > 1. For each i € {1,...,t} (resp. i € {1,...,u}), let €, (resp. f!) be
the f-vertex of T* adjacent to d, e;, and e;41 (resp. dg, fi, and fiy1).

Let G 4 be the connected COG which edges are the edges e;e;y1, for 1 <i <,

the edges d.e;, for 1 <i <t+1, the edges e;e, for 1 < i < t, the edges eie; 1,
for 1 < < t, the edges d,e; and d.e}, the edges f;fit1, for 1 < i < u, the
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- A’ A" and B;
B',B" and A

Fig. 33. Case 2.2.4.

edges d,f;, for 1 < i < w, the edges f;f!, for 1 < i < u, the edges f/fii1,
for 1 <i < u, and the edge d,f!. The intersection of A" and G4 is the path
(dy,d.,a,) which edge d,d, is a bridge of A" and which edge d,a,, is a side of
both A" and G4 (c.f. (d') and (€’)). So Lemma 12 implies that A” = AU G4
is a COG:

7

(a”) that is connected (c.f. (a’)),

(b”) which edge a;d; and edges d;d; 1, for © > x, are bridges (c.f. (d")),
(¢”) which edge d,a, is a side, and

(d”) which edges b;b; 11 are bridges (c.f. (g)).

Let G be the COG which edges are the edges d.e}, for 1 <i < ¢, the edges
d.fl, for 1 <i < u, and the edges fy.e;, fuf!, and e;e). The intersection of B’
and Gpg, the vertices d, and d,, are in two distinct connected components of
G'B, so Lemma 9 implies that B” = B'U Gp is a COG:

(¢”) having three connected components, one containing a,, and by, one con-
taining b, and one containing the edge f,e; (c.f. (¢’) and (f7)),

(f”) which edge f.e; is a bridge,

(g”) which edges a;a;11, for i > w, are bridges (c.f. (f")), and

(h”) which edges c;c;1 are bridges (c.f. (h')).

Consider now the W-triangulation 77 delimited by (ay, . .., @y, €2, ..., €, fu, .., f2).
We have already seen that this graph has less edges than Ty,,, and is 3-
bounded by (e, fu, .-, fi)-(ay,...,ay)-(€1,...,e). Thus Property 13 holds

for 77 with the mentioned 3-boundary. This implies that there exists a parti-
tion of 77 into A; = (V(17), E(A1)) and B, = (V (1Y), E(By)) such that:

(al) the partition of 77 is extendable,

(b1) A; is connected,
(cl) By has exactly two connected components, one containing a, and one
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containing a,,

(d1) the edge fue; is a side of Ay,

(el) the edges f;fir1, for 1 <i < u, are bridges of By,

(f1) the edges a;a;41, for y <i < w, are bridges of A, and
(gl) the edges e;e;yq, for 1 <i < t, are bridges of Bj.

Let A= A"UB; and B = B"UA;. The graphs A and B covering all the edges
of T ,, and having no common edge, they form a partition of 7; , . We now
prove that these graphs are COGs and that they verify Property 14.

(a) The partition of e}’s and f}’s neighborhoods being extendable, and the
neighborhood of the other f vertices of Tj , ~being partitioned as in Tj ,
or as in 77, the partition of 7jj , "into A and B is extendable.

The COGs A” and B intersect on the paths (eq, es,...,¢;) and (f1, fo, ..., fu)-
By has two connected components, one containing the path (eq, ey, ..., e;) and
one containing the path (fi, fo,..., fu) (c.f. (c1), (el), and (gl)). We consider
the union of A” and B; as a succession of two unions in which the graphs
intersect on one path. All the edges of these paths being bridges of By (c.f.
(el) and (gl)), we apply Lemma 10 to each of these unions and this implies
that A = A” U B; is a COG that fulfills points (b), (d), (e), and (g) of
Property 14. Indeed:

(b) Since A” is connected (c.f. (a”)) and since B; has two connected com-
ponents, one containing the path (e, es,...,¢e;) and one containing the
path (f1, fa, ..., fu) (c.f. (c1), (el), and (gl)), A is connected.

(e) The edge d,a, being a side of A” (c.f. (¢”)), it is a side of A.

(d)(g) The edge aids, the edges d;d;. 1, for i > x, and the edges b;b;1; being
bridges of A” (c.f. (b”) and (d”)), these edges are bridges of A.

The COGs B” and A; intersect on the edge e, f, and on the vertex a,. B”
has three connected components, one containing the edge e, f,,, one containing
the vertex a,, and another one (c.f. (¢”)). We consider the union of B” and
A; as a succession of two unions, one with the connected component of B”
containing the edge ¢ f,, and one with the rest of B”. In the first union, the
edge e, f, being a bridge of B” (c.f. (f7)), we apply Lemma 10. In the second
union, the intersection of the graphs being the vertex a,,, we apply Lemma 9.
These two lemmas imply that B = B” U A; is a COG that fulfills points (c),
(f), and (h) of Property 14. Indeed:

(c) Since A; is connected (c.f. (bl)) and since B” has three connected com-
ponents, one containing the edge e, f,, one containing a,, and by, and one
containing b, (c.f. (¢”)and (g”)), B has two connected components, one
containing b; and one containing by,

(f)(h) The edges a;a;+1, for i > y, and the edges c¢;c;+1 being bridges of A; or
B" (c.f. (f1), (g”) and (h”)), these edges are bridges of B.
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This concludes the Case 2 of the induction and so the joint proof of Property 13
and Property 14.

5 Partition of triangulations: Proof of Theorem 1

5.1 The case of 4-connected triangulations

Let T be a 4-connected triangulation with outer-vertices a, b, and c¢. Since
Property 13 applies to T according to (a, b)-(b,c)-(c,a), let A and B be the
two COGs that form an extendable partition of 7™. This partition induces a
partition of 7" into A" and B’ which respectively correspond to the graphs A
and B where the f-vertices are deleted. Since the partition of T is extendable,
the f-vertices are either vertices of degree one in A (resp. B) or vertices of
degree two in a 3-cycle of A (resp. B). So Lemma 7 and Lemma 8 imply that
A" and B are two COGs.

The bipartition is hamiltonian. Property 13 and Property 14 are closely
related to Property 4 and Property 5, their proofs clearly use the same induc-
tion scheme. The reader can observe that by merging these proofs we obtain
a proof of the following two properties.

Property 15 Given any 3-bounded W-triangulation T' and any of its 3-boundaries,
Property 13 and Property 4 hold. Moreover, the path P (going from by to by,

two vertices on T ’s outer-boundary) divides T into two parts (say the right and

the left according to our figures) in such a way that the edges of A" = ANT
(resp. B'= BNT) are on P or on its right (resp. on P or on its left).

Property 16 Given any Tjy,.,, Property 14 and Property 5 hold. Moreover,
the paths P and Q) (being disjoint and both having their ends on Ty, ,,’s outer-
boundary) divide Ty, 4, into three parts (say the middle and the sides) in such
a way that the edges of ANTy,q, (resp. BN Ty,q,) are either on P, on Q or
in the middle (resp. on P, on @ or in one of the sides).

Property 15 implies that in a 4-connected triangulation 7' 3-bounded by (a, b)-
(b, ¢)-(c,a), there is a partition of T" into the COGs A’ and B’ such that the
edges of A’ (resp. B’) are on or inside (resp. on or outside) the hamiltonian
cycle formed by P and the edge bc.

A" and B’ are S-free. Recall that S is the cycle (z1,y1, x2, yo, x3,y3) with
chords y192, y1y3, and yoys (see Figure 1). If S was a subgraph of A’ T" having
no separating 3-cycle, the cycle (y1,ys,ys3) of S would bound a face of T". This
face could not be the outer-face since ab € A and ac € B. So let v be the
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f-vertex of T* inside the cycle (y1,¥2,ys). The partition of 7% into A and
B being extendable and the three edges 142, y1y3, and yoy3 being in A, the
support edge of v, say y1y., belongs to A. This implies that the edges vy, and
vyy belongs to A and so that the edges yi1x2, yoxs, y1v, Yov, Y1y3, and yoys,
which form a K> 3, all belong to A. This is impossible since outerplanar graphs
are K s-minor free. Similarly, B’ is S-free.

Thus Theorem 1 holds for 4-connected triangulations.

5.2 The case of general triangulations

Now let T be a triangulation having a separating 3-cycle (a, b, c). Let Ty
(resp. Tert) be the triangulation induced by the vertices on and inside (resp.
on and outside) the cycle (a,b,c). Assume that Tj,; (resp. Te,;) has an edge-
partition into two outerplanar graphs, A;,; and By, (resp. Aeye and Beyy). For
Aczty Best, Aint and By, being such that the graphs A.,; U A, and By U Bipt
are two outerplanar graphs that cover 7', they have to verify some properties
allowing a gluing along the cycle (a,b,c). Since the cycle (a,b, c) bounds an
inner-face of T,,;, the partition of T,,; into A.,; and B.,; has to verify some
properties for each inner-face of T,,;. Similarly since (a, b, ¢) bounds the outer-
boundary of T;,;, the partition of T},; into A;,; and Bj,; has to verify some
properties around the outer-face of Tj,,;.

Property 17 Given a triangulation T with outer-face abe, there is an edge
partition of T* into two COGs A = (V(T*),E(A)) and B = (V(T*), E(B))
(see Figure 34), such that:

(a) the partition is extendable,

(b) A is connected,

(¢) B has ezactly two connected components, one containing b and one con-
taining c,

(d) the edge ab is a side of A,

(e) the edge be is a bridge of A, and

(f) the edge ac is a bridge of B.

This property clearly implies Theorem 1 for general triangulations.

PROOF of Property 17. Let T be any triangulation with outer-face abc.
We proceed by induction on the number of separating 3-cycles in 7T'. If T" has
no separating 3-cycle (i.e. T' is 4-connected) we apply Property 13 to T for
the 3-boundary (a, b)-(b, ¢)-(c,a). It is easy to see that the obtained partition
of T™ fulfills Property 17.
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T*

a b

Fig. 34. Property 17.

If T" has a separating 3-cycle C, let T,,; and T},; be the triangulations re-
spectively induced by the vertices on and outside C' and by the vertices on
and inside C'. The cycle C' is no more a separating 3-cycle in T.,; or T},;. So
both T.,; and Tj,; have less separating 3-cycles than 7. Then by induction
hypothesis Property 17 applies to both 77, and 77,

ex int:

We apply the induction hypothesis to T¢,; and obtain a partition of 77, into

two COGs A, = (V(T%,), E(A.)) and B, = (V(T,,), E(B.)) such that:

(a.) the partition is extendable,

(be) A is connected,

(ce) Be has exactly two connected components, one containing the vertex b
and one containing c,

(de) the edge ab is a side of A,

(ee) the edge bc is a bridge of A, and

(fe) the edge ac is a bridge of B..

Let v be the f-vertex inside the face delimited by C in T} ,. The partition

of T, being extendable, it is possible to denote the vertices of C' by d', ¥/,

and ¢, so that the support edge of v is a’'t/. Without loss of generality let

a'tl € E(A.). This implies that va’ and vb’ € E(A,) and that vd € E(B,). We

now apply the induction hypothesis to the triangulation 7Tj,; with outer-face

a't/c’ and we obtain a partition of 77, into two COGs A; = (V(T7,), E(A:))

and B; = (V(T},), E(B;)) such that:

(a;) the partition is extendable,

(b;) A; is connected,

(c;) B; has exactly two connected components, one containing the vertex &
and one containing ¢,

(d;) the edge a'b’ is a side of A;,

(e;) the edge b'¢ is a bridge of A;, and

(f;) the edge a’c is a bridge of B;.

We now define the partition of 7* into A and B by A = (A, \ {v}) U (4; \

{d,b'd}) and B = (B, \ {v}) U (B; \ {d'd,Vc'}) (see Figure 35). In the
case a'l € E(B.), we would have A = (A, \ {v}) U (B; \ {dd,V}) and
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Fig. 35. The COGs A and B.

B = (B.\ {v}) U (4; \ {d'd,b'c}). The graphs A and B form a partition of
T*. Indeed:

- the cycle C' = (d/,V/, ¢’) does not bound any face of T, so there is no f-vertex
v and no edges va’, vb', and v’ in T*; and
- the edges d/¢’ and O'¢ are covered by A, or B..

Let AL = A./\v. By Lemma 8, the graph A’ is a COG:

(el) that is connected,

(e2) which edge ab is a side,

(e3) which edge be is a bridge, and
(e4) which edge a'b’ is a side.

Let A, = A\{d'V,b'c'} which equals to A\{V/c'} since a'd ¢ E(A;). By
Lemma 7, the graph A. is a COG:

(i1) having two connected components, one containing ¢’ and one containing
the edge da'b’, and
(i2) which edge a't’ is a side.

Let B! = B.\v. By Lemma 7, the graph B! is a COG:

(e5) having two connected components, one containing b and one containing
¢, and
(e6) which edge ac is a bridge.

Let B! = B\{d'd,b/c'} which equals to B;\{d'¢} since V¢ ¢ E(B;). By
Lemma 7, the graph B! is a COG:

(i3) having three connected components, one containing a’, one containing o',
and one containing ¢

We prove now that A = A, U A} and B = B, U B] are COGs that fulfill the
property.
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The partition of 7™ is extendable. Most of the f-vertices of T have their
neighborhood partitioned as in 77, or 77 ,. The only f-vertices for which this
may not be the case are the f-vertex vy of T}, adjacent to b’ and ¢/, and the
f-vertex vy of T}, adjacent to @’ and ¢’. According to (e;) (resp. (f;)), the edge
b'c" (resp. c'a’) is a bridge of A; (resp. B;), so the support edge of vy (resp. vq)
is not b'¢ (resp. a'’). In such case there would be a cycle (vy,V, ) € A; (resp.
(vg,c,a’) € B;) and the edge /¢ (resp. a’¢’) would not be a bridge. So the
edges incident to vy (resp. v9) and its support edge are partitonned as in 77,
and the partition of v;’s (resp. vy’s) neighborhood is extendable. Thus point

(a) of the property holds.

The graph A is a COG. We consider the union of A, and A} as two successive
unions. At each step we consider one of the connected components of A;. We
begin with the union of A, and the connected component of A’ containing
a'b’. These two graphs intersect on a’'b’. The edge a'b’ being a side in both of
these COGs (c.f. (e4) and (i2)), Lemma 11 applies. Since this graph and the
connected component of A] containing the vertex ¢’ intersect on ¢/, Lemma 9
applies. Lemma 11 and Lemma 9 imply that the graph A is a COG that fulfills
points (b), (d), and (e) of the property:

(b) Since A, is connected (c.f. (el)) and since A} has two connected compo-
nents, one containing ¢’ and one containing a’d’ (c.f. (il)), A is connected.

(d) If ab # o'V, the edge ab being a side of A, (c.f. (€2)), it is a side of A. If
ab = '/, the edge ab being a side of A, (c.f. (d¢)), it is a bridge of A..
In this case, by applying Lemma 10 instead of Lemma 11, since a'b’ is a
side of A we obtain that ab is a side of A.

(e) Since be # 'l (the support edge of v cannot be a bridge), the edge be
being a bridge of A, (c.f. (€3)), it is a bridge of A.

The graph B is a COG. We consider the union of B! and B] as three
successive unions. At each step we consider one of the connected components
of Bi. For each of these unions the two graphs intersect on a single vertex, o',
b, or ¢, so Lemma 9 applies at each step. Lemma 9 implies that the graph B
is a COG that fulfills points (c) and (f) of the property:

(c) Since B! has two connected components, one containing b and one con-
taining ¢ (c.f. (eb)), and since B] has three connected components, one
containing @', one containing b, and one containing ¢’ (c.f. (i3)), B has
two connected components, one containing b and one containing c.

(f) The edge ac being a bridge of B, it is a bridge of B (c.f. (e6)).

This concludes the proof of Property 17 and so the proof of Theorem 1.
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6 Conclusion

A maximum outerplanar graph on n vertices having 2n — 3 edges and a planar
graph on n vertices having at most 3n — 6 edges, it could be that every planar
graph contains p outerplanar subgraphs such that each edge belongs to ¢ of
them for some p and ¢ verifying % < § < 2. For the case of bipartite planar
graphs, since they have at most 2n — 4 edges, the integers p and ¢ could be
such that 1 < g < 2. The bipartite planar graphs are so sparse that they are
the union of two trees [16], which is two graphs trivially outerplanar. However
Theorem 1 is optimal even for bipartite planar graphs.

Theorem 18 ([8] p. 58) For any integers p and q with E <2, the bipartite
planar graph Ksgo,11 has no p outerplanar subgraphs covering each edge q
times.

The proofs of Property 13, Property 14 and Property 17 being constructive,
one could design an algorithm A with input a planar graph and with out-
put two outerplanar graphs covering it. A planar graph G having at most
3|V(G)| — 6 edges, we can construct a triangulation T' containing G in linear
time (i.e. O(|V(G)])). Furthermore Richards [17] showed how to decompose
a triangulation 7" into 4-connected triangulations in linear time. Using conve-
nient data structures it makes no doubt that A could be linear.

The decomposition technique used to prove Property 13 and Property 14 seems
to be very ad hoc. Surprisingly, exactly the same decomposition technique
allowed the author and J. Chalopin [2] to prove the following conjecture of
Scheinerman [19].

Conjecture 19 FEvery planar graph is the intersection graph of a set of seg-
ments in the plane.

In such intersection model of a graph, the vertex set is a set of segments and
the edge set corresponds to the pairs of intersecting segments.

In [9] S. Gravier and C. Payan gave a reformulation of the Four Colour Theo-
rem. In this reformulation they consider the outerplanar graph induced by the
edges on and inside (resp. on and outside) a hamiltonian cycle in 4-connected
triangulations. Theorem 1 implies a restriction on the graphs considered in
this reformulation. These graphs are such that we can assign each edge on the
hamiltonian cycle to one of the two graphs and obtain two S-free graphs.

It is shown in [5] that every graph embeddable on a surface S is coverable by
two graphs with bounded tree-width. Can Theorem 1 be generalized to others
surfaces? For each surface S, a graph is outer-S if it admits an embedding
on S with no crossing edges and such that all the vertices are incident to the
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same face, the outer-face. We propose the following conjecture.

Conjecture 20 Every graph embeddable on S is coverable by two outer-S
graphs.

This conjecture holds for 5-connected toroidal graphs (i.e. embeddable on the
torus). Indeed Brunet and Richter [1] showed that 5-connected toroidal tri-
angulations have a hamiltonian cycle separating the torus into two connected
regions. Taking the edges of C' and the edges in one of the region we obtain an
outer-toroidal graph. Indeed, all the vertices are incident to the same face, the
face bounded by C'. Another family of embedded graphs is known to be hamil-
tonian, the family of 4-connected projective-planar graphs [20]. However this
result does not imply our conjecture for this family of graphs since the hamil-
tonian cycles obtained do not necessarily separate the projective plane into
two connected regions. Note that Conjecture 20 could not be much strength-
ened (contradicting a conjecture proposed by the author [8]). Let S, denotes
the oriented surface of genus g¢.

Theorem 21 For every g > 24 such that n = 0 (mod 12), there exists a
graph embeddable in S, that does not admit any edge partition into an outer-
Sg, graph and an outer-Sy, graph when g, + g < %g.

PROOF.

Claim 22 Consider an outer-S, graph G with n vertices, m edges and f faces.
For every outer-S, graph G such that G = Gt \ Vs, for some stable set
Vo C{v e V(GT)|dg+(v) = 2}, we have |V3| < 3n+ 6g —m — 3.

Given any outer-S, graph G, let G and V3 be such that |V3| is maximized. This
clearly implies that G is connected and thus around its outer-face we have
a facial walk W, = (vq, v, ...,v;) of length [. Now let G* be the multigraph
embedded in Sy, obtained from G by adding a new vertex x incident to each
occurrence in W,. According to the construction, G* has n* = n + [V5| + 1
vertices and m* = m + 2|V;| + [ edges. Although G* is a multigraph, Euler’s
formula apply and since all its faces have length at least three we have that
m* < 3n* 4 6(g — 1). Furthermore, since G is an outer-S, graph and since
V5 is a stable set, all the vertices in V5 appear in W, and none of them are
consecutive in this walk. Thus 2|V5| < [ and m + 4|V, < m* < 3(n + |Va| +
1) +6(g — 1) which implies the claim.

The Map Color Theorem says that a complete graph on n vertices has an

embedding in Sy if and only if g > 5(n — 3)(n — 4) [18]. For any n > 0

such that n = 0 (mod 12) we have that K, has an embedding in S,, for

g = 15(n —3)(n —4), that is a triangulation of S,. For these couples (n, g),

let K be a stellation corresponding to a given embedding of K,, in S,. This
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means that given this embedding of K, in S, we add a vertex in every face
and we link it to the three vertices incident to this face. Let V5 in K be the
maximum stable set with vertices of degree 3. Note that since K, triangulates
Sg, Ky, has 3| E(K,)| triangular faces and thus |V3| = $n(n — 1).

Note that if we add pendent vertices in an outer-S, graph this graph remains
outer-Sy. So given an edge partition of K7, into an outer-Sy, graph H; and an
outer-Sy, graph Hy, we can consider that every vertex of degree three in K has
degree one in H;, for i € {1,2}, and degree two in Hs_;. Since |V3| = 3n(n—1),
and since by Claim 22 H; has at most 3n+6g; — |E(H;)| — 3 vertices of degree
two from V5 (the remaining vertices of V3 have degree one in H;), g; and go
should be such that 6n+6(g; + g2) —m —6 > gn(n —1). Since this inequality
does not hold when g g > g1+ g2 and n > 24, this concludes the proof of the
theorem.
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