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2 LIRMM, CNRS et Université Montpellier 2, 161 rue Ada 34392 Montpellier Cedex 05, Frane.Abstrat. Given a set S of segments in the plane, the intersetion graph of S is the graph with vertexset S in whih two verties are adjaent if and only if the orresponding two segments interset. Weprove a onjeture of Sheinerman (PhD Thesis, Prineton University, 1984) that every planar graphis the intersetion graph of some segments in the plane.1 IntrodutionIn this paper, we onsider intersetion models for planar graphs. A segment model of a graph G maps everyvertex v ∈ V (G) to a segment v of the plane so that two segments u and v interset if and only if uv ∈ E(G).Although this graph family is simply de�ned, it is not easy to manipulate. Atually, even if this lass of graphsis small (there are less than 2O(n log n) suh graphs with n verties [15℄) a segment model may be long toenode (in the models of some of these graphs the endpoints of the segments need at least 2
√

n bits to beoded [13℄). There are also interesting open problems onerning this lass of graphs. For example, we knowthat deiding whether a graph G admits a segment model is NP-hard [11℄ but it is still open whether thisproblem belongs to NP or not. Here we fous on a onjeture proposed by Sheinerman [16℄, stating thatevery planar graph has a segment model.Many work has been done toward this onjeture. Several proofs [3,5,9℄ have been given for bipartiteplanar graphs. The ase of triangle-free planar graphs was proved by de Castro et al. [1℄ and reently deFraysseix and Ossona de Mendez [4℄ proved it for every planar graph that has a 4-oloring in whih everyindued yle of length 4 uses at most 3 olors.Another approah to this problem has been proposed [12,14℄. Sine it is known [6℄ that planar graphsare intersetion graphs of Jordan ars in the plane and sine two non-parallel segments interset at mostone, it was asked whether planar graphs are intersetion graphs of Jordan ars in the plane if every pair ofJordan ars s1 and s2 interset at most one and in a non-tangent way (i.e. around their intersetion point wesuessively meet s1, s2, s1 and s2). It was already known when tangent intersetion are allowed; indeed everyplanar graph is the ontat graph of touhing irles [10℄. The authors and Ohem [2℄ answered positively tothis question. This approah of Sheinerman's onjeture was deisive sine by improving the proof of thisresult it yields a proof of Sheinerman's onjeture that we present here. However, the onstrution we givehere does not exatly orrespond to a strething of the strings of the onstrution given in [2℄.The paper is organized as follows. In Setion 2 we give some de�nitions. In partiular we de�ne premodelsand we explain how to obtain a segment model from a premodel. In Setion 3 we onstrut premodels for3-bounded W-triangulations, a family of plane graphs inluding 4-onneted triangulations. Then in Setion4 we �nally onstrut segment models for general triangulations, whih implies the existene of segmentmodels for general planar graphs.2 PreliminariesA plane graph is an embedded planar graph. Given a plane graph G, let V (G), E(G) and F (G) be respetivelythe sets of verties, edges and inner faes of G. A near-triangulation is a plane graph in whih every inner faeis a triangle. A triangulation is a near-triangulation with a triangular outer fae. It is easy to see that everyplanar graph is the indued subgraph of some triangulation. This implies that it is su�ient to onsidertriangulations. Indeed if a planar graph G is isomorphi to the graph indued by a set V (G) ⊆ V (T ) ofverties in a triangulation T , then by removing the segments orresponding to V (T ) \ V (G) from a segmentmodel of T , we learly obtain a segment model of G.



In all the paper, the bold notations orrespond to geometrial objets like points, segments or lines. Forexample we will usually denote by v the segment orresponding to a vertex v and by (v) the line prolongingthis segment. Furthermore sine we onsider �nite planar graphs, the segment sets we onsider are all �nite.Given a segment set S, its set of representative points RepS is the set that ontains the intersetion pointsand the ends of the segments in S. A segment set S is unambiguous if every segment s ∈ S has distintendpoints, and if parallel segments of S do not interset. From now on we use the following de�nition ofmodel.De�nition 2.1. Given a segment set S, its intersetion graph GS is the graph with vertex set S and wheretwo verties are adjaent if and only if the orresponding segments interset. Furthermore if (1) S is un-ambiguous, if (2) the intersetion of any three segments of S is empty, and if (3) every endpoint belongs toexatly one segment, then S is a model for any graph G isomorphi to GS.For the proof in Setion 4 we need some geometrial strutures to represent the triangular inner faes. Toeah triangular inner fae abc we will assoiate a fae segment, abc, acb or bca.De�nition 2.2. Given an unambiguous segment set S and three pairwise interseting segments a, b and c,a fae segment f = abc is a segment [p,q] suh that:� p is the intersetion point of a and b, and going around p we onseutively meet a, f and b,� q is an internal point of c that does not belong to any other segment of S, and� none of its internal points belongs to any segment of S.The points p and q are respetively alled the ross-end and the �at-end of abc.Note that the seond item implies that fae segments are non-trivial, i.e. p 6= q. Note also that in thisde�nition a and b play the same role, so a fae segment abc is also a fae segment bac but it is not a faesegment acb.De�nition 2.3. Given an unambiguous segment set S, two fae segments f1 and f2 on S are non-interferingif one of the following holds:- The segments f1 and f2 do not interset.- The segments f1 and f2 have the same ross-end p and this point is the intersetion point of exatlytwo segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and f2 in distinthalf-planes.De�nition 2.4. A full model of a near triangulation T is a ouple M = (S, F ) of segments sets suh that:� S is a model of T .� F is a set of non-interfering fae segments on S suh that for eah inner fae abc of T , F ontains oneof the following fae segments: abc,acb,bca.� S ∪ F is unambiguous.The next theorem is the main result of the paper.Theorem 2.5. Every triangulation T has a full model M = (S, F ).2.1 PremodelsIn our proofs, we use a di�erent kind of model. The main di�erene with full models is that more than twosegments of S an interset in a same point.In the following, we onsider a segment set S and a set F of non-interfering fae segments on S, where
S ∪ F is unambiguous. Let us denote the segments of S (resp. F ) by s1, s2, . . . (resp. f1, f2, . . . ). Given arepresentative point p, its inidene sequene I(p) is the undireted irular sequene of segments (from
S ∪ F ) we meet by going around p. This sequene is undireted beause it will make no di�erene goinglokwise or anti-lokwise. By extension, the partial topologial inidene sequene of p, I∗(p) is the sequeneobtained in the following way. Prolong every segment that ends at p and onsider its new inidene sequene.Then replae every ourrene of si and fi that was not in I(p) before by (si) and (fi). It is lear that I(p)is a subsequene of I∗(p) (i.e. I(p) ⊆ I(p)). We say that I(p) is of the form ([r1], r2, . . . , rk) for ri ∈ S ∪F ,if either I(p) = (r1, r2, . . . , rk), I(p) = (r2, . . . , rk), or I(p) ⊆ ((r1), r2, . . . , rk) ⊆ I∗(p).2



Let us de�ne types for the representative points, depending on their inidene sequene. These typesare not always entirely determined by the inidene sequene and we will have to assign a type (among thepossible ones) to eah representative point. Furthermore, these types are in orrespondene with some graphswe also desribe here.� A point is a segment end if its inidene sequene is (s1). The orresponding graph is the single vertex
s1.� A point is a �at fae segment end if its inidene sequene is (s1, f1, s1). The orresponding graph is thesingle vertex s1.� A point may be a rossing if it has an inidene sequene of the form (s1, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,
s1, [f2], s2). The orresponding graph is the edge s1s2.� A point may be a path�(s1, s2, . . . , sk)�point with k ≥ 2, if it has an inidene sequene of the form
(s1, s2, . . . , sk, (s1), (s2)) (See Figure 1). Suh a typed point is in orrespondene with path�(s1, s2, . . . , sk),the graph with vertex set {s1, . . . , sk} and edge set {sisi+1 | 1 ≤ i < k}.

s2 sks1

s1 s2 sk s1 s2 skFig. 1. A path�(s1, s2, . . . , sk)�point, its partial realization, and its orresponding graph� A point may be a fan�s1⊳� (s2, . . . , sk)�point with k ≥ 2, if it has an inidene sequene of the form
(s1, [f1], s2, . . . , sk, (s1), [f1], (s2)) (See Figure 2), with f1 = s1s2x. Note that sine f1 is a fae segmentit ours at most one in the inidene sequene. Suh a typed point is in orrespondene with fan�s1⊳�
(s2, . . . , sk), the graph with a vertex s1 dominating a path (s2, . . . , sk).
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Fig. 2. A fan�s1⊳� (s2, . . . , sk)�point, its partial realization , and its orresponding graph� A point may be a fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point with 2 ≤ i ≤ k, if it has an inidenesequene of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 3). Suh a typed point is in orrespondenewith fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk), the graph with a path (s2, . . . , sk) and a vertex s1 dominatingthe subpath (s2, . . . , si). 3
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Fig. 3. A fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point, its partial realization, and its orresponding graph� A point may be a path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point with 2 ≤ i ≤ k, if it has an inidenesequene of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 4). Suh a typed point is in orrespondenewith path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk), the graph with two paths (s1, . . . , si−1) and (si, . . . , sk),where s1 dominates the seond path.
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Fig. 4. A path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point, its partial realization, and its orresponding graph� A point may be a double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point with 2 ≤ i ≤ k, if it has aninidene sequene of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 5). Suh a typed point is in or-respondene with double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1), the graph with two paths (s2, . . . , si)and (si+1, . . . , sk, s1), where s1 and si respetively dominate the �rst and the seond path.
sis2

s1 sk si+1

s1

s2 sk

s1

s2

sisi
skFig. 5. A double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point, its partial realization, and its orresponding graphAtually, the graphs we onsidered here are plane graphs, and their inner faes are the grey faes in the�gures. As in [4℄, we need a bipartite digraph to desribe the onstraints between segments and representativepoints. 4



De�nition 2.6. Given a segment set R, the onstraints digraph ConstR is the bipartite digraph with vertexsets R and RepR, and where r ∈ R and p ∈ RepR are linked if and only if p ∈ r. More preisely, there is anar from p to r if p is an endpoint of r, otherwise (when p is an internal point of r) the ar goes from r to
p.Informally this graph desribes the fat that the position of a segment is determined by its endpoints, anddetermines the position of its internal representative points.De�nition 2.7. Given a segment set S, a set F of non-interfering fae segments on S and a funtion τ thatassigns a type to eah representative point, the triple M = (S, F, τ) is a premodel of a near-triangulation Tif the following holds:- The set S ∪ F is unambiguous and the digraph ConstS∪F is ayli.- A vertex a ∈ V (T ) if and only if a ∈ S.- An edge ab ∈ E(T ) if and only if a and b interset in a point p suh that the graph orresponding to

τ(p) ontains the edge ab.- A fae abc ∈ F (T ) if and only if one of the following holds:- either there exists a fae segment abc, acb or bca in F ,- or, a,b and c interset in a point p suh that abc is an inner fae of the graph orresponding to τ(p).Note that a premodel M = (S, F, τ) of a near-triangulation T has a bounded number of representativepoints. There are at most 2|V (T )| segment ends, at most F (T ) �at fae segment ends, and at most E(T )points of another type (sine eah of them orresponds to at least one edge of T ).Remark 2.8. If a premodel M = (S, F, τ) of a near-triangulation T has 2|V (T )|+ |F (T )|+ |E(T )| represen-tative points, then (S, F ) is a full model of T .2.2 Loal PerturbationsIn this subsetion we desribe how to transform a premodel M = (S, F, τ) of a near triangulation T into afull model M′ = (S′, F ′) of T . In the following the segments denoted by ri are segments of S ∪ F . Let usde�ne three basi moves: prolonging, gliding and traversing.Lemma 2.9 (prolonging). Consider a premodel M = (S, F, τ) of a near triangulation T with an intersetionpoint p whih is the end of a segment s1 ∈ S. If for every segment s2 ∈ S that has an end in p, there isno direted path from s2 to s1 in ConstS∪F , it is possible to prolong s1 aross p without reating a ylein ConstS′∪F (where S′ is the new segment set). Furthermore, if the type τ(p) is still appliable to p then
(S′, F, τ) remains a premodel of T .Proof. Consider a point q in the line (s1) aross p and let S′ be as S exept that we replae p by q as anendpoint for s1. We hoose q in suh a way that s1 does not interset a new segment, and S′ ∪ F remainsunambiguous. Now it is easy to see that ConstS′∪F is very similar to ConstS∪F , we just have replaed thear ps1 by the ar s1p, added a vertex for q, and added an ar qs1. Sine the fae segments have out-degreezero in ConstS′∪F , a yle in this digraph should neessarily pass through s1, p and a segment s2 ∈ S thathas an end in p. Thus, aording to the onditions on ConstS∪F , it is lear that ConstS′∪F is ayli. ⊓⊔Remark 2.10. Consider a premodel M = (S, F, τ) with a point p that is the intersetion of exatly twosegments from S, s1 and s2. By prolonging all the segments that end at p we obtain a segment set S′ suhthat ConstS′∪F remains ayli.A segment set R is �exible if every representative point p is internal for at most two segments of R. Notethat aording to the de�ned types for every premodel M = (S, F, τ), the set S ∪ F is �exible.De�nition 2.11. A move of a segment set R = {ri = [ai,bi] | 1 ≤ i ≤ |R|} is a segment set R′ suh that
R′ = {r′i = [a′

i,b
′
i] | 1 ≤ i ≤ |R|}. An interpolation of this move is a ontinuous funtion de�ned for t ∈ [0, 1]that gives a move Rt of R suh that R0 = R and R1 = R′.Lemma 2.12 (gliding). Consider a �exible and unambiguous segment set R suh that ConstR is ayli,and a representative point p of R. If the segments r1, r2, . . . , ri are onseutive around p, if all the segments

r2, . . . , ri have an end at p and are in the same half-plane delimited by (s1) (See Figure 6), and if in ConstRthe vertex r1 annot be reahed from any rj with 2 ≤ j ≤ i, then there exists a move R′ with an interpolation
Rt suh that for every t ∈]0, 1]: 5



- The set Rt is unambiguous and ConstRt is ayli.- The point p splits into two representative points pt
1 and pt

2, whih inidene sequene are respetively
(rt

1, r
t
2, . . . , r

t
i, r

t
1) and the inidene sequene of p without the ourrenes of rt

2, . . . , r
t
i.- For every representative point q 6= p of R there is a representative point qt in Rt with exatly the sametopologial inidene sequene.- There is no other representative point (i.e. |RepRt | = |RepR| + 1).- Every segment rt ∈ Rt (resp. representative point qt ∈ RepRt) that is not reahable from any pt

1 in
ConsttR is stati, that is rt = r (resp. qt = q).
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Fig. 6. gliding of r2, . . . , ri on r1.Proof (of Lemma 2.12). Consider a segment x ∈ R whih internal representative points have an inidenesequene of the form (x,y,x,y) for some y ∈ R. Sine ConstR is ayli, suh segment neessarily exists.Now we proeed by indution on |R| and onsider as the initial ase, the ase where i = 2 (only one segment
r2 is gliding on r1) and x = r2. Sine R is �nite there exists a real ǫ > 0 suh that (1) every representativepoint q /∈ x of R veri�es dist(q,x) > ǫ and (2) every segment y 6= x inident to the other end of x veri�es
dist(p, (y)) > ǫ (where dist is the eulidean distane). It is now lear in Figure 7 that there is a onvenientmove R′ (with an interpolation Rt) in whih only x is modi�ed. Atually just one end of x moves ontinuouslyon r1 from p to p1, a point of r1 suh that dist(p,p1) < ǫ. Let us now verify that R′ and Rt follow therequirements of the lemma. Consider any t ∈]0, 1].
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Fig. 7. Around x = r2 when i = 2.- The ondition (2) in the de�nition of ǫ ensures us that Rt is unambiguous. Moreover, sine ConstRt\{xt,pt
2
}is a subdigraph of ConstR that is ayli, any yle of ConstRt should pass through xt. But sine all itsinternal representative points have out-degree zero in ConstRt (beause we are about to show that theirinidene sequene is of the form (xt,yt,xt,yt)) there is no suh yle and ConstRt is ayli.- It is lear, sine only one segment is moving, that the inidene sequenes of pt

1 and pt
2 are as expeted.6



- Similarly it is lear that for every representative point q /∈ x the topologial inidene sequene of qremains unhanged. For the representative points q 6= p on x, the de�nition of ǫ ensures us that theirtopologial inidene sequenes remain unhanged, that is of the form (xt,yt,xt,yt).- We learly have |RepRt | = |RepR| + 1.- It is lear in the onstrution that every segment yt 6= xt of R (resp. representative point qt 6= pt
1 thatis not internal in xt) is stati.For the indution step (when i > 2 or x 6= r2), we apply the indution hypothesis on R− = R \x. This ispossible sine R− is �exible and unambiguous, and sine ConstR−

is a subdigraph of ConstR, thus ayli.Let the ends of x be q1 and q2, and assume here that these points are still representative points in R− (welater explain how to proeed if it is not the ase). Thus the points qt
1 and qt

2 belongs to Rept
− for every

t ∈ [0, 1] (if q1 = p, let qt
1 = pt

1 or pt
2 whether x ∈ {r2, . . . , ri} or not) and let xt = [qt

1,q
t
2]. Consider nowthe interpolation de�ned by Rt = Rt

− ∪ xt.Claim (1). Consider three points moving ontinuously on the plane (three ontinuous funtions from [0, 1]to the points of the plane). If these points are non-ollinear for t = 0, then there exists a value t1 ∈]0, 1] suhthat they are non-ollinear for every t ∈ [0, t1].This implies the following laims.Claim (2). Sine R0 = R is unambiguous, there is a value t2, with 0 < t2 ≤ 1, Rt is unambiguous for every
t ∈ [0, t2]. Furthermore, t2 an be suh that for every segment y ∈ R (x inluded) and every representativepoint q ∈ RepR−

, if q /∈ (y) then qt /∈ (yt) for every t ∈ [0, t2].There is also an interval where x does not interset undesired segments.Claim (3). There is a value t3, with 0 < t3 ≤ 1, suh that |RepRt ∩ x| is onstant for every t ∈]0, t3].Now by taking t∗ = min{t2, t3} we have a move Rt∗ and an interpolation Rt×t∗ , that follows the requirementsof the lemma. Indeed, for every t ∈]0, t∗]:- The set Rt is unambiguous (by Claim (2)), and ConstRt is ayli. Indeed a yle should neessarilypass through x but all its internal representative points have out-degree zero in ConstRt .- The inidene sequene of p1 and p2 are onvenient. The only segment that ould behave badly is xtbut this does not our. If x is not inident to p Claim (3) ensures us that pt
1 and pt

2 /∈ xt. Otherwise(when q1 = p) the de�nition of qt
1 ensures us that xt is inident to the onvenient point, pt

1 or pt
2, andClaim (2) ensures us that its position around this point remains orret (sine qt

2 /∈ (yt) for any yt 6= xtinident to pt
1 or pt

2).- By the indution hypothesis the only representative points, distint from pt
1 and pt

2, that may not havethe same topologial inidene sequene (as in R) are the representative points on x. Claims (2) ensuresus that these sequenes remain unhanged.- We have |RepRt | = |RepR| + 1 by the indution hypothesis and Claim (3).- By indution hypothesis, every segment rt 6= xt of Rt (resp. representative point qt that is not internalin xt) that is not reahable from pt
1 in ConstR is stati. If xt (resp. an internal point qt of xt, at theintersetion with some segment denoted yt) is not reahable, it is also the ase of qt

1 and qt
2 (resp. xtand yt). Thus these points (resp. segments) are stati implying that xt (resp. qt) is stati.If the point q1 is not a representative point of R−, this means that q1 belongs to zero or one segment yof R− (as an internal point). In the �rst ase, let qt

1 unhanged (qt
1 = q1), and in the seond ase, let qt

1 bethe intersetion point of the lines (x) and (yt). Then we put qt
1 in RepR−

for the omputation of t2. If q2 isnot a representative point of R− we proeed similarly. Then the proof would work as desribed above. ⊓⊔Lemma 2.13 (traversing). Consider a �exible and unambiguous segment set R suh that ConstR is ayli,and a representative point p of R whih inidene sequene is (r1, . . . , ri, . . . , rj , r1, rj+1, . . . , rk, ri) with
2 < i ≤ j ≤ k (See Figure 8). There exists a move R′ with an interpolation Rt suh that for every t ∈]0, 1]:- The set Rt is unambiguous and ConstRt is ayli.- The point p splits into i representative points pt

l , for 1 ≤ l ≤ i, whih inidene sequene are (rt
i, r

t
2, . . . , r

t
i)for l = 1, (rt
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t
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t
l) for 1 < l < i, and (rt

1, r
t
i, . . . , r

t
j , r

t
1, rj+1, . . . , rk, rt

i) for l = i.7
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Fig. 8. traversing- For every representative point q 6= p of R there is a representative point qt in Rt with exatly the sametopologial inidene sequene.- There is no other representative point (i.e. |RepRt | = |RepR| + i − 1).- Every segment r ∈ R (resp. representative point q ∈ RepR) that is not reahable from pt
i in ConstRt isstati, that is rt = r (resp. qt = q).Sine the proof of this lemma is very similar to the proof of Lemma 2.12, we omit it here.Given an intersetion point p in a premodel M = (S, F, τ) of T , a partial realization of p is an operationthat ombines a basi move at p and the addition of new fae segments (eventually none), and that yieldsanother premodel M′ = (S′, F ′, τ ′) of T . A simple example of a partial realization at p is prolonging asegment s aross p, hoosing s in suh a way that τ(p) still applies and that the onstraints digraph remainsayli. Suh a partial realization is alled a maximization of p, and if p is already internal in two segmentswe say that this point is maximal. In a premodel, we say that a point p is simple if it is either a segmentend, a �at fae segment end, or a maximal point without any segment of S ending here (at p). Otherwise,we say that this point is speial.Proposition 2.14. Consider a premodel M = (S, F, τ) of a near-triangulation T . Every speial point p of

M that is maximal admits a partial realization.Proof. Note that sine p is speial and maximal there are at least three segments from S interseting at p.We distinguish �ve ases aording to the type of p.If this point is a path�(s1, s2, . . . , sk)�point we do a gliding of {s3, . . . , sk} on s2 to a new representativepoint q (by Lemma 2.12 sine p is not an end of s2). Let p and q be respetively typed as the rossingpoint of s1 and s2, and as a path�(s2, . . . , sk)�point (See Figure 1). Under these onditions the gliding keepsthe onstraints digraph ayli and preserves the topologial inidene sequene of the other representativepoints (so that their type an remain unhanged). Thus, sine the graph that orresponded to p (the path
(s1, . . . , sk)) is the union of the graphs orresponding to p and to q, we are done.If this point is a fan�s1⊳� (s2, . . . , sk)�point we do a traversing of {s3, . . . , sk} along s2 and through s1 toa new representative point q. We add the fae segments s1sisi−1, with 3 ≤ i ≤ k, and we let q be typed as apath�(s2, . . . , sk)�point (See Figure 2). Under these onditions the traversing keeps the onstraints digraphayli and preserves the topologial inidene sequene of the other representative points. Thus sine thegraph that orresponded to p (the fan�s1⊳� (s2, . . . , sk)) is the union of the graphs orresponding to the newrossing points, to the new fae segments, to p and to q, we are done.If this point is a fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point with 2 ≤ i ≤ k, we onsider that i < k.Otherwise we ould onsider this point as a fan-point, a ase we already onsidered. Here we do a glidingof {si+1, . . . , sk} on si to a new representative point q and we let the points p and q be respetively typedas a fan�s1⊳� (s2, . . . , si)�point and as a path�(si, . . . , sk)�point (See Figure 3). Under these onditions thegliding keeps the onstraints digraph ayli and preserves the topologial inidene sequene of the otherrepresentative points. Thus sine the graph that orresponded to p is the union of the graphs orrespondingto p and to q, we are done.If this point is a path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point with 2 ≤ i ≤ k, we onsider that i < k.Otherwise we ould onsider this point as a path-point, a ase we already onsidered. Here we do a traversingof {si+1, . . . , sk} through s1 and on si to a new representative point q. We add the fae segments s1sjsj−1,8



with i < j ≤ k, and we respetively let p and q be respetively typed as a path�(si, s1, . . . , si−1)�pointand as a path�(si, . . . , sk)�point (See Figure 4). Under these onditions the traversing keeps the onstraintsdigraph ayli and preserves the topologial inidene sequene of the other representative points. Thussine the graph that orresponded to p is the union of the graphs orresponding to the new rossing points,to the new fae segments, to p and to q, we are done.If this point is a double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point with 2 ≤ i ≤ k, we onsider that
2 < i. Otherwise we ould onsider this point as a fan-point, a ase we already onsidered. Here we do atraversing of {s2, . . . , si−1} along si and through s1 to a new representative point q. We add the fae segments
s1sjsj+1, with 2 ≤ j < i, and we respetively let p and q be typed as a path�(si, . . . , s2)�point and as afan�si⊳� (s1, sk, . . . , si+1)�point (See Figure 5). Under these onditions the traversing keeps the onstraintsdigraph ayli and preserves the topologial inidene sequene of the other representative points. Thussine the graph that orresponded to p is the union of the graphs orresponding to the new rossing points,to the new fae segments, to p and to q, we are done.This onludes the proof of the proposition. ⊓⊔Given a speial point p in a premodel M = (S, F, τ) of T , a total realization of p is a sequene ofpartial realizations suh that every edge (resp. fae) of the graph orresponding to τ(p) orresponds now toa rossing point (resp. to a fae segment).De�nition 2.15. Consider a speial point p of a premodel M = (S, F, τ) and let {s1, . . . , sk} ⊆ S be theset of segments that have an end at p. This speial point is free if for any pair of segments si and sj with
1 ≤ i < j ≤ k, there is no path in the onstraints digraph of M linking si and sj .It is lear that a free speial point an be maximized (f. Lemma 2.9). In the proof above one an observethat if the point p is free, then the new speial points (after the partial realization) are also free, thus wehave that:Remark 2.16. In a premodel M, every free speial point admits a total realization.Sine the onstraints digraph of a premodel is ayli we have that:Remark 2.17. If a premodel has k > 0 speial points, then one of them is free, and thus partially (totally)realizable.Now let us note that any partial realization inreases the number of representative points. Sine a pre-model with the maximum number of representative points is a full model (f. Remark 2.8), we have thefollowing orollary.Corollary 2.18. Any premodel M = (S, F, τ) of a near-triangulation T admits a sequene of partial real-izations that yield a full model M′ = (S′, F ′) of T .The total realizations preserve the freeness of speial points.Lemma 2.19. Consider a premodel M = (S, F, τ) with a speial point p. There exists a total realization of
p suh that in the obtained premodel M′ = (S′, F ′, τ ′), every speial point q 6= p of M is preserved (i.e.there is no partial realization at q) and every free speial point q 6= p of M remains free.Proof. It is lear that a total realization of p minimizing the number of partial realization preserves everyrepresentative point p′ 6= p of RepS∪F . Now to prove that q is still free we show that for every pair ofsegments r1 and r2 from S ∪ F there is a path from r1 to r2 in ConstS′∪F ′ only if there was one in
ConstS∪F .Sine every p′ 6= p of RepS∪F is preserved, for every segment r ∈ S ∪ F , the ar p′r (resp. rp′) belongsto ConstS∪F if and only it belongs to ConstS′∪F ′ . Thus a new path from r1 to r2 should neessarily passthrough one of the new representative points, say p∗ ∈ RepS′∪F ′ \(RepS∪F \p). Sine p∗ is simple (otherwisethe realization would not be total) we onsider three ases aording to τ ′(p∗).- If p∗ is a segment end, it has no in-neighbor in ConstS′∪F ′ , and thus it annot be part of a path from

r1 to r2. 9



- If p∗ is a �at fae segment end, it has a unique out-neighbor in ConstS′∪F ′ and it is a fae segment f .Being a fae segment f has no out-neighbor, thus we just have to show that f 6= r2. Aording to thedesriptions of maximization and the realizations used in the proof of Proposition 2.14 it is lear that fis new (f ∈ F ′ \ F ) and thus f 6= r2.- If p∗ is a maximal rossing point, all its out-neighbors in ConstS′∪F ′ are fae segments. Being faesegments none of them has an out-neighbor, thus we just have to show that they are distint from r2. Ifone of them is r2, sine p∗ is the ross end of this fae segment, the other end of r2 is a �at fae segmentend, and thus q is not free in M.This onludes the proof of the lemma. ⊓⊔This lemma and Remark 2.16 imply the following orollary.Corollary 2.20. Consider a premodel M = (S, F, τ) with a set P ⊂ RepS∪F of free speial points. Thereexists a sequene of total realizations that totally realizes every p ∈ P and preserves every point of RepS∪F \P .2.3 Global transformationsIt is folklore that under a linear transformation of the plane, ollinear points remain ollinear. Furthermoreif this linear transformation is injetive, the image of an half-plane remains an half-plane. Thus we have thefollowing lemma.Lemma 2.21. For any premodel M = (S, F, τ) of a near triangulation T and any injetive linear transfor-mation of the plane φ, the triple M′ = (φ(S), φ(F ), τ) remains a premodel of T .This is useful sine the plane admits many suh transformations.Lemma 2.22. For any two triplets of points in general position (i.e. non-ollinear points), (p1,p2,p3)and (q1,q2,q3), there is an injetive linear transformation of the plane φ suh that φ(pi) = qi, for every
i ∈ {1, 2, 3}.3 The ase of 4-onneted triangulations.3.1 Partiular PremodelsLet T be a near-triangulation. A hord of T is an edge not inident to the outer fae but whih ends are onthe outer fae. A separating 3-yle C is a yle of length 3 suh that some verties of T lie inside C whereasother verties are outside. It is well known that a triangulation is 4-onneted if and only if it ontains noseparating 3-yle.De�nition 3.1. A W-triangulation T is a 2-onneted near-triangulation ontaining no separating 3-yle.Suh a W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1, . . . , ap), (b1, . . . , bq),and (c1, . . . , cr), that satisfy the following onditions (see Figure 9):� a1 = cr, b1 = ap, and c1 = bq.� the paths are non-trivial ( i.e. p ≥ 2, q ≥ 2, and r ≥ 2).� there exists no hord aiaj , bibj, or cicj .This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their diretions, i.e. (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-(cr, . . . , c1)-(bq, . . . , b1).Lemma 3.2. Let T be a W-triangulation and onsider a yle C of T . The subgraph de�ned by C and theedges inside C (aording to the embedding of T ) is a W-triangulation.Proof. Consider the near-triangulation T ′ indued by some yle C of T and the edges inside C. By de�nition,
T has no separating 3-yle and onsequently T ′ does not have any separating 3-yle. It is then su�ientto show that T ′ is 2-onneted, i.e. T does not have any ut vertex. Consider a vertex v of T , all the faesinident to v are triangles, exept at most one (the outer fae). Consequently, there exists a path that ontainsall the neighbors of v, and so T \ v is onneted. ⊓⊔10
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Fig. 9. A 3-bounded W-triangulation T .Property 1 Consider any W-triangulation T 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).(1) If p = 2 (see Figure 10, left), for any triangle BCD, there exists a premodel M = (S, F, τ) of T ontainedin the triangle BCD suh that� every speial point p of M is a point of bq = c1 = [BC], a2 = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is a fan�a2⊳� (d1, . . . , ds, a1)�point (where d1, d2, . . . , ds are inner verties of T ) suh that there isa fae segment inident only if s = 0 (i.e., D is a fan�a2⊳� (a1)).(2) If p > 2 (see Figure 10, right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of T ontained in the polygon ABCD suh that� every speial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], [CD] (that is ontainedin a1 = cr) or [AD] (that is ontained in a2),� A is a path�(a2, . . . , ap)�point.� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is the rossing point of a1 and a2 (with possibly one fae segment inident to it orresponding tothe inner fae of T inident to a1a2),
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AFig. 10. Property 1 for one W-triangulation T with p = 2 and one with p > 2.Note that in both ases, at most one fae segment is inident to D, sine a1a2 is inident to exatly oneinner fae of T . Furthermore sine path�points annot have inident fae segments, there is no fae segmentinident to A,B,C (resp. B,C) when p > 2 (resp. p = 2).11



Given the desription of M we an dedue that almost every speial point is free. A speial point pthat is not free has two inident segments s1 and sk of S suh that there is a direted path in ConstS∪Ffrom s1 to sk. By a geometrial argument this path passes through some other segments of S ∪F . But sinefae segments have out-degree zero in this digraph, these other segments also belong to S and let us denote
(s1,p1, s2,p2, . . . , sk) with k ≥ 3 the onsidered path. Then sine the points pi are on the polygon bounding
M (sine they are speial), and sine pi is an internal point of si and the end of si+1 we have when p = 2 (resp.
p > 2) that {s1, . . . , sk−1} ⊆ {a1,b1, c1} and si /∈ {a1,b1, c1} for i > 1 (resp. {s1, . . . , sk−1} ⊆ {a1,a2,b1, c1}and si /∈ {b1, c1} for i > 1). This implies the following remark.Remark 3.3. When p = 2 (resp. p > 2), every speial point p of M (resp. p 6= B of M) is free. Furthermore,if B is not free (when p > 2) then there is a path in ConstS∪F of the form (b1,p1,a1,p2,bi) or of the form
(bq,p1,a2,p2,bi)Property 1 is su�ient to prove Theorem 2.5. However, in our proof of Property 1, we need Property 2(de�ned below) that is de�ned for some partiular W-triangulations.Consider a W-triangulation T 6= K3 that is 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) suh that
T does not ontain any hord aibj or aicj . Let D ⊆ Vi(T ) be the set of inner verties of T that are adjaentto some vertex ai with i > 1. Sine T is a 3-bounded W-triangulation, the set D indues a onneted graph.Sine T has at least 4 verties, no separating 3-yle, and no hord aiaj , aibj , or aicj , then a1 and a2 (resp.
b1 and b2) have exatly one ommon neighbor in V (T )\{c1} (resp. V (T )\{a1}) that will be denoted a (resp.
d1). Sine a is in D, the set D ∪ {a1} also indues a onneted graph. The adjaent path of T with respetto the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) is the shortest path linking d1 and a1 in T [D ∪ {a1}](the graph indued by D ∪ {a1}). This path will be denoted (d1, d2, . . . , ds, a1). Note that, by de�nition ofthe adjaent path, there exists no edge didj ∈ E(T ) with 2 ≤ i + 1 < j ≤ s, and no edge a1di ∈ E(T ) with
1 ≤ i < s (See Figure 11).
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T Td2a5Fig. 11. the adjaent path of T and the graph Td2a5
.For eah edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], we de�ne Tdxay
as the W-triangulation lyinginside the yle C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr). We now state the property on suhpartiular triangulations that we use to prove Property 1.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr),without any hord aibj or aicj , and whih adjaent path is (d1, d2, . . . , ds, a1). Consider the W-triangulation

Tdxay
for some edge dxay of T .1. If y = p (see Figure 12 left), for any triangle BCD, there exists a premodel M = (S, F, τ) of Tdxapontained in the triangle BCD suh that� every speial point p of M is a point of bq = c1 = [BC], ap = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point, 12



� D is a fan-path�ap⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point.2. If y < p (see Figure 12 right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of Tdxay
ontained in the polygon ABCD suh that� every speial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], a1 = cr = [CD] or [AD](that is ontained in ay),� A is a path�(ay , . . . , ap)�point,� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is a path�(ay , dx, . . . , ds, a1)�point whose inidene sequene is (ay ,dx, . . . ,ds,a1,ay,dx)
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Fig. 12. Property 2 for one W-triangulation Tdxay with y = p and one with y < p.Note that if p > y (resp. p = y), there is no fae segment inident to A,B,C,D (resp. B, C, D). Notethat when y > p, in a premodel (M, S, τ) of Tdxay
satisfying onditions of Property 2, D is an internal pointof the segments dx and ay.With a similar argument as for Remark 3.3 we obtain the following remark.Remark 3.4. Consider a premodel M satisfying Property 2. If y = p, any speial point of M is free. If y < p,any speial point of [bAD] or [DC] is free.Remark 3.5. Aording to Lemmas 2.21 and 2.22, it is su�ient to show that there exists a set of points

B,C,D (or A,B,C,D) suh that onditions of Property 1 (resp. Property 2) hold.Let us now prove these two properties by doing a �rossed� indution.Theorem 3.6. Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
).3.2 Proof of Theorem 3.6We prove Theorem 3.6 by indution on the number of edges of T (for Property 1) or Tdxay
(for Property 2).Our proof is based on a deomposition of 4-onneted triangulations already used in [7,18℄.The following lemma proves the initial step of the indution.Lemma 3.7. Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay

) with at most threeedges. 13



Proof. There is only one W-triangulation with so few edges, the graph K3.This implies that there is no W-triangulation Tdxay
with at most 3 edges, so Property 2 obviously holdsby vauity.For Property 1, we have to onsider all the possibles 3-boundaries of K3. All these 3-boundaries areequivalent. Let V (K3) = {a, b, c} and onsider the 3-boundary (a, b)-(b, c)-(c, a). Given any triangle BCD,let a = CD, b = DB and c = BC. We add a fae segment abc from D to an internal point of [BC]. Thetypes of B,C,D are as follows: B is a path�(b, c)�point, C is a path�(c, a)�point and D is a fan�b⊳� (a)�point,with the fae segment abc inident to it.It is easy to hek that we have de�ned a premodel of K3 that satis�es Property 1. ⊓⊔We prove the indutive step for Property 1 with the following lemma.Lemma 3.8. For any integer m > 3, if Property 1 holds for any W-triangulation T suh that |E(T )| < mand Property 2 holds for any W-triangulation Tdxay

suh that |E(Tdxay
)| < m, then Property 1 holds for anyW-triangulation T suh that |E(T )| = m.Case 1: Proof of Property 1 for a W-triangulation T suh that |E(T )| = m.Let (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T onsidered. We distinguish di�erent asesaording to the existene of a hord aibj or aicj in T :(Case 1.1) either there exists a hord a1bj, j ∈ [2, q − 1],(Case 1.2) or there exists a hord aibj , with i ∈ [2, p− 1] and j ∈ [2, q],(Case 1.3) or there exists a hord aicj , with i ∈ [2, p] and j ∈ [2, r − 1],(Case 1.4) or there is no hord aibj or aick, with i ∈ [1, p], j ∈ [1, q], k ∈ [1, r].Note that all the ases are onsidered sine there is no hord a1bq = crc1, aib1 = aiap, apbj = b1bj ,

a1cj = crcj , apc1 = b1bq or aicr = aia1 and sine a hord aic1 is a hord aibq.Case 1.1: There is a hord a1bj , with 1 < j < q (see Figure 13).
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a1 = crFig. 13. Case 1.1: Chord a1bi.Let T1 (resp. T2) be the subgraph of T that lies inside the yle (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . ,
b1, . . . , bi, a1)). By Lemma 3.2, T1 and T2 are W-triangulations. Sine T has no hord axay, bxby, or cxcy,
(bi, cr)-(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of T1 (resp. T2). Further-more, sine a1a2 /∈ E(T1) (resp. c1c2 /∈ E(T2)), T1 (resp. T2) has less edges than T and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries.If p = 2 we want to onstrut a premodel M = (S, F, τ) of T ontained in a triangle BCD while if p > 2we want it to be ontained in a onave polygon ABCD. In both ases, onsider three points B, C and Dand let E be an inner-point of the segment [CD].Consider a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1 ontained in BCE where the points
B, C and E are respetively a path�(bi, . . . , bq)�point, a path�(c1, . . . , cr)�point, and a fan�bi⊳� (a1, . . .)�point(if E is a fan�bi⊳� (a1)�point, there an be fae segment inident to it).If p = 2 (see Figure 14 left), onsider a premodel M2 = (S2, F2, τ2) of T2 satisfying Property 1 ontainedin BED where the points B, E and D are respetively a path�(b1, . . . , bi)�point, a path�(bi, a1)�point, anda fan�b1⊳� (a1, . . . , )�point. 14



If p > 2 (see Figure 14 right), there exists a point A and a premodel M2 = (S2, F2, τ2) of T2 satisfyingProperty 1 ontained in ABED and where the points A, B, E and D are respetively a path�(a2, . . . , ap)�point, a path�(b1, . . . , bi)�point, a path�(bi, a1)�point, and the rossing-point of a1 and a2.By using Lemma 2.12, if neessary, we an ensure that exept B,E, there is no representative point p1of M1 and p2 of M2 that are exatly at the same position on bi.Note that in both ases (p = 2 and p > 2) the two segments a1 (resp. bi) of S1 and S2 form now a singlesegment a1 (resp. bi). Consider now M = (S, F, τ) where S = S1∪S2 (up to the identi�ation of the two a1sand of the two bis), F = F1∪F2, τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1
\{B,E} (resp.

p ∈ RepS2∪F2
\ {B,E}), and where τ(E) and τ(B) are de�ned as follows: B is now a path�(b1, . . . , bq)�pointand E remains a fan�bi⊳� (a1, . . .)�point (as in M1); this is possible sine around E, we just have prolonged
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Fig. 14. Case 1.1: when p = 2 (left) or p > 2 (right).Sine V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {a1, bi}, every vertex v ∈ V (T ) orresponds to exatlyone segment v in S. Note that E(T ) = E(T1)∪E(T2) and that E(T1)∩E(T2) = {a1bi}. Note also that an edge
uv is in the graph orresponding to E (resp. B) in M if and only if uv is an edge of the graph orrespondingto E (resp. B) in M1 (resp. in M1 or in M2). Thus the edges of T are exatly the edges represented (eitherby a fae segment or in a speial point) in M. Sine F (T ) = F (T1)∪F (T2), sine F (T1)∩F (T2) = ∅, sine nofae segment has been added or removed, sine τ(E) has not been modi�ed and sine B is a path�point (andthus no fae is represented in B), the faes represented in M are exatly the union of the faes representedin M1 and M2, i.e., the faes of T .We know that ConstS1∪F1

and ConstS2∪F2
are ayli. Let Const′1 (resp. Const′2) be the digraph

ConstS1∪F1
(resp. ConstS2∪F2

) where the ar from E to a1 has been replaed by an ar from a1 to E(this orresponds to the fat that E is no longer an end of a1). Sine E is free in M1, it is easy to see that
Const′1 is ayli. Moreover, the internal speial points of bi remain free (there is no direted path fromany segment ending on bi to bi or E sine E is free). Sine E is also free in M2, Const′2 is ayli and theinternal speial points of bi remain free.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to a1(resp. bi, B, E) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪F mustontain at least two verties among a1,bi,B,E. Note that B has no predeessor and thus is not in any yle.Moreover, a1 has no predeessor exept C (that has no predeessor) in Const′1 and any yle ontaining
E ontains a1 and any yle ontaining bi ontains E or B. Consequently, there is no yle ontaining adireted path going from Const′1 to Const′2 through a1,bi,B or E and thus, ConstS∪F is ayli. For any15



internal speial point p of bi that is in M1 (resp. M2), the segments ending in p are all in M1 (resp. all in
M2); thus they remain free in M, sine they were free in M1 (resp. M2).In order to obtain a premodel of T satisfying Property 1, we just realize the speial points of M that aresome inner points of bi (this is possible by Corollary 2.20 sine they are free).Case 1.2: There is a hord aibj , with 1 < i < p and 1 < j ≤ q (see Figure 15).

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

T

Fig. 15. Case 1.2: Chord aibj .If there are several hords aibj , we onsider one whih maximizes j, i.e., there is no hord aibk with
j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the yle (a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr)(resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 3.2, T1 and T2 are W-triangulations. Sine T has no hord axay,
bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-(ai, bj, . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai))is a 3-boundary of T1 (resp. T2). Furthermore, sine b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) hasless edges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. We know that p > 2and we want to onstrut a premodel M = (S, F, τ) of T ontained in some onave polygon ABCD.If i = 2, let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is ontained in a triangle
BCD where the points B, C and D are respetively a path�(ai, bj , . . . , bq)�point, a path�(c1, . . . , cr)�point,and a fan�a2⊳� (a1, . . .)�point.If i > 2 let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is ontained in a onavepolygon ABCD and where the points A, B, C and D are respetively a (a2, . . . , ai)-point, a (ai, bj, . . . , bq)-point, a (c1, . . . , cr)-point, and the rossing-point of a1 and a2.In both ases (i = 2 or i > 2), we want to do a gliding of ai along bj . If bj has no end on a1 or if a1has no end on ai, the onditions of Lemma 2.12 are satis�ed and we an do a gliding of ai on bj inside thepolygon (See Figure 16).Otherwise, we annot use Lemma 2.12, sine there exists a direted path from ai to bj in ConstS1∪F1

.However, onsider the intersetion point I of a1 and ai (I is an end of a1). It is easy to see that any segment
s 6= a1 ending in I does not have any internal speial point. Note also that only ai appears twie in theinidene sequene of I. Consequently, we an prolong a1 after I and keep a �exible segment set S ∪ F withan ayli onstraints digraph. One we have prolonged a1, we an apply Lemma 2.12 to do a gliding of ai on
bj . After that, we erase the part of a1 that is outside the polygon (at this moment, the onstraints digraphis no longer ayli). Let E be the new intersetion of ai and bj . If j < q, we do a prolonging of ai after E(on the other side of bj).We know that ConstS1∪F1

is ayli. Let Const′1 be the new onstraints digraph obtained after theprevious transformation. If j = q, the ends of bq are not internal points of a1 and thus Const′1 is still ayli(we have done a gliding aording to Lemma 2.12). If j < q, ConstS1∪F1
di�ers from ConstS1∪F1

by the fatsthat the ar from B to ai has been removed and that an ar from bj to the new point E, an ar from ai to
E and an ar from ai to its new end have been reated. Sine E has no suessor and sine the new end of
ai has no predeessor, we have not reated any yle. Then, if i = 2, we extend the segment ai after D to anew endpoint A (See Figure 16, top right). Otherwise A is unhanged.Let M2 = (S2, F2, τ2) be a premodel of T2 ontained in ABE and where the points A, B and Eare respetively a path�(ai, . . . , ap)�point, a path�(b1, . . . , bj)�point, and a fan�bj⊳� (ai, . . .)�point. By usingLemma 2.12, we an ensure that exept B,E,A, there is no representative points p1 of M1 and p2 of M2exatly at the same position on ai or bj . 16



Note that in both ases (i = 2 or i ≥ 2), the two segments ai (resp. bj) of S1 and S2 form now a singlesegment ai (resp. bj). Consider now M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�ations of the aisand of the bjs), F = F1 ∪ F2, τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1
\ {A,B,E}(resp. p ∈ RepS2∪F2

\ {A,B,E}), and where τ(A), τ(E) and τ(B) are de�ned as follows: A is now a path�
(a2, . . . , ap)�point, B is now a path�(b1, . . . , bq)�point and E remains a fan�bj⊳� (ai, . . .)�point (as in M2);this is possible sine around E, we just have prolonged bj (resp. ai and bj) when i = q (resp. i < q).
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CFig. 16. Case 1.2: when i = 2 (top) or i > 2 (bottom); in both ases, a model of T1 is represented on the left and amodel of T (obtained from the model of T1 and from a model of T2) is represented on the right.Sine V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {ai, bj}, every vertex v ∈ V (T ) orresponds to exatlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {aibj}. Note also thatan edge uv is in the graph orresponding to E (resp. A) in M if and only if uv is an edge of the graphorresponding to E (resp. A) in M1 (resp. in M1 or M2). Note that an edge uv 6= aibj is represented in B in
M if and only if uv is represented in B in M1 or M2. Thus the edges of T are exatly the edges represented(either by a fae segment or in a speial point) in M. Sine F (T ) = F (T1)∪F (T2), sine F (T1)∩F (T2) = ∅,sine no fae segment has been added or removed, sine τ(E) has not been modi�ed and sine A and B arepath points (and thus no fae is represented in A,B), the faes represented in M are exatly the union ofthe faes represented in M1 and M2, i.e., the faes of T .17



We know that ConstS1∪F1
and ConstS2∪F2

are ayli. Reall that Const′1 is the digraph orrespondingto (S1, F1, τ1) one we have glided ai on bj .When i = 2, we also replae the ar from D to ai by an ar from ai to D (sine D is no longer an end of
ai). If j < q, both ends of ai are segment ends, there is no yle going through ai and thus there is no ylegoing through D, sine D was free in M1; onsequently, Const′1 is ayli. If j = q, the digraph Const′1orresponds to the digraph obtained from ConstS1∪F1

if we extend bq after B and a2 after D. Sine, B and
D are free in M1 (we are in the ases where M1 is ontained in the triangle BCD), it is easy to see that
Const′1 is ayli.Let Const′2 be the digraph obtained from ConstS2∪F2

where the ar from E to ai and the ar from E to
bj have been replaed by an ar from ai to E and an ar from E to bj . Sine E is free in M2, Const′2 isayli.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to ai(resp. bj , A, B, E) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪Fmust ontain at least two verties among ai,bj ,A,B,E. Note that A and B have no predeessors, that thepredeessors of ai are A and a segment end, that the predeessor of E is ai. Consequently, there is no ylegoing through ai,A,B or E and thus ConstS∪F is ayli. For the same reasons as in Case 1.1, the speialpoints belonging to ai and bj remain free.In order to obtain a premodel of T satisfying Property 1, we have to realize some speial points of M.When i > 2, we realize the speial points appearing on ai and bj exept A, B and E; this is possible sinethey are free by Corollary 2.20. If j < q, we realize E (if j = q, E is on the border of the polygon).When i = 2, we �rst realize the speial points appearing on bj exept B and the speial points appearingon [DE] (that is ontained in ai), exept D and E; this is possible sine they are free by Corollary 2.20.If j < q, we realize E. If there is a fae segment inident to D, then D is a fan�a2⊳� (a1)�point and then itis su�ient to prolong a1 to realize it (it is easy to see it keeps ConstS∪F ayli, sine the predeessorsof a1 are its new endpoint and C). Otherwise, sine D is a fan�a2⊳� (a1, d

′
1, . . . , d

′
s′)�point, the �rst step ofthe realization of D (as explained in Proposition 2.14) is done by making a traversing of a2 by the segments

d′
1, . . . ,d

′
s′ along a1 (that has been prolonged). Thus, we realize D inside the polygon ABCD.One these realizations have been done, we have obtained a premodel ontained in a onave polygon

ABCD that satisfy Property 1.Case 1.3: There is a hord aicj , with 1 < i ≤ p and 1 < j < r (see Figure 17).
a1 = cr b1 = ap
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Fig. 17. Case 1.3: Chord aicj .If there are several hords aicj, we onsider one whih maximizes i, i.e., there is no hord akcj with
i < k < r. Let T1 (resp. T2) be the subgraph of T that lies inside the yle (a1, a2, . . . , ai, cj , . . . , cr)(resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 3.2, T1 and T2 are W-triangulations. Sine T has nohord axay, bxby, cxcy or akcj with k > i, (a1, . . . , ai)-(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cj)) is a 3-boundary of T1 (resp. T2). Furthermore, sine b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp.
T2) has less edges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries.We distinguish di�erent ases depending on the values of i and p.Case 1.3.1: i = p (See Figure 18, top left for i = p = 2 and top right for i = p > 2)If i = p = 2,we want to onstrut a premodel M = (S, F, τ) of T ontained in some triangle BCD.Consider three non ollinear points B,C,D and let E be an inner point of the segment [BD]. Let M1 =18
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Fig. 18. Case 1.3: when i = p (top) or i < p (bottom) and when i = 2 (left) or i > 2 (right).
(S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is ontained in the triangle ECD where the points
E, C and D are respetively a path�(ap, cj)�point, a path�(cj , . . . , cr)�point, and a fan�ap⊳� (a1, . . .)�point.If i = p > 2, we want to onstrut a premodel M = (S, F, τ) of T ontained in some onave polygon
ABCD. Consider three non ollinear points A,B,C and let E be an inner point of the segment [AB]. Let
M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is ontained in some onave polygon
ECAD for some point D where the points E, C, A and D are respetively a path�(ap, cj)�point, a path�
(cj , . . . , cr)�point, a path�(a2, . . . , ap)�point and the rossing of a1 and a2.In both ases, let M2 = (S2, F2, τ2) be a premodel of T1 satisfying Property 1 that is ontained in thetriangle BCE where the points B, C and E are respetively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point, and a fan�cj⊳� (ap, . . .)�point.By using Lemma 2.12, we an ensure that exept C,E, there is no representative points p1 of M1 and
p2 of M2 exatly at the same position on cj .Note that the two segments cj (resp. ap) of S1 and S2 form now a single segment cj (resp. ap). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�ation of the cjs and of the aps), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {C,E} (resp. p ∈ RepS2∪F2
\ {C,E}),19



and where τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point and E remains afan�ap⊳� (cj, . . .)�point (as in M2): this is possible sine around E, we just have prolonged ap.Sine V (T ) = V (T1) ∪ V (T2) and V (T1) ∩ V (T2) = {ap, cj}, every vertex v ∈ V (T ) orresponds toexatly one segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {apcj}. Notealso that an edge uv is in the graph orresponding to E (resp. C) in M if and only if uv is an edge of thegraph orresponding to E (resp. C) in M2 (resp. in M1 or in M2). Thus the edges of T are exatly theedges represented (either by a fae segment or in a speial point) in M. Sine F (T ) = F (T1) ∪ F (T2), sine
F (T1)∩F (T2) = ∅, sine no fae segment has been added or removed, sine τ(E) has not been modi�ed andsine C is a path point (and thus no fae is represented in C), the faes represented in M are exatly theunion of the faes represented in M1 and M2, i.e., the faes of T .We know that ConstS1∪F1

and ConstS2∪F2
are ayli. Let Const′1 (resp. Const′2) be the digraph

ConstS1∪F1
(resp. ConstS2∪F2

) where the ar from E to ap has been replaed by an ar from ap to E(this orresponds to the fat that E is no longer an end of ap). For the same reasons as in the proof of Case1.1, Const′1 and Const′2 are ayli and the internal speial points of cj remain free.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to ap(resp. cj , C, E) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪F mustontain at least two verties among ap, cj ,C,E. Note that C has no predeessor and that any yle ontaining
cj (resp. E) must ontain E (resp. ap). Sine ap is not in any yle, ConstS∪F is ayli. For the same reasonsas in the proof of Case 1.1, the internal speial points of cj remain free in M.In order to obtain a premodel of T satisfying Property 1, we just realize the speial points of M that aresome inner points of ci (this is possible by Corollary 2.20 sine they are free).Case 1.3.2: p > i and i = 2 (See Figure 18, bottom left)Sine p > i = 2, we want to onstrut a premodel M = (S, F, τ) of T ontained in some onave polygon
ABCD. Consider three non ollinear points A,B,C and let M2 = (S2, F2, τ2) be a premodel of T2 satisfyingProperty 1 that is ontained in some onave polygon ABCE for some point E and where the points A,
B, C, E are respetively a path�(a2, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point andthe rossing of a2 and cj .Let D be an inner point of [AE] and let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1that is ontained in the triangle ECD where the points E, C and D are respetively a path�(a2, cj)�point,a path�(cj , . . . , cr)�point, and a fan�a2⊳� (a1, . . .)�point.By using Lemma 2.12, we an ensure that exept C,E (note that D is not a representative point of M2),there is no representative points p1 of M1 and p2 of M2 exatly at the same position on cj or a2.Note that the two segments cj (resp. a2) of S1 and S2 form now a single segment cj (resp. a2). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�ation of the cjs and of the a2s), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {C,E} (resp. p ∈ RepS2∪F2
\ {C,E}), andwhere τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point and E remains the rossingpoint of Cj and a2 (as in M2). Note that D remains a fan�a2⊳� (a1, . . .)�point (as in M1): this is possible,sine around D, we just have prolonged a2.Sine V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {a2, cj}, every vertex v ∈ V (T ) orresponds to exatlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {a2cj}. Note also that anedge uv is in the graph orresponding to C in M if and only if uv is an edge of the graph orresponding to

C in M1 or in M2. Note that the edge a2cj is represented by the rossing of a2 and cj in E. Thus the edgesof T are exatly the edges represented in M. Sine F (T ) = F (T1) ∪ F (T2), sine F (T1) ∩ F (T2) = ∅, sineno fae segment has been added or removed and sine C is a path point (and thus no fae is represented in
C), the faes represented in M are exatly the union of the faes represented in M1 and M2, i.e., the faesof T .We know that ConstS1∪F1

and ConstS2∪F2
are ayli. Let Const′1 be the digraph obtained from

ConstS1∪F1
where the ar from D to a2, the ar from E to a2 and the ar from E to cj have been re-spetively replaed by an ar from a2 to D, an ar from a2 to E and an ar from cj to E (this orrespondsto the fat that D is not longer an end of a2 and that E is not longer an end of a2 or cj). Sine ConstS1∪F1is ayli and sine D and E are free, it is easy to see that Const′1 is ayli.The digraph ConstS∪F is the union of Const′1 and ConstS2∪F2

where the two verties orresponding to
a2 (resp. cj , C, E) have been identi�ed. Sine Const1′ and ConstS2∪F2

are ayli, any yle in ConstS∪Fmust ontain verties of ConstS2∪F2
and of Const′1 and thus, there must be at least two verties among

a2, cj ,C,E in any yle of ConstS∪F . 20



Note that C has no predeessor and that E has no suessor, exept possibly a fae segment (that hasno suessor); thus none of them is in any yle. The predeessors of cj and a2 di�erent from C are both in
ConstS2∪F2

(but not in Const′1). Any yle ontaining cj and a2 would be a yle in ConstS2∪F2
, whih isimpossible. Consequently, ConstS∪F is ayli and thus M is a premodel of T . For the same reasons as inthe proof of Case 1.1, the internal speial points of cj and a2 remain free in M.In order to obtain a premodel of T satisfying Property 1, we have to realize some speial points of M.We �rst realize the speial points appearing on cj exept C (they are all on [CE]) and the speial pointsappearing on DE (that is ontained in a2), exept D (note that E is not a speial point). This is possibleby Corollary 2.20.If there is a fae segment inident to D, then D is a fan�a2⊳� (a1)�point and then it is su�ient to extend

a1 to realize it. Otherwise, sine D is a fan�a2⊳� (a1, d
′
1, . . . , d

′
s)�point, the �rst step of the realization of D(aording to the proof of Proposition 2.14) is done by making a traversing of a2 by the segments d′

1, . . . ,d
′
s′along a1 (that has been prolonged) to reate a path�(a1, d

′
1, . . . , d

′
s′)�point. Thus, we realize D inside thepolygon ABCD (this is possible sine D is free).One these realizations have been done, we have obtained a premodel ontained in a onave polygon

ABCD that satisfy Property 1.Case 1.3.3: p > i and i > 2 (See Figure 18, bottom right)Sine p > i > 2, we want to onstrut a premodel M = (S, F, τ) of T ontained in some onave polygon
ABCD. Consider three non ollinear points A,B,C and let M2 = (S2, F2, τ2) be a premodel of T2 satisfyingProperty 1 that is ontained in the onave polygon ABCE for some point E where the points A, B, C,
E are respetively a path�(ai, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point and therossing of ai and cj .Let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is ontained in the onave polygon
AECD for some point D where the points A, E, C and D are respetively a path�(a2, . . . , ai)�point, apath�(ai, cj)�point, a path�(cj , . . . , cr)�point, and the rossing of a1 and a2. By using Lemma 2.12, we anensure that exept C,E,A, there is no representative points p1 of M1 and p2 of M2 exatly at the sameposition on cj or ai.Note that the two segments cj (resp. ai) of S1 and S2 form now a single segment cj (resp. ai). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�ation of the cjs and of the ais), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {A,C,E} (resp. p ∈ RepS2∪F2
\ {A,C,E}),and where τ(A), τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point, A is now a apath�(a2, . . . , ap)�point, and τ(E) remains the rossing of ai and cj (as in M2).Sine V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {ai, cj}, every vertex v ∈ V (T ) orresponds to exatlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {aicj}. Note also thatan edge uv is in the graph orresponding to A (resp. C) in M if and only if uv is an edge of the graphorresponding to A (resp. C) in M1 or in M2. Note that the edge aicj is represented by the rossing of aiand cj in E. Thus the edges of T are exatly the edges represented in M. Sine F (T ) = F (T1)∪F (T2), sine

F (T1) ∩ F (T2) = ∅, sine no fae segment has been added or removed and sine A and C are path points(and thus no fae is represented in A or C), the faes represented in M are exatly the union of the faesrepresented in M1 and M2, i.e., the faes of T .We know that ConstS1∪F1
and ConstS2∪F2

are ayli. Let Const′1 be the digraph obtained from
ConstS1∪F1

where the ar from E to ai and the ar from E to cj have been respetively replaed byan ar from ai to E and an ar from cj to E (this orresponds to the fat that E is not longer an end of aior cj). Sine ConstS1∪F1
is ayli and sine E is free in M1, Const′1 is ayli.The digraph ConstS∪F is the union of Const′1 and ConstS2∪F2

where the two verties orresponding to ai(resp. cj , A, C, E) have been identi�ed. Sine Const1′ and ConstS2∪F2
are ayli, any yle in ConstS∪Fmust ontain verties of ConstS2∪F2

and of Const′1 and thus, there must be at least two verties among
ai, cj ,A,C,E in any yle of ConstS∪F . Note that A,C have no predeessor and that E has no suessor,exept possibly a fae segment (that has no suessor); thus none of them is in any yle. The predeessorsof cj and ai di�erent from A,C are both in ConstS2∪F2

(but not in Const′1). Any yle ontaining cj and
a2 would be a yle in ConstS2∪F2

, whih is impossible. Consequently, ConstS∪F is ayli and thus M isa premodel of T . For the same reasons as in the proof of Case 1.1, the internal speial points of cj and a2remain free in M.In order to obtain a premodel of T satisfying Property 1, we realize the speial points appearing on cj(resp. ai) exept C (resp. A); this is possible by Corollary 2.20, sine they are free.21



Case 1.4: There is no hord aibj , with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no hord aicj , with 1 ≤ i ≤ p and
1 ≤ j ≤ r (see Figure 19).In this ase we onsider the adjaent path (d1, . . . , ds, a1) (see Figure 11) of T with respet to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p and whih minimizes
y. This edge exists sine, by de�nition of the adjaent path, ds is adjaent to some vertex ay with y > 1.The W-triangulation Tdsay

has less edges than T (a1a2 /∈ E(Tdsay
)), and thus Property 2 holds for Tdsay

.
c1 = bq

ay

ds

b1 = ap

cr−1
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cr−1
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ay

e1

a2a1 = cr a2

e2
Tdsay

cr = a1
cr = a1

T1

Fig. 19. Case 1.4: No hord aibj or aicj .Now we distinguish two ases aording to the position of ay, the �rst is when y = 2 and the seond iswhen y > 2.Case 1.4.1: y = 2.In that ase, E(T ) = E(Tdsa2
) ∪ {a1a2} and F (T ) = F (Tdsa2

) ∪ {a1a2ds}.If p = y = 2, for any non-ollinear points B,C,D, there exists a premodel M′ = (S′, F ′, τ ′) of Tdsayontained in the triangle BCD that satis�es Property 2 and where B, C, D are respetively a path�
(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�a2⊳� (d1, . . . , ds) · (ds, a1)�point.Now, we only hange the type of D that is now a fan�a2⊳� (a1, ds, . . . , d1)�point. This is possible sine theinidene sequene of D is (a2, a1, ds, . . . , d1). Note that this modi�ation only adds the edge a1a2 to the setof represented edges and the fae a1a2ds to the set of represented faes. Consequently, M is a premodel of
T and sine there is no fae segment inident to D (sine it was a fan-path point), M satis�es Property 1.If p > 2, for any non-ollinear points A,B,C, onsider a premodel M′ = (S′, F ′, τ ′) of Tdsay

ontained inthe onave polygon ABCE for some point E that satis�es Property 2 and where A, B, C, E are respetivelya path�(b1, . . . , bq)�point, a path�(a2, . . . , ap)�point, a path�(c1, . . . , cr)�point and a path�(a2, ds, a1)�point.We do a traversing of a2 by a1 along ds and then we prolong a1 (See Figure 20); this is possible byLemma 2.13, sine ConstS′∪F ′ is ayli. Let D be the rossing of a1 and a2 and D′ be the rossing of a1 and
ds. After this move, E is the rossing of ds and a2 and is no longer a speial point. We add a fae segment
a1dsa2 from D′ to an inner point of [DE]. Let S (resp. F, τ) denotes the new segment set, (resp. the newfae segment set, the new type funtion). Note that S ∪ F is ontained in the onave polygon ABCD.Note that this modi�ation only adds the edge a1a2 to the set of represented edges and the fae a1a2dsto the set of represented faes. Indeed, there was no fae represented in E and the edges dsa1 and dsa2that were previously represented in E are now respetively realized in D′ and in E. Note that sine wehave transformed a speial point into di�erent simple points (that annot belong to any yle), ConstS∪F isayli and thus M = (S, F, τ) is a premodel of T that satis�es Property 1 (sine D is now the rossing of
a1 and a2).Case 1.4.2: y > 2 (see Figure 21).Let us denote e1, e2, . . . , et the neighbors of ds stritly inside the yle (ds, a1, a2, . . . , ay), going �fromright to left� (see Figure 19). Sine y is minimal we have ei 6= aj , for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the yle (a1, . . . , ay, e1, . . . , et, a1). By Lemma 3.2, T1 is aW-triangulation. Sine the W-triangulation T has no separating 3-yle (ds, a1, ei), (ds, ay, ei) or (ds, ei, ej),there exists no hord a1, ei, ayei or eiej in T1. So (a2, a1)-(a1, et, . . . , e1, ay)-(ay, . . . , a2) is a 3-boundary of22
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Fig. 20. Case 1.4.1: when y = 2 and p > 2.
T1. Finally, sine T1 has less edges than T (a1ds /∈ E(T1)), Property 1 holds for T1 with respet to thementioned 3-boundary.Sine p ≥ y > 2, we want to onstrut a premodel M = (S, F, τ) of T ontained in some onave polygon
ABCD. Consider three non ollinear points A,B,C.If p = y (see Figure 21, left), let E be an inner point of [AB]. Consider a premodel M′ = (S′, F ′, τ ′) of
Tdsay

satisfying Property 2 that is ontained in BCE and where B,C,E are respetively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�ap⊳� (d1, . . . , ds) · (ds, a1)�point.If p > y (see Figure 21, right), there exists a premodel M′ = (S′, F ′, τ ′) of Tdsay
satisfying Property 2that is ontained in a onave polygon ABCE for some E and where A,B,C,E are respetively a path�

(ay, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�(ay, ds, a1)�point. Notethat there is no fae segment inident to E, sine it is a path�point.In both ases, let D be an inner point of [EC] and onsider a premodel M1 = (S1, F1, τ1) of T1 that isontained in AED and where A,E,D are respetively a path�(a2, . . . , ay)�point, path�(ay, e1, . . . , et, a1)�point and a fan�a1⊳� (a2, . . .)�point. By using Lemma 2.12, when y = p (resp. y > p) we an ensure thatexept C,E (resp. A,C,E), there is no representative points p of M′ and p1 of M1 exatly at the sameposition on a1 (resp. a1,ay).Note that the two segments a1 (resp. ay) of S′ and S1 form now a single segment a1 (resp. ay). Considernow M = (S, F, τ) where S = S′ ∪ S1 (up to the identi�ation of the a1s and of the ays), F = F ′ ∪ F1,
τ(p) = τ ′(p) (resp. τ(p) = τ1(p)) for any point p ∈ RepS′∪F ′ \ {A,E} (resp. p ∈ RepS1∪F1

\ {A,D,E})and where τ(A), τ(D), τ(E) are de�ned as follows.If p = y, A remains a path�(a2, . . . , ap)�point as in M1, D remains a fan�a1⊳� (a2, . . .)�point as in M1(this is possible sine around D we have only prolonged a1) and E is a double-fan�ap⊳� (d1, . . . , ds) · ds⊳�
(a1, et, . . . , e1, ap)�point (this is possible, sine the inidene sequene of E is (ap, d1, . . . , ds, a1, et, . . . , e1, ap)and sine there is no fae-segment inident to E).If p > y, A is now a path�(a2, . . . , ap)�point, D remains a fan�a1⊳� (a2, . . .)�point as inM1 (this is possiblesine around D we have only prolonged a1) and E is a fan�ds⊳� (ay, e1, . . . , et, a1)�point (this is possible, sinethe inidene sequene of E is (ds, ay, e1, . . . , et, a1, ds, ay)).Sine V (T ) = V (T1) ∪ V (Tdsay

) and V (T1) ∩ V (Tdsay
) = {a1, ay}, every vertex v ∈ V (T ) orresponds toexatly one segment v in S. Note that E(T1)∩E(Tdsay

) = ∅ and that E(T ) = E(T1)∪E(Tdsay
)∪{dsei | i ∈

[1, t]} (See Figure 21). Any edge uv is represented in D (resp. A) in M if and only if uv is represented in D(resp. A) in M1 (resp. in M′ or in M1). In both ases (y = p or y < p, see Figure 22), the edges representedin E in M are exatly the edges represented in E in M′, the edges represented in E in M1 and the edgesin {dsei | i ∈ [1, t]}. Consequently, the edges represented in M are exatly the edges of T .Note that F (T ) = F (T1) ∪ F (Tdsay
∪ {dsa1et, dsaye1} ∪ {dseiei+1 | i ∈ [1, t − 1]} (See Figure 21). Sinethe type of D has not been hanged, the faes represented in D in M are exatly the faes represented in D23
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Fig. 21. Case 1.4.2: when y = p (left) or when y < p (right).in M1. Sine A is a path�point in M,M′ and M1, no fae is represented in A in M,M′ or M1. In bothases (y = p or y < p, see Figure 22), the faes represented in E in M are exatly the faes represented in
E in M′, the faes represented in E in M1 and the faes in {dseiei+1 | i ∈ [1, t − 1]} ∪ {dsaye1, dsa1eT }.Consequently, the edges represented in M are exatly the edges of T .
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et e1a1Fig. 22. Case 1.4.2: the graph represented by E in M1 (left), M′ (middle) and M (right) when y = p (top) or y < p(bottom).We know that ConstS1∪F1
and ConstS′∪F ′ are ayli. Let Const′1 be the digraph ConstS1∪F1

where thear from E to ay and the ar from D to a1 have been respetively replaed by an ar from ay to E andan ar from a1 to D. If y = p, let Const′2 be the digraph ConstS′∪F ′ where the ar from E to ay has beenreplaed by an ar from ay to E. If y > p, Const′2 = ConstS′∪F ′ . For the same reasons as in the proof ofCase 1.1, Const′1 and Const′2 are ayli and the internal speial points of a1 (resp. a1 and ay) remain freeif y = p (resp. y > p).The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to a1(resp. ay, A, C, E) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪F must24



ontain at least two verties among a1,ay,A,C,E. It is easy to see that a1 (resp. ay ,E) has no predeessorin Const′1 exept E (resp. A, ay). Thus, sine A and C have no predeessor, ConstS∪F is ayli.In order to obtain a premodel of T satisfying Property 1, we have to realize some speial points. If y = p(resp. y < p), we �rst realize the speial points of a1 (resp. a1 and ay) exept D and E; this is possible sinethese points are free. If D is a fan�a1⊳� (a2)�point, then it is su�ient to prolong a2 to realize it. If D is afan�a1⊳� (a2, d
′
1, . . . , d

′
s′)�point, then we realize it aording to Proposition 2.14. The �rst step is a traversingof a1 by d′

1, . . . ,d
′
s′ along a2; thus D is realized inside ABCD.If y > p, we still have to realize the point E that is not neessary free (there may be an intersetionbetween one of the ei and a2). Sine E is a fan�ds⊳� (ay, e1, . . . , et, a1)�point, we �rst do a traversing of ds by

(e1, . . . , et, a1) to obtain a path�(ay, a1, et, . . . , e1)�point E′. We an prolong a1 without hanging the typeof E′; it is possible sine we know that a1 has no predeessor in Const′1. Sine E was free in Const′1, E′ is afree point and then it an be realized.One all these realizations have been done, we have obtained a premodel ontained in a onave polygon
ABCD satisfying Property 1.This ompletes the study of Case 1 and ends the proof of Lemma 3.8. ⊓⊔We now prove the indutive step for Property 2 with the following lemma.Lemma 3.9. For any integer m > 3, if Property 1 holds for any W-triangulation T suh that |E(T )| < mand Property 2 holds for any W-triangulation Tdxay

suh that |E(Tdxay
)| < m, then Property 2 holds for anyW-triangulation Tdxay

suh that |E(T )| = m.Case 2: Proof of Property 2 for any W-triangulation Tdxay
suh that |E(Tdxay

)| = m.Reall that the W-triangulation Tdxay
is a subgraph of aW-triangulation T with a 3-boundary (a1, . . . , ap)-

(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no hord aibj or aicj and its adjaent path is (d1, . . . , ds, a1), with
s ≥ 1. We distinguish two ases: either dxay = d1ap or dxay 6= d1ap.Case 2.1: dxay = d1ap (see Figure 23).

b1 = ap

b2

d1
a1

a2

c1

ds

T1

Fig. 23. Case 2.1: Tdxay = Td1ap .Let T1 be the subgraph of Td1ap
that lies inside the yle (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma3.2, T1 is a W-triangulation. This W-triangulation has no hord bibj , cicj , didj , or a1dj . We onsider twoases aording to the existene of an edge d1bi with 2 < i ≤ q.(1) If T1 has no hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundary of T1.(2) If T1 has a hord d1bi, with 2 < i ≤ q, note that q > 2 and that there annot be a hord b2a1 or b2dj , with

1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 23). So in this ase, (b2, d1, . . . , ds, a1)-

(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sine T1 is a W-triangulation with less edges than Td1ap
(b1b2 /∈ E(T1)), Property 1 holds for T1with respet to at least one of the two mentioned 3-boundaries.We want to onstrut a premodel M of Td1ap

ontained in a triangle BCD. Consider three non-ollinearpoints B,C,D. 25



If we onsider the 3-boundary mentioned in (1) and if q = 2, onsider a inner point E of [BD] and onsidera premodel M′ = (S′, F ′, τ ′) ontained in CDE satisfying Property 1 where C,D,E are respetively a path�
(c1, . . . , cr)�point, a path�(a1, ds, . . . , d1)�point and a fan�b2⊳� (d1, . . .)�point. In that ase, we prolong b2 sothat its new end is B (See Figure 24, left).Otherwise, onsider a premodel M′ = (S′, F ′, τ ′) satisfying Property 1 ontained in a onave polygon
BCDE for some point E where B,C,D,E are respetively a path�(b2, . . . , bq)�point, a path�(c1, . . . , cr)�point, a path�(a1, ds, . . . , d1)�point and the rossing point of d1 and b2 (See Figure 24, right).In both ases, we add a new segment b1 from D to B and a new fae segment b2d1b1 going from E toan inner point of b1.
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Fig. 24. Case 2.1.Consider now M = (S, F, τ) with S = S′ ∪ {b1}, F = F ′ ∪ {b2d1b1}, τ(p) = τ ′(p) for any p ∈
RepS′∪F ′ \ {B,D,E} and where τ(B), τ(D), τ(E) are de�ned as follows. B is a path�(b1, . . . , bq)�point; thisis possible sine its inidene sequene is (b1, . . . ,bq). D is a fan-path�b1⊳� (d1) · (d1, . . . , ds, a1)�point; thisis possible sine its inidene sequene is (b1,d1, . . . ,ds,a1). If in M′, E is the rossing of a1 and a2 or is afan�b2⊳� (d1)�point, then in M, E is the rossing of a1 and a2; it is possible sine if there is a fae segmentinident to E in M′, then d1 or d2 separates it from b2d1b1. If in M′, E is a fan�b2⊳� (d1, d

′
1, . . . , d

′
s′)�point(with s′ ≥ 1), then it remains a fan�b2⊳� (d1, d

′
1, . . . , d

′
s′)�point; this is possible sine its inidene sequene is

(b2,b2d1b1,d1,d
′
1, . . . ,d

′
s′ ,b2). In both ases, it is easy to see that the edges and the faes represented in

E have not been modi�ed.Sine V (Td1ap
) = V (T ) ∪ {b1}, every vertex v ∈ V (T ) orresponds to exatly one segment v in S. Notethat E(Td1ap

) = E(T ) ∪ {b1d1, b1b2}. It is easy to see that the edges represented in B (resp. D) in Mare exatly the edges represented in B (resp. D) in M′ and the edge b1b2 (resp. b1d1). Sine we have notmodi�ed the edges represented in E, the edges represented in M are exatly the edges of Td1ap
. Note that

F (Td1ap
) = F (T ) ∪ {b2d1b1}. Sine we have added a fae segment b2d1b1 and sine we have not hangedthe faes represented in B,D,E, the edges represented in M are exatly the faes of Td1ap

.Sine all the speial points of M appear on [BC], [CD] or [BD], it is easy to see that ConstS∪F is ayliand thus, M is a premodel of Td1ap
that satis�es Property 2.Case 2.2: Tdxay

6= Td1ap
.In this ase we onsider an edge dzaw ∈ E(Tdxay

) suh that dzaw 6= dxay. Among all the possible edges
dzaw we hoose the one that �rst maximizes z and then minimizes w. Suh an edge neessarily exists andatually one an see that dz = dx or dz = dx+1. Indeed, if dx = d1 there is at least one edge d1aw with
w > y, the edge d1ap. If x > 1, it is lear by de�nition of the adjaent path that the vertex dx−1 is adjaentto at least one vertex aw with w ≥ y. By Lemma 3.2, Tdzaw

is a W-triangulation. Sine dxay /∈ E(Tdzaw
),the W-triangulation Tdzaw

has less edges than Tdxay
, and so Property 2 holds for Tdzaw

.26



We distinguish 4 ases aording to the values of z and w.(Case 2.1) z = x and w = y + 1,(Case 2.2) z = x − 1 and w = y,(Case 2.3) z = x and w > y + 1,(Case 2.4) z = x − 1 and w > y.Case 2.2.1: Tdxay
6= Td1ap

, z = x and w = y + 1 (see Figure 25).
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Fig. 25. Case 2.2.1: z = x and w = y + 1.We want to onstrut a premodel M = (S, F, τ) of Tdxay
ontained in some onave polygon ABCD.Consider three non-ollinear points B,C,E.If w = p (See Figure 26, top left), onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw

satisfying Property 2that is ontained in BCE and where the points B,C,E are respetively a path�(b1, . . . , bq)�point, a path�
(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point. We then prolong aw after E to anew point A (sine E is free, it keeps the onstraints digraph ayli).If w < p (See Figure 26, bottom left), onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw

satisfying Prop-erty 2 that is ontained in a onave polygon ABCE for some point A and where the points A,B,C,Eare respetively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�
(aw, dx, . . . , ds, a1)�point.In both ases, we do a gliding of (dx+1, . . . ,ds,a1) on dx; this is possible and it keeps the onstraints di-graph ayli from Lemma 2.12 sine E is free. Let D be the new intersetion point of dx and dx+1, . . . ,ds,a1.Then, we add a segment ay from A to D and we prolong it after D. Then, we add a fae segment dxawayfrom E to an inner point of [AE]. One an easily hek that adding this segment and this fae segment keepsthe onstraints digraph ayli.Consider nowM = (S, F, τ) where S = S′∪{ay}, F = F ′∪{dxaway}, τ(p) = τ ′(p) for any p ∈ RepS′∪F ′\
{E,A} and where τ(A), τ(D) and τ(E) are de�ned as follows. A is now a path�(ay, aw, . . . , ap)�point. D isa path�(ay, dx, . . . , ds, a1)�point; this is possible sine its inidene sequene is (ay,dx, . . . ,ds,a1,ay,dx). If
w = p, E is now a fan�aw⊳� (dx, . . . , d1)�point; this is possible sine its inidene sequene is (aw,dxaway,dx,
. . . ,d1,aw). If w < p, E is now the rossing point of aw and dx; if there is a fae segment inident to E in
M′, either dx or aw separates it from dxaway.Note that in both ases, the edges represented in D and E in M are exatly the edges represented in Ein M′ and the edge dxay. Note that no fae is represented in D in M and that the faes represented in Ein M are exatly the faes represented in E in M′.Sine V (Tdxay

) = V (Tdzaw
) ∪ {ay}, every vertex v ∈ V (T ) orresponds to exatly one segment v in S.Note that E(Tdxay

) = E(Tdzaw
)∪{dxay, away}. Sine dxay (resp. away) are now represented in D (resp. A)and sine the other edges represented in M are exatly the edges represented in M′, the edges representedin M are exatly the edges of Tdxay

. Note that F (Tdxay
) = F (Tdzay

) ∪ {dxaway}. Sine we have added afae segment dxaway and sine we have preserved the faes represented in M′, the faes represented in Mare exatly the faes of Tdxay
.If w < p, we realize all the speial points appearing on aw (they are on [AE]). Then, in both ases, wehave onstruted a premodel M of Tdxay

that satis�es Property 2.27
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Fig. 26. Case 2.2.1: when w = p (top) or w < p (bottom
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Fig. 27. Case 2.2.2: Tdxay 6= Td1ap , z = x − 1 and w = y.Case 2.2.2: z = x − 1 and w = y (see Figure 27).If w = p, we want to onstrut a premodel M = (S, F, τ) of Tdxay
ontained in a triangle BCD.Consider a premodel M′ = (S′, F ′, τ ′) of Tdzay

satisfying Property 2 that is ontained in BCD and wherethe points B,C,A are respetively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�ay⊳�
(d1, . . . , dz) · (dz , dx, . . . , ds, a1)�point. 28



Let M = (S′, F ′, τ) where τ(p) = τ ′(p) for any p ∈ RepS′∪F ′ \ D and let D be a fan-path�ay⊳�
(d1, . . . , dz , dx) · (dx, . . . , ds, a1)�point.By hanging the type of D, we have added the edge dxay to the set of represented edges and the fae
dxdzay to the set of represented faes. Sine V (Tdxay

) = V (Tdzay
), E(Tdxay

) = E(Tdzay
) ∪ {dxay} and

F (Tdxay
) = F (Tdzay

) ∪ {dxdzay}, M is a premodel of Tdxay
.If w > p (See Figure 28), we want to onstrut a premodel M = (S, F, τ) of Tdxay

ontained in a onavepolygon ABCD. Consider three non-ollinear points A,B,C and a premodel M′ = (S′, F ′, τ ′) of Tdzaysatisfying Property 2 that is ontained in a onave polygon ABCE for some point E and where the points
A,B,C,E are respetively a path�(ay, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�pointand a path�(ay, dz , dx, . . . , ds, a1)�point.We do a gliding of (dx, . . . ,ds,a1) on ay; by Lemma 2.12, this is possible and it keeps the onstraintsdigraph ayli, sine E is free. Let D be the new intersetion point of ay and dx, . . . ,ds,a1 (note that Dis free). Note that sine E is not an end of dz , by hoosing D lose enough from E, one an ensure that
(dx) and dz interset. We prolong dx after D suh that dx and dz interset in some point D′. If neessary,we extend dz and dx in suh a way that D′ is not an end of dz or dx. Note that sine D is free and sinethe rossing between dx and dz is not a speial point, when extending dx, we keep the onstraints digraphayli. Then, we add a fae segment dxdzay from D′ to an inner point of [ED] (that is ontained in ay).Let M = (S, F, τ) with S = S′, F = F ′∪dxdzay, where for any representative point p ∈ RepS′∪F ′ \{E},
τ(p) = τ(p′) and where τ(D), τ(D′) and τ(E) are de�ned as follows: D is a path�(ay, dx, . . . , ds, a1)�point,
D′ is the rossing point of dx and dz and E is now the rossing point of dz and ay.
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Fig. 28. Case 2.2.2: when y < p.Sine V (Tdxay
) = V (Tdzay

), every vertex v ∈ V (Tdxay
) orresponds to exatly one segment v in S. Notethat E(Tdxay

) = E(Tdzay
) ∪ {dxay}. In M′, the edges {didi+1 | i ∈ [x, s − 1]} ∪ {dxdz, dzay, dsa1} arerepresented in E. In M, the edges represented in D are {didi+1 | i ∈ [x, s − 1]} ∪ {dxay, dsa1}. Sine theedges dxdz and dzay are represented respetively in D′ and E in M, the edges represented in M are exatlythe edges of Tdxay

. Note that F (Tdxay
) = F (Tdzay

)∪{dxdzay}. Sine no fae is represented in E in M′ or in
D in M and sine we have added a fae segment dxdzay, the faes represented in M are exatly the faesof Tdxay

.Sine all the speial points of M appear on AC, BC, CD or BD, M is a premodel of Td1ap
that satisfyProperty 2.Case 2.2.3: z = x and w > y + 1 (see Figure 29). 29
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ayFig. 29. Case 2.2.3: Tdxay 6= Td1ap , z = x and w > y + 1.Let us denote e1, e2, . . . , et the neighbors of dx stritly inside the yle (dx, ay, . . . , aw), going �from rightto left� (see Figure 29). Sine there is no hord aiaj we have t ≥ 1. Furthermore w being minimal we have

ei 6= aj , for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the yle

(ay, . . . , aw, e1, . . . , et, ay). By Lemma 3.2, T1 is a W-triangulation. Sine the W-triangulation Tdxay
has noseparating 3-yle (dx, aw, ei) or (dx, ei, ej), there exists no hord awei or eiej in T1. With the fat that t ≥ 1,we know that (et, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sine T1 has less edges than

Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 with respet to the mentioned 3-boundary.We want to onstrut a premodel M = (S, F, τ) of Tdxay

ontained in some onave polygon ABCD.Consider three non-ollinear points B,C,E.If w = p (See Figure 30, top left), onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw
satisfying Property 2that is ontained in BCE and where the points B,C,E are respetively a path�(b1, . . . , bq)�point, a path�

(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point. We then prolong aw after E to anew point A (sine E is free, it keeps the onstraints digraph ayli).If w < p (See Figure 30, bottom left), onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw
satisfying Prop-erty 2 that is ontained in a onave polygon ABCE for some point A and where the points A,B,C,Eare respetively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�

(aw, dx, . . . , ds, a1)�point.In both ases, as in Case 2.2.1, we do a gliding of (dx+1, . . . ,ds,a1) on dx. Let D be the new intersetionpoint of dx and dx+1, . . . ,ds,a1. Sine we have done exatly the same moves as in Case 2.2.1, for the samereasons as before, the onstraints digraph is still ayli after these modi�ations.Consider now an inner point F of [AD] and a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1that is ontained in AEF and where the points A,E,F are respetively a path�(ay, . . . , aw)�point, a path�
(aw, e1, . . . , et)�point and a fan�ay⊳� (et, . . .)�point. By using Lemma 2.12, we an ensure that when w < p,there are no representative points p1 of M1 and p2 of M′ exatly at the same position on aw , exept A and
E. Then, we prolong ay after F in suh a way that D is now an inner point of ay (See Figure 30, right). Wenow add a fae segment ayetdx from F to an inner point of [DE] (that is ontained in dx).Note that the two segments aw of S1 and S′ form now a single segment aw. Consider now M = (S, F, τ)where S = S′ ∪ S1 (up to the identi�ation of the aws), F = F ′ ∪ F1 ∪ {ayetdx}, τ(p) = τ ′(p) (resp.
τ(p) = τ1(p)) for any p ∈ RepS′∪F ′ \ {A,E} (resp. p ∈ RepS1∪F1

\ {A,E,F}) and where τ(A), τ(D), τ(E)and τ(F) are de�ned as follows. A is now a path�(ay, . . . , ap)�point; this is possible, sine its inidenesequene is (ay , . . . ,aw, . . . ,ap). As in Case 2.2.1, D is now a path�(ay, dx, . . . , ds, a1)�point.If w < p, E is a fan�dx⊳� (aw, e1, . . . , et)�point; this is possible sine its inidene sequene is (dx,aw, e1,
. . . , et,dx,aw). If w = p, E is a double-fan�aw⊳� (d1, . . . , dx) · dx⊳� (et, . . . , e1, aw)�point; this is possible sineits inidene sequene is (aw,d1, . . . ,dx, et, . . . , e1,aw).If F is a fan�ay⊳� (et)�point in M1, then F is the rossing point of ay and et in M; this is possible sineif there was a fae segment inident to F in M1, then et separates it from ayetdx in M. Otherwise, thereis no fae segment inident to F and F remains a fan�ay⊳� (et, . . .)�point in M (as in M1); this is possiblesine its inidene sequene is (ay ,ayetdx, et, . . . , ay).Sine V (Tdxay

) = V (Tdxaw
) ∪ V (T1), every vertex v ∈ V (Tdxay

) orresponds to exatly one segment v in
S. Note that E(Tdxay

) = E(Tdxaw
)∪E(T1)∪{dxay}∪ {dxei | i ∈ [1, t]} (See Figure 29). Note that the edges30
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Fig. 30. Case 2.2.3 (z = x and y > w + 1): when w = p (top) or w < p (bottom).
represented in F in M are the edges represented in F in M1 and that an edge uv is represented in A in Mif and only if uv is represented in A in M′ or M1. One an hek that in both ases (w = p or w < p), theedges represented in D and E in M are exatly the edges represented in E in M′, in E in M1 and the edgesin {dxay} ∪ {dxei | i ∈ [1, t]}(See Figure 31). Note that F (Tdxay

) = F (Tdxaw
) ∪ F (T1) ∪ {ayetdx, dxawe1} ∪

{dxeiei+1 | i ∈ [1, t−1]} (See Figure 29). Note that the faes represented in F in M are the faes representedin F in M1 and that no fae is represented in A (resp. D) in M′,M1 or M (resp. M). One an hek thatno fae is represented in E in M1 and that the faes represented in E in M are exatly the faes representedin E in M′, and the faes in {dxawe1} ∪ {dxeiei+1 | i ∈ [1, t − 1]} (See Figure 31). Sine we have added afae segment ayetdx, the edges represented in M are exatly the edges of Tdxay
.31
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dxFig. 31. Case 2.2.3: the graphs represented in E in M1 (top left), in E in M′ when w = p (top middle), in E in M′when w < p (top right), in D in M (bottom left), in E in M when w = p (bottom middle) and in E in M when
w < p (bottom right).We know that ConstS1∪F1

is ayli. Let Const′1 be the digraph obtained from ConstS1∪F1
, where thear from E to aw and the ar from F to ay have been respetively replaed by an ar from aw to E and anar from ay to F. Sine E and F are free in M1, Const′1 is ayli.We know that ConstS′∪F ′ is ayli. Let Const′2 be the digraph obtained from ConstS′∪F ′ , where thereare two new verties ay and D, where the ars from E to di, i ∈ [x + 1, s] and from E to a1 have beenrespetively replaed by some ars from D to di, i ∈ [x + 1, s] and from D to a1 and where there is an arfrom dx (resp. ay) to D. We also add a new vertex I representing the end of ay and an ar from I to ay.Sine E is free in M′ and sine ay has only one predeessor (I) that has no predeessor in Const′2, D is freein Const′2 and thus, Const′2 is ayli.Note that ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to ay (resp.

aw, E, A) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪F must ontainstwo verties among aw,ay,A,E. Sine A has no predeessor, sine A is the only predeessor of aw (resp.
ay) in Const′1 and sine the only predeessor of E in Const′1 is aw , there is no yle going from Const′1 to
Const′2 through any of these points and thus ConstS∪F is ayli. For the same reasons as in the proof ofCase 1.1, the speial points belonging to aw when w < p remain free in ConstS∪F .If w < p, we realize all the speial points appearing on aw (they are on [AE]), exept A (but we realize
E). Then, in both ases, we have onstruted a premodel M of Tdxay

that satis�es Property 2.Case 2.2.4: z = x − 1 and w > y (see Figure 32).
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Fig. 32. Case 2.2.4: Tdxay 6= Td1ap , z = x − 1 and w > y.Let us denote e1, e2, . . . , et the neighbors of dz stritly inside the yle (dz , dx, ay, . . . , aw, dz), going �fromright to left� (see Figure 32). Sine z is maximal there is no edge dxaw, so t ≥ 1. Let us denote f1, . . . , fu the32



neighbors of dx stritly inside the yle (dx, ay, . . . , aw, dz), going �from right to left� (see Figure 32). Notethat f1 = et and that w being minimal, there is no edge dzay, so u ≥ 1.Sine w is minimal (resp. z is maximal) we have ei 6= aj (resp. fi 6= aj), for all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u)and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the yle (ay, . . . , aw, e1, . . . , et, f2, . . . , fu,

ay). By Lemma 3.2, T1 is a W-triangulation. Sine the W-triangulation Tdxay
has no separating 3-yle

(dz , aw, ei), (dz , ei, ej), (dx, fi, fj), or (dx, fi, ay), there exists no hord awei, eiej , fifj , or fiay in T1. Withthe fat that t ≥ 1 and u ≥ 1, we know that (f1, f2, . . . , fu, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundaryof T1. Finally, sine T1 has less edges than Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 with respet to thementioned 3-boundary.We want to onstrut a premodel M = (S, F, τ) of Tdxay

ontained in some onave polygon ABCD.Consider three non-ollinear points B,C,E.If w = p (See Figure 33, top), onsider a premodel M′ = (S′, F ′, τ ′) of Tdzaw
satisfying Property 2that is ontained in BCE and where the points B,C,E are respetively a path�(b1, . . . , bq)�point, a path�

(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dz) · (dz, dx, . . . , ds, a1)�point. We then prolong aw after E toa new point A (sine E is free, it keeps the onstraints digraph ayli).If w < p (See Figure 33, bottom), onsider a premodel M′ = (S′, F ′, τ ′) of Tdzaw
satisfying Prop-erty 2 that is ontained in a onave polygon ABCE for some point A and where the points A,B,C,Eare respetively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�

(aw, dz, dx, . . . , ds, a1)�point.In both ases, as in Cases 2.2.1 and 2.2.3, we do a gliding of (dx+1, . . . ,ds,a1) on dx. Let D be the newintersetion point of dx and dx+1, . . . ,ds,a1. Sine we have done exatly the same moves as in previousases, for the same reasons as before, the onstraints digraph is still ayli after these modi�ations.If u = 1 (See Figure 33, left), let F be an inner point of [AD] and onsider a premodel M1 = (S1, F1, τ1)of T1 satisfying Property 1 that is ontained in AEF and where the points A,E,F are respetively a path�
(ay, . . . , aw)�point, a path�(aw, e1, . . . , et)�point and a fan�ay⊳� (f1, . . .)�point. Then, we prolong ay after Fin suh a way that D is an inner point of ay. We now add a fae segment f1aydx from F to an inner pointof [DE] (that is ontained in dx).If u > 1 (See Figure 33, right), onsider a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1 that isontained in a onave polygon DAEF for some point F and where the points A,D,E,F are respetivelya path�(ay, . . . , aw)�point, a path�(f2, . . . , fu, ay), a path�(aw, e1, . . . , et)�point and the rossing point of
et = f1 and f2. We prolong ay after D. We now add a fae segment f1f2dx from F to an inner point of [DE](that is ontained in dx).By using Lemma 2.12, we an ensure that when w < p, there are no representative points p1 of M1 and
p2 of M′ exatly at the same position on aw, exept A and E.Note that the two segments aw of S1 and S′ form now a single segment aw. If u = 1 (resp. u > 1),onsider now M = (S, F, τ) where S = S′ ∪ S1 (up to the identi�ation of the aws), F = F ′ ∪ F1 ∪
{ayetdx} (resp. F = F ′ ∪ F1 ∪ {f1f2dx} ) and where τ is de�ned as follows. For any p ∈ RepS′∪F ′ \ {A,E}(resp. p ∈ RepS1∪F1

\ {A,D,E,F}), τ(p) = τ ′(p) (resp. τ(p) = τ1(p)) and τ(A), τ(D), τ(E) and τ(F)are de�ned as follows. A is now a path�(ay, . . . , ap)�point; this is possible, sine its inidene sequene is
(ay , . . . ,aw, . . . ,ap). D is now a path-fan�(dx, . . . , ds, a1) · dx⊳� (ay, fu, . . . , f2)�point; this is possible sine itsinidene sequene is (dx, . . . ,ds,a1,ay, fu, . . . , f2,dx,ay).If w < p, E is a fan�dz⊳� (aw, e1, . . . , et, dx)�point; this is possible sine its inidene sequene is (dz ,aw, e1,
. . . , et,dx,dz ,aw). If w = p, E is a double-fan�aw⊳� (d1, . . . , dz) ·dz⊳� (dx, et, . . . , e1, aw)�point; this is possiblesine its inidene sequene is (aw ,d1, . . . ,dz ,dx, et, . . . , e1,aw).If F is the rossing of f1 and f2 in M1, then F remains the rossing of f1 and f2 in M; this is possible,sine if there was a fae segment inident to F in M1, then either f1 or f2 separates it from f1f2dx in M.If F is a fan�ay⊳� (f1)�point in M1, then F is the rossing point of ay and f1 in M; this is possible sine ifthere was a fae segment inident to F in M1, then f1 separates it from ayetdx in M. Otherwise, there isno fae segment inident to F and F is a fan�ay⊳� (f1, . . .)�point in M1; it remains a fan�ay⊳� (f1, . . .) in M;this is possible sine its inidene sequene is (ay,ayf1dx, f1, . . . ,ay).Sine V (Tdxay

) = V (Tdzaw
) ∪ V (T1), every vertex v ∈ V (Tdxay

) orresponds to exatly one segment v in
S. Note that E(Tdxay

) = E(Tdzaw
) ∪ E(T1) ∪ {dxay, etdx} ∪ {dxfi | i ∈ [2, u]} ∪ {dzfi | i ∈ [1, t]} (SeeFigure 32). Note that the edges represented in F in M are the edges represented in F in M1 and that anedge uv is represented in A in M if and only if uv is represented in A in M′ or M1. One an hek that33
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Fig. 33. Case 2.2.4: M = (S, F, φ).in any ase, the edges represented in D and E in M are exatly the edges represented in E in M′, in D in
M1, in E in M1 and the edges in {dxay, dxet} ∪ {dxfi | i ∈ [2, u]} ∪ {dzfi | i ∈ [1, t]} (See Figure 34 when
w = p and Figure 35 when w < p).Note that F (Tdxay

) = F (Tdxaw
)∪F (T1)∪{awdze1, dxdzet, dxayfu}∪{dzeiei+1 | i ∈ [1, t−1]}∪{dxfifi+1 |

i ∈ [1, u − 1]} (See Figure 32). Note that the faes represented in F in M are the faes represented in F in
M1 and that no fae is represented in A in M′,M1 or M. One an hek that no fae is represented in Dor E in M1 and that the faes represented in D and E in M are exatly the faes represented in E in M′,and the missing faes exept ayf1dx if u = 1 and f1f2dx if u > 1 (See Figure 34 when w = p and Figure 34when w < p). Sine we have added a fae segment ayf1dx if u = 1 and a fae segment f1f2dx, the edgesrepresented in M are exatly the edges of Tdxay

.We know that ConstS1∪F1
is ayli. Let Const′1 be the digraph obtained from ConstS1∪F1

, where thear from E to aw has been replaed by an ar from aw to E and where the ar from F to ay (resp. from D34
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Fig. 34. Case 2.2.4 when w = p: the graphs represented in D in M1 (top left), in E in M1 (top middle), in E in M′(top right), in D in M (bottom left) and in E in M (bottom right).
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ay fu f2Fig. 35. Case 2.2.4 when w < p: the graphs represented in D in M1 (top left), in E in M1 (top middle), in E in M′(top right), in D in M (bottom left) and in E in M (bottom right).to ay) has been replaed by an ar from ay to F (resp. ay to D) when u = 1 (resp. u > 1). Sine E and F(resp. D) are free in M1, Const′1 is ayli.We know that ConstS′∪F ′ is ayli. Let Const′2 be the digraph obtained from ConstS′∪F ′ , where thereare two new verties ay and D, where the ars from E to di, i ∈ [x + 1, s] and from E to a1 have beenrespetively replaed by some ars from D to di, i ∈ [x + 1, s] and from D to a1 and where there is an arfrom dx (resp. ay) to D. We also add a new vertex I representing the end of ay and an ar from I to ay.Sine E is free in M′ and sine ay has no predeessor in Const′2, D is free in Const′2 and thus, Const′2 isayli.Note that ConstS∪F is the union of Const′1 and Const′2 where the two verties orresponding to ay(resp. aw, E, A, D) have been identi�ed. Sine Const′1 and Const′2 are ayli, any yle of ConstS∪F mustontains two verties among aw,ay ,A,D,E. Sine A has no predeessor in Const′1, sine A is the onlypredeessor of aw (resp. ay) in Const′1 and sine the only predeessor of E (resp. D) in Const′1 is aw (resp.
ay), there is no yle going from Const′1 to Const′2 through any of these points and thus ConstS∪F is ayli.For the same reasons as in the proof of Case 1.1, the speial points belonging to aw if w < p remain free in
M.If w < p, we realize all the speial points appearing on aw (they are on [AE]), exept A (but we realize
E). Then, we have to partially realize D in order to obtain a path�(ay, dx, . . . , ds, a1)�point. If u = 1, we aredone. Otherwise, by using Lemma 2.13, we do a traversing of dx by (fu, . . . , f2) along ay, we add the faesegments orresponding to dxfuay and dxfifi+1 for i ∈ [2, u−1], as explained in the proof of Proposition 2.14and then we realize the path�(ay, fu, . . . , f2)�point.One these realizations have been done, we have onstruted a premodel M of Tdxay

that satis�esProperty 2.This ompletes the study of Case 2 and ends the proof of Lemma 3.9. ⊓⊔35



4 Proof of Theorem 2.5We prove that every triangulation T has a full model (S, F ) by indution on the number k of separating3-yles in T . If k = 0 the triangulation T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a), where a, band c are the verties on its outer-boundary. Then Property 1 provides us a premodel M = (S, F, τ) of Tand by Corollary 2.18 we obtain a full model (S′, F ′) of T .If k ≥ 1, let C = (a, b, c) be a 3-yle suh that the triangulation T ′ indued by the verties on and inside
C does not ontain any separating 3-yle. Let T1 be the triangulation obtained by removing all the vertiesthat lie stritly inside the yle C. Let T2 be the subgraph of T indued by all the verties of T that liestritly inside the yle C. By de�nition of C, T2 is either (A) a single vertex v or (B) a W-triangulation(see Figure 36). In T1, the yle C delimits a fae and is no more a separating 3-yle. Sine T1 has one

a

b

c

a

b

c

Fig. 36. The ases (A) and (B).separating 3-yle less than T , the indution hypothesis implies that T1 admits a full model M = (S, F ).Sine abc is an inner fae of T1 there is a orresponding fae segment, say acb, in F and let respetively
B and C be its �at end and its ross end. Note that there might be an other fae segment inident to C.If it exists we denote it acd sine it would orrespond to a fae acd adjaent to the edge ac in T1. Sine Fis non-interfering we know that (a) or (c) separate acb and acd in distint half-planes. Here we assume,without loss of generality that the line (a) separates them. Now let ǫ > 0 be a real suh that for everyrepresentative point p ∈ RepS∪F \ {B,C} we have dist(p,acb) > ǫ, and let the region Rǫ be the set ofpoints at distane at most ǫ from acb. The de�nition of ǫ implies that (1) the only segments interseting
Rǫ are a, b, c, acb and eventually acd if it exists; and that (2) the endpoints of a, b and c (resp. the �atend of acd) are not in Rǫ. Sine there is no inner fae abc in T we remove acb from F and we add somesegments and fae segments in Rǫ to obtain a full model of the whole T .
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Fig. 37. Case (A): Modi�ations inside Rǫ.Case (A): T2 is a single vertex v. Sine acb and acd (if it exists) are non-interfering, it is easy to draw inthe region Rǫ a segment v that only interset a, b, and c; and three fae segments vba, vcb, and acv suh36



that the set {vba,vcb,acv,acd} is non-interfering (see Figure 37). Now it is lear that from the model Mof T1 we have added a segment for v, three rossings for va, vb and vc, removed the fae segment of acb, andadded the fae segments of vba, acv and vcb; thus we have a full model of T .
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Fig. 38. Case (B): Modi�ations inside Rǫ.Case (B): T2 is a W-triangulation. Let a1, a2, . . . , ap be the neighbors of a inside the yle (a, b, c) goingfrom c to b exluded. Similarly let b1, b2, . . . , bq (resp. c1, c2, . . . , cr) be the neighbors of b (resp. c) inside theyle (a, b, c) going from a to c (resp. from b to a) exluded. It is lear that a1 = cr, b1 = ap, and c1 = bq.Furthermore, sine there is no separating 3-yle inside C, we have that:� p, q, and r ≥ 2.� (a1, a2, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a yle, thus T2 is a W-triangulation.� T2 has no hord axay, bxby, or cxcy with y > x + 1.Thus T2 is a W-triangulation 3-bounded by (a1, a2, . . . , ap)-(b1, b2, . . . , bq)-(c1, c2, . . . , cr). Here we hoosethis partiular 3-boundary beause of the assumption that (a) separates acb and acd (if it exists). Wenow apply Property 1 with respet to this 3-boundary and this implies that if p = 2 (resp. p > 2) then
T2 has a premodel M′ = (S′, F ′, τ ′) inside the triangle BCD (resp. the polygon ABCD), where A is apoint of a ∩Rǫ (See Figure 38) and D is an internal point of [A,B] (resp. a point stritly inside ABC). If
p = 2 we prolong b1 = [BD] aross D until reahing A and note that sine D is free, then the onstraintsdigraph of M′ remains ayli (f. Lemma 2.9). Note also that aording to the de�nition of Rǫ, the fullmodel M and the premodel M′ only interset at A, B and C. Now we are going to merge M and M′in order to onstrut a premodel M∗ = (S∗, F ∗, τ∗) of the whole T . To do this, let S∗ = S ∪ S′ and
F ∗ = (F \ acb) ∪ F ′ ∪ {a1a2a,ab1b,bc1c}; where a1a2a goes from D to a point of [A,C], ab1b goesfrom A to a point of b ∩ Rǫ, and bc1c goes from B to a point of c ∩ Rǫ (See Figure 38). Observe that
F ∗ is non-interfering, in partiular we see that a1a2a does not interfere with another fae segment f at D,sine f would be inside ABCD. We now de�ne τ∗ as follows. Let A be a fan�a⊳� (ap, . . . , a2)�point, let Bbe a fan�b⊳� (bq, . . . , b1)�point, and let C be a fan�c⊳� (a, cr, . . . , c1)�point. If p > 2 the point D remains therossing point of a1 and a2, even with its new inident fae segment. If p = 2 the point D was either afan�a2⊳� (d1, . . . , ds, a1)�point (for some verties d1, . . . , ds) or a fan�a2⊳� (a1)�point. In the �rst ase let Dbe a fan�a2⊳� (a1, ds, . . . , d1)�point (possible sine it has no inident fae segment in M′). In the seond aselet D be the rossing point of a1 and a2 with one or two inident fae segments. Note that in both asethe graph orresponding to D remains unhanged. For the other representative points of M∗ let their typeremain as in M or M′.We now verify that M∗ is a premodel of T .- It is lear that S∗∪F ∗ is unambiguous and we show here that ConstS∗∪F∗ is ayli. Indeed this digrapharises from the union of ConstS∪F and ConstS′∪F ′ (where S′ has a segment a2 prolonged until A when

p = 2) by adding the verties orresponding to the new fae segments and their �at end point, and adding37



the ars inident to these verties. But sine the fae segments have out-degree zero in the onstraintsdigraphs, there is no yle in ConstS∗∪F∗ passing through a fae segment. Thus a yle would be in theunion of ConstS∪F and ConstS′∪F ′ . These two digraph being ayli, this yle should suessively passthrough a segment of ConstS′∪F ′ , through one of the points A, B and C, and through a segment of
ConstS∪F . But this is impossible sine in ConstS′∪F ′ the only points that interset M, A, B and C,have in-degree zero.- Sine V (T ) is the disjoint union of V (T1) and V (T2) we have that a vertex v ∈ V (T ) if and only if
v ∈ S∗.- Note that E(T ) = E(T1)∪E(T2)∪ {aa1 = acr} ∪ {aa2, . . . , aap}∪ {bb1, . . . , bbq}∪ {cc1, . . . , ccr}, that Awas not a representative point in M (resp. was either an end point or a path�(a2, . . . , ap)�point in M′)and that now it is a fan�a⊳� (ap, . . . , a2)�point, that B was a �at fae segment end in M (resp. was a path�
(b1, . . . , bq)�point in M′) and that now it is a fan�b⊳� (bq, . . . , b1)�point that C was the rossing point of aand c in M (resp. was a path�(c1, . . . , cr)�point in M′) and that now it is a fan�c⊳� (a, cr, . . . , c1)�point.Sine the other representative points remain with the same orresponding graphs, one an easily hek(see Figure 39) that E(T ) is exatly the set of edges indues by M∗.- Note that F (T ) = (F (T1) \ acb) ∪ F (T2) ∪ {a1a2a, ab1b, bc1c} ∪ {aaiai+1 | 2 ≤ i < p} ∪ {bbibi+1 | 1 ≤
i < p} ∪ {ccici+1 | 2 ≤ i < p} ∪ {accr}. Aording to the fae segments added in F ∗ (the ones in
F ∗ \ (F ∪F ′)), the faes indued by A, B and C, and sine the other representative points remain withthe same orresponding graphs, one an easily hek (see Figure 39) that F (T ) is exatly the set of faesindued by M∗.
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Fig. 39. The graphs orresponding to A, B and C in M (left), M′ (enter) and M∗ (right).Finally sine T has a premodel M∗, Corollary 2.18 implies that it has a full model, proving Theorem 2.5.
⊓⊔5 ConlusionWest onjetures that every planar graph is the intersetion graph of segments using only four diretions[17℄. Furthermore if the segment set is unambiguous, parallel segments indue a stable set, and the fourdiretions would orrespond to a four oloring of the planar graph. This onjeture is true for some familiesof planar graphs. Indeed, every bipartite planar graph has a representation with two diretions [9,3,5℄ andevery triangle free planar graph (that is 3-olorable by Grötzsh's theorem) has a representation with threediretions [1℄.De Fraysseix and Ossona de Mendez proposed [4℄ the following generalization of Sheinerman's Conje-ture: �Every planar linear hypergraph is the intersetion hypergraph of segments in the plane.�, where a linearhypergraphs is an hypergraph suh that two hyperedges interset in at most one vertex. This generalizationdoes not holds sine the seond author found a ounterexample [8℄.In our proof we need the onstraints digraph to be ayli in order to perform loal perturbations on thesegment set, like gliding or traversing. We wonder whether this ondition is neessary: is it always possible38



to do loal perturbations in any �exible segment set R (with possibly yles in ConstR)? The �exibility of
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