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Abstract

Some of the most important classical tools of combinatorial optimization, such as matching
or matroid theory, have been recently used for approximating solutions to NP-hard problems.
The course wishes to introduce the tools themselves, and to show how they act in recent
approximation algorithms.

The purpose of this handout is to provide “warming up” exercises about the title-subject,
at the same time introducing some preliminaries of the course. I presuppose basic definitions
about graphs that can be easily looked up in any introductory course or book, for instance
in the text-books suggested below. It is usually a good hint for the solution to use one of the
immediately preceding exercises, or else we sometimes explicit other hints as well.

Some of these exercises will be restated and used during the course, and the full solution
will be given if the result of an exercise is used.

Advised preliminaries: Shortest paths in digraphs, network flows (Ford and Fulkerson’s
algorithm, max flow min cut theorem, min cost flows), bipartite matchings, introduction to
complexity theory (P, NP, coNP, PTAS, APX-complete, approximation ratio . . .) Kruskal’s
algorithm for minimum weight spanning trees, definitions and basic facts about matroids, lin-
ear programming (simplex method, duality theorem), similar basic knowledge of first courses
of graph theory or operations research.

We will fully include the necessary knowledge about non-bipartite matchings (see “1.”)
and the generalization we use (T -joins, see “5.”), but if you know something about them
beforehand, you will digest these more easily.

Have fun with the exercises !

Key-words: matchings, matroids, packing and covering, linear programming, polyhe-
dral combinatorics, minmax theorems, good characterization, algorithmic proofs, edge-
coloring, TSP (travelling salesman problem), T -joins, complexity theory, connectivity,
ear-theorems, matroid intersection, P, NP, RP, coNP, NP-complete, approximation
algorithms, APX-hard.
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Textbooks:

Korte, Vygen: Combinatorial Optimization, New Edition, (Springer 2018).

Lovász: Combinatorial Problems and Exercises (Akadémiai Kiadó)

Lovász, Plummer: Matching Theory (Akadémiai Kiadó)

Schrijver: Combinatorial Optimization (Springer)

Shmoys, Williamson : The Design of Approximation algorithms (2011)

Articles related to the last part of the course:

Rico Zenklusen, A 1.5-Approximation for path TSP (May 2018) https://arxiv.org/abs/1805.04131

Sebő, Vygen: Shorter Tours by Nicer Ears : 7/5-approximation for graphic TSP, 3/2
for the path version, and 4/3 for two-edge-connected subgraphs
http://pagesperso.g-scop.grenoble-inp.fr/∼seboa/sebo files/papers/ccanicears.pdf

Sebő, Undirected distances and the postman-structure of graphs
http://pagesperso.g-scop.grenoble-inp.fr/∼seboa/sebo files/papers/jctb90undirdist.pdf

Basic notations: Graphs are meant to be undirected unless we say otherwise (eg.
end of series 3); V (G) is the set of vertices of graph G, E(G) is its edge-set; ν(G)
denotes the matching number of G, that is, the maximum size of a set of disjoint edges
in G; τ(G) is the minimum vertex cover of G, that is, a set of vertices of minimum
cardinality that meet every edge of G. I use the common notations mainly inspired by
the above references.

If you don’t understand an exercise, or you have any question or comment concerning
the course or this hand-out, please, don’t hesitate contacting me by e-mail; I will try
to answer if I am online.

If you cannot solve an exercise, don’t worry: to have understood it, to have thought
about it and to have realized the difficulty will already be helpful enough for the course.

1 Matchings

Exercise 1 Let G be a graph, and uv ∈ E(G). Then either ν(G − u) < ν(G), or
ν(G− v) < ν(G), or else for any maximum matching Mu of G− u, and Mv of G− v:
Mu ∪Mv contains an (u, v)-path P alternating between Mu and Mv.

Exercise 2 Let G be a bipartite graph, and uv ∈ E(G). Then either ν(G−u) < ν(G),
or ν(G − v) < ν(G). Deduce from this a simple inductive proof of Kőnig’s theorem
ν(G) = τ(G) for every bipartite graph G.

If G is a graph, and X ⊆ E(G), then G/X denotes the graph we get from G by
identifying the endpoints of the edges in X (and deleting the edges induced by X). We
say that a vertex is covered by a matching if it is the endpoint of one of the edges of
the matching, otherwise it is uncovered.

Exercise 3 Let G be a graph, uv ∈ E(G), ν(G− u) = ν(G), ν(G− v) = ν(G). Then
for the alternating path P of Exercise 1.1 the minimum number of uncovered vertices
in G/P is the same as in G.

Exercise 4 Deduce, by induction, using exercises 1 and 3, the theorem of Tutte-Berge:
the minimum number of vertices not covered by a matching is equal to the maximum

2



of q(X) − |X|, where q(X) denotes the number of odd components of G −X. If you
know Edmonds’ algorithm deduce also a proof of its correctness.

If for a set X the value of q(X)− |X| is maximum, then it is called a Tutte-set.

Exercise 5 If v ∈ V (G) is contained in some Tutte-set then it is covered by every
maximum matching of G.

2 Edge-Coloring

Exercise 1 Let G = (V,E) be an undirected multigraph and k ∈ ZZ. Suppose we
are given a partial edge-k-coloring of G, and the set of colored edges is inclusionwise
maximal. Suppose there is an uncolored edge between u, v ∈ V , where u misses red,
and v misses blue (where red and blue are two of the k colors). Then the union of blue
and red edges has a component which is a path between u and v.

Exercise 2 (Kőnig’s edge-coloring theorem) Prove that a bipartite graph can be
edge-colored to as many colors as the maximum degree. Is this true to every graph ?

Exercise 3 (Particular Tashkinov trees) Build a “breadth first tree” starting with
tree {{u, v}, uv}, from root u, using only edges whose color has already been missed by
some vertex of the already constructed part of the tree. Prove that the already colored
edges plus edge uv can all be correctly colored under either of the following conditions:

a. There is a common missing color in u and in one of its neighbors in the tree.
b. There are two neighbors of u in the tree, missing the same color.

Exercise 4 (Vizing’s theorem) Prove that a graph without parallel edges can be
edge-colored with ∆ + 1 colors where ∆ is the maximum degree.

3 Postman tours

A postman tour is a closed walk which uses every edge of the graph at least once. Let
us call a set of edges a postman set if its deletion leads to a graph with all degrees even
(but not necessarily connected).

Exercise 1 Let G be a connected graph. The minimum length of a postman tour is
equal to |E(G)|+ τ where τ is the minimum cardinality of a postman set.

Exercise 2 Let G be a graph. A postman set P has minimum cardinality if and only
if there is no circuit of negative weight according to the weight function which is −1
on the edges of P and 1 on the other edges.

Exercise 3 Prove that the maximum matching problem can be solved by a simple
(linear time) reduction to an algorithm that finds a negative circuit in a ±1-weighted
graph, or concludes correctly that such a circuit does not exist.

Hint: Add a new vertex to the graph, and join it to all uncovered vertices by edges of
weight −1, and put weight −1 on the matching edges as well.
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Exercise 4 Can you find a minimum postman set via Exercise 3.2, or a maximum
matching via Exercise 3.3 by finding a negative circuit in some well-known way for
directed graphs (eg. Floyd-Warshall’s algorithm)? Hint: I cannot. Why ?

A digraph is said to be weakly connected if the underlying undirected graph is con-
nected, and it is strongly connected if for any ordered pair of vertices u, v there exists
a directed path from u to v. A postman tour of a digraph G is a weakly connected
multigraph, where the multiplicity of every arc of G is at least 1, and the indegree of
every vertex is equal to its outdegree.

Exercise 5 Show that a postman tour of a digraph is strongly connected, and a graph
has a postman-set if and only if it is strongly connected. What is the complexity of
finding a minimum weight postman tour in an edge-weighted digraph?

Hint: Apply network flows (“Hoffman’s circulation theorem”) with the appropriate
lower capacities.

4 Conservative weightings

A weighting of the edges of a graph is called conservative if there is no circuit of
negative weight. The distance between pairs of points is the minimum weight of paths.

Exercise 1 In a graph given with a conservative weighting, changing the sign of
all edges of a 0-weight circuit, the weighting remains conservative and the distance
between each pair of vertices, is unchanged.

Hint: Let C be a 0 weight circuit. Express the modified weight of an arbitrary path or
circuit Q with the original weight of the symmetric difference of Q and C.

Exercise 2 Given a graph with two ±1 conservative weightings, but where the
parities of the number of negative edges adjacent to the vertices are the same, the
distance between any pair of vertices is the same in the two weightings.

Exercise 3 Given a ±1-weighted conservative graph G = (V,E) and a ∈ V , let b be
a vertex whose distance is minimum from a. If b 6= a, then b is incident to exactly one
negative edge.

Exercise 4 Under the condition and notations of the preceding exercise, supposing in
addition that G is bipartite, contracting the edges adjacent to b, the obtained graph is
also conservative with the original weighting, and the distances of the vertices of G− b
from a do not change. What will be the distance of the new vertex from a ?

Exercise 5 In a ±1-weighted conservative bipartite graph there exist edge-disjoint
cuts covering all the negative edges so that each cut contains exactly one negative edge.

5 T -joins

Let T ⊆ V (G), |T | even. A T -join is a set of edges whose set of odd degree vertices
is exactly T . Note that a postman set is a TG-join, where TG is the set of odd degree
vertices of G. Let τ(G, T ) be the minimum cardinality of a postman set in G.
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Exercise 1 Prove that in a bipartite graph τ(G, TG) is equal to the maximum number
of pairwise edge-disjoint cuts defined by bipartitions {X, Y } of V (G), where X contains
an odd number of vertices of odd degree.

Hint: Use Exercise 4.5.

Exercise 2 Is this a ’good characterization’ (a theorem that puts the corresponding
decision problem in NP intersection coNP) ?

Exercise 3 Is a similar theorem true for non-bipartite graphs ?

6 Matroid operations

If you never heard about matroids skip this series. If you try though, you may be
rewarded by Exercise 6. If we are done with this somewhat boring introduction, we
can better focus on using matroids for interesting theorems and algorithms.

A minor of the matroid M = (S,F) is a matroid obtained from M by a succession
of deletions and contractions of elements, that is:
M \ e := M − e := (S \ e,F \ e), M/e := (S \ e,F/e),
where F \e = {F ∈ F : F ⊆ S \e}, F/{e} = {F ∈ F : F ⊆ S \e, F ∪{e} ∈ F}.
The dual M∗ = (S,B∗) of M = (S,B) (matroids defined with the basis axioms) is

defined as B∗ := {S \B : B ∈ B}.
The “cycle-matroid” associated to a graph G is denoted by M(G).
The sum of two matroids M = (S,F1), M = (S,F2): M = (S,F), where F := {F =

F1 ∪ F2 : F1 ∈ F1, F2 ∈ F2}.

Exercise 1 Show that the result of all these operations is a matroid.

Exercise 2 Show (M \e)/f = (M \f)/e, that is, the result of a succession of deletions
and contractions does not depend on the order of these operations.

Exercise 3 Show (M \ e)∗ = M∗/e.

Exercise 4 Show that the rank function of the dual of a matroid with rank function
r is: r∗(X) = |X| − (r(S)− r(S \X)).

Exercise 5 Show that in the special case of graphic matroids these operations spe-
cialize to the well-known graph operations of the same name. In particular, if G is a
planar graph, M∗(G) = M(G∗); in addition, the circuits of G are the cuts of G∗.

Exercise 6 Prove Euler’s formula: suppose G = (V,E) is a connected planar graph,
with f faces. Then |V | − |E|+ f = 2.

Hint: Use the preceding exercise to show that deleting from M(G) a spanning tree of
G you get in M∗(G) a spanning tree of G∗. Therefore (|V | − 1) + (f − 1) = |E|.

Exercise 7 Let B be the set of spanning trees of a graph G = (V,E). Prove that the
set {B ∪ {e} : B ∈ B, e ∈ E \ B} also satisfies the basis axioms. Is this true for the
set of bases B of any matroid ?
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