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Introduction Branching algorithms Exercises

Enumerations

An enumeration problem require to list all wanted objects for a
given input.

For example:

• list all subset of vertices or edges of a given graph that satisfy
a certain condition:

• List all maximal independent sets.
• List all perfect matchings.
• . . .

• List all satisfying assignments of variables for a Boolean
formula.

• List all triangulation for a set of point on the plane.

• . . .
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Input-sensitive vs. output-sensitive enumerations

1. Output-sensitive

• The complexity is measured as a function of both the input
size and the size of the output.

• The aim is to find an algorithm that is polynomial for this
measure.

2. Input-sensitive
• The complexity is measured as a function of the input size only.
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Input-sensitive enumeration

• The running time depends on the length of the input only
(e.g., the number of vertices of the input graph).

• We use the classical worst case running time analysis.

• If the number of objects to be enumerated is exponential (in
the worst case), then an input-sensitive enumeration algorithm
runs in exponential time.

• We use exact exponential-time algorithms, in particular
branching algorithms.
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Input-sensitive enumeration

An input-sensitive algorithm solving an enumeration problem

• Can be used to solve the decision, optimization and counting
versions of the problem.

• The running time of the algorithm provides an upper bound
for the maximum number of enumerated objects.

• Moreover, the algorithm can be used to obtain better bounds.
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Upper and Lower bounds

Suppose that there is a family of instances I of an enumeration
problem such that for every n 2 N, I contains an instance I with
|I | = n and the number of enumerated objects for I 2 I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.
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Plan of the lectures

• Introduction to branching enumeration algorithms and their
analysis.

• Advanced analysis of branching algorithms; the “Measure and
Conquer” technique.

• Lower bounds.

• Conclusions and open problems.
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Branching algorithms

The majority of input-sensitive enumeration algorithms are
Recursive branching algorithms.

These algorithms are also called

• Branch & bound algorithms.

• Backtracking algorithms.

• Search tree algorithms.

• Branch & reduce algorithms.

• Splitting algorithms
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Branching algorithms

Pros

• Branching algorithms could be simple and easy to implement.

• Typically, they use polynomial space.

• Could be e�cient in practice.

Cons

• Di�cult to analyze.

• Could be di�cult to apply for some classes of problems.
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are pairwise non-adjacent.

An independent set X is (inclusion) maximal if every Y � X is not
independent.
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Maximal independent sets

Problem (Maximal Independent Set Enumeration)

Input: A graph G .

Task: Enumerate all maximal independent sets of G .
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Enumeration of MIS

Enum MIS(G , S)

Input : A graph G , a set S of vertices already selected to be in a
MIS, S \ V (G ) = ;

Output: All sets X [ S for MIS S of G .

if V (G ) = ; then
output S

else
find a vertex v 2 V (G ) of minimum degree d ;
call Enum MIS(G � NG [v ], S [ {v});
for x 2 NG (v) do

call Enum MIS(G � NG [x ], S [ {x})
end

end

Call Enum MIS(G , ;) to enumerate all MIS of G .
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Correctness

Observation: Let X be an independent set in G , then

• for every v 2 X , NG (v) \ X = ;,
• X is maximal if and only if for every v 2 V (G ),
NG [v ] \ X 6= ;.
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Correctness

Enum MIS(G , S)
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Running time

Consider the search tree produced by the algorithm.

(G � N [xd ], S [ {xd})

(G , S)

(G � N [v ], S [ {v}) (G � N [x
1

], S [ {x
1

})

Observe that the algorithm produced maximal independent sets in
the leaves of the search tree.
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Running time

Denote by L(n) the maximum number of leaves of a search tree for
the input graph with n vertices.

Note that L(n) is a non-decreasing function and L(0) = 1.

Consider G that gives the maximum number of leaves.

Let x
1

, . . . , xd be the neighbors of v chosen by the algorithm.

L(n)  L(n � |NG [v ]|) + L(n � |NG [x1]|) + . . .+ L(n � |NG [xd ]|).

Recall that
d = dG (v)  dG (x1), . . . , dG (xd).

Therefore,
L(n)  (d + 1)L(n � (d + 1)).
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Running time
The recurrences:

L(0) =1,

L(n) (d + 1)L(n � (d + 1)).

Claim: L(n)  3n/3.

L(0) = 1 = 30/3.

Exercise: Show that

max
k2N

k · 3�k/3 = 1

and the maximum is achieved for k = 3.

L(n) (d + 1)L(n � (d + 1))  (d + 1)3(n�(d+1))/3

=(d + 1)3(d+1)/3 · 3n/3  3n/3.
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L(n) (d + 1)L(n � (d + 1))  (d + 1)3(n�(d+1))/3
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Running time

We have that the search tree for an n-vertex graph G has at most
3n/3 leaves.

Exercise: Show that a rooted tree (arborescence/outbranching)
with ` leaves has at most 2`� 1 nodes that are either leaves or
have at least 2 children.

Note that if d = 0, then we do not branch in Enum MIS(G , S).

The algorithm performs O(n +m) operations per node that is
either a leaf of has at least 2 children.

The running time is O(3n/3 · (n +m)) or O⇤(3n/3).

We write f (n) = O⇤(g(n)) to denote that there is a polynomial
p(n) such that f (n)  g(n)p(n).
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Enumeration of MIS

Theorem
Maximal independent sets of an n-vertex graph can be enumerated
in time O⇤(3n/3) (O(1.4423n)).

Note that 31/3 ⇡ 1.44225 . . . < 1.4423.

Lower bound:

n/3

This graph has 3n/3 maximal independent sets.

We can enumerate MIS in time O⇤(3n/3) but cannot do it faster
than ⌦(3n/3).
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Enumeration of MIS

Recall that the search tree for G has at most 3n/3 leaves and the
algorithm produced MIS for the leaves of the search tree.

Theorem
An n-vertex graph has at most 3n/3 maximal independent sets and
the bound is tight.

Moon and Moser, 1962 proved the same by combinatorial
arguments.

Let A be an enumeration algorithm that lists all maximal
independent sets (cliques) with polynomial delay. Then A runs in
time O⇤(3n/3).
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Branching algorithms

Branching algorithms are recursively applied to (specially tailored)
instances of a problem using reduction and branching rules.

• Reduction rules
• used to simplify instances,
• typically reduce the size,
• typically run in polynomial time.

• Branching rules
• solve the problem for an instance by recursively solving t � 2

(smaller) instances,
• typically run in polynomial time (without recursive calls).
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Search trees are used to illustrate, understand and analyze
branching algorithms:

• Root: assign the input to the root.

• Node: assign to each node a problem instance.

• Child: each instance produced by a branching rule is assigned
to a child.

• Leaf: outputs are assigned to leaves.
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Analysis of branching algorithms

• Correctness: show correctness of the reduction and branching
rules:

• typically, the proof is done by induction on some measure of an
instance.

• Running time analysis:
• upper bound of the maximum number of leaves L(s) of a

search tree for an input of given size s,
• if each reduction and branching rule can be done in polynomial

time, then we have running time O⇤(L(s)),
• L(s) gives a combinatorial upper bound for the number of

enumerating objects.

• Constructing lower bounds: family of instances with a specific
lower bound on the number of enumerating objects.
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Bounding the number of leaves

Let A be a recursive branching algorithm that uses a single
branching rule that generates r � 2 instances of the problem.

We associate a measure µ(I ) with each instance I of the problem.

Typically, for simple branching algorithms, µ(I ) is integer, and
often µ(I ) is the number of vertices for graph problems.

Let I
1

, . . . , Ir be the instances of the problem generated by the
branching rule from I .

Assume that there are positive (integers) t
1

, . . . , tr such that

µ(Ii )  µ(I )� ti for i 2 {1, . . . , r}.

It is said that
b = (t

1

, . . . , tr )

is the branching vector for the rule.
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Let L(s) be the maximum number of leaves of a search tree for the
instances I with µ(I ) = s.

We have that

L(s)  L(s � t
1

) + . . .+ L(s � tr ).

Let t = max{t
1

, . . . , tr}. We associate with b = (t
1

, . . . , tr ) the
characteristic polynomial:

p(x) = x t � x t�t
1 � . . .� x t�tr .

Claim: p(x) has a unique positive real root � and L(s) = O⇤(�s).

It is said that � = �(t
1

, . . . , tr ) is the branching number of b.
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Bounding the number of leaves

Given a branching vector

b = (t
1

, . . . , tr ),

we solve the equation

x t � x t�t
1 � . . .� x t�tr = 0

for t = max{t
1

, . . . , tr} and find the branching number

� = �(t
1

, . . . , tr ).

Then we obtain the bound

L(s) = O⇤(�s).
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Enumeration of vertex subsets

Observe that to obtain the bound L(s) = O⇤(�s), we have not
made any assumption about the considered enumeration problem
or the measure µ(I ).

Assume that we consider an enumeration problem for graphs where
the aim is to list all vertex subsets that satisfy a property P .

Claim: If µ(I )  n for the inputs containing n-vertex graphs, then

L(n) = O⇤(�n).
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Obtaining better bounds

By general results we can obtain the bound of form O⇤(�s).

To obtain a better bound, we can

• round � < �̂ and get the bound O(�̂s),

• analyze the first t = max{t
1

, . . . , tr} values of L(s) get the
bound �s .

Let b = (t
1

, . . . , tr ) and � = �(t
1

, . . . , tr ).

Suppose that L : Z ! Z�0

such that

(i) L(s) = 0 for s < 0,

(ii) L(s)  max{1, L(s � t
1

) + . . .+ L(s � tr )} for s � 0.

Exercise: Show that L(s)  �s .
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Analyzing collections of recurrences
A branching algorithm can have several branching rules or/and the
number of instances produced by a rule can depend on the
considered instance.

For example, Enum MIS(G , S) generates d + 1 branches where
d = dG (v).

We consider all branching vectors and find the worst branching
number.

For Enum MIS(G , S), we have

bd+1

= (d + 1, . . . , d + 1| {z }
d+1

) and �d+1

= (d + 1)1/(d+1).

Then
� = max

d�0

�d+1

= 31/3.
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Analyzing collections of recurrences

We consider all branching rules and construct the family of
branching vectors

B = {b(i) | i 2 N}

b(i) = (t
(i)
1

, . . . , t(i)r(i)).

We compute
� = sup{�(b(i)) | b(i) 2 B}.

Claim:
L(s) = O⇤(�s).

Often it could be shown that L(s)  �s .
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Analyzing collections of recurrences

The family of branching vectors B could be infinite.

Nevertheless, it is usually su�cient to consider few “worst”
branching vectors and find

� = max{�(b(i)) | b(i) 2 B}.
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Properties of branching vectors

Let b = (t
1

, . . . , tr ), r � 2 and ti > 0 for i 2 {1, . . . , r}.

• �(t
1

, . . . , tr ) > 1.

• For every permutation ⇡ of h1, . . . , ri,
�(t

1

, . . . , tr ) = �(t⇡(1), . . . , t⇡(r)).

• If b0 = (t 0
1

, . . . , t 0r ) and ti  t 0i for i 2 {1, . . . , r}, then
�(t

1

, . . . , tr ) � �(t 0
1

, . . . , t 0r ).

Let a, b, c > 0.Then

• �(c , c)  �(a, b) if c = (a+ b)/2,

• �(a+ ", b� ") < �(a, b) for 0 < a < b and 0 < " < (b� a)/2.
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Some branching numbers

Branching numbers for b = (t
1

, t
2

):
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Improving branching

Typical di�culty with the analysis of branching algorithms is that
we get a “bad” branching rule that cannot be avoided.

Sometimes it is possible to combine a “bad” branching with a
consecutive “good” one.

b

0 = (s
1

, . . . , s`)

b = (t
1

, . . . , tr )

New branching vector: c = (t
1

+ s
1

, . . . , t
1

+ s`, t2, . . . , tr ).



Introduction Branching algorithms Exercises

Improving branching

Typical di�culty with the analysis of branching algorithms is that
we get a “bad” branching rule that cannot be avoided.

Sometimes it is possible to combine a “bad” branching with a
consecutive “good” one.

b

0 = (s
1

, . . . , s`)

b = (t
1

, . . . , tr )

New branching vector: c = (t
1

+ s
1

, . . . , t
1

+ s`, t2, . . . , tr ).



Introduction Branching algorithms Exercises

Improving branching

Typical di�culty with the analysis of branching algorithms is that
we get a “bad” branching rule that cannot be avoided.

Sometimes it is possible to combine a “bad” branching with a
consecutive “good” one.

b

0 = (s
1

, . . . , s`)

b = (t
1

, . . . , tr )

New branching vector: c = (t
1

+ s
1

, . . . , t
1

+ s`, t2, . . . , tr ).



Introduction Branching algorithms Exercises

Improving branching

Typical di�culty with the analysis of branching algorithms is that
we get a “bad” branching rule that cannot be avoided.

Sometimes it is possible to combine a “bad” branching with a
consecutive “good” one.

b

0 = (s
1

, . . . , s`)

b = (t
1

, . . . , tr )

New branching vector: c = (t
1

+ s
1

, . . . , t
1

+ s`, t2, . . . , tr ).



Introduction Branching algorithms Exercises

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ✓ U is a hitting set for S if for every S 2 S, X \ S 6= ;.

A hitting set X is (inclusion) minimal if every Y ⇢ X is not a
hitting set.
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Enumeration of minimal hitting sets

Problem (Minimal Hitting Set Enumeration)

Input: A family S of subsets over an universe U .
Task: Enumerate all maximal independent sets of G .

We consider the problem for S containing subsets of size at most 3.
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Enumeration of minimal hitting sets

We construct the algorithm Emum Hitting Sets(F ,X ).

Input: A subfamily F ✓ S and X ✓ U such that X \ F = ; for
F 2 F .

Output: Minimal hitting sets of S of form X [ Y where Y is a
minimal hitting set for F .

We generate all minimal hitting sets Y of F , and for each Y , we
test whether X [ Y is minimal hitting set for S.

To enumerate minimal hitting sets of S, we call
Emum Hitting Sets(S, ;).

The measure of the instance is the size of

W = [F = [S2FS .
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Reduction rules

• If F = ;, then check whether X is a minimal hitting set for S
and output X if it holds.

• If ; 2 F , then Stop.
• If there is S 2 F such that |S | = 1, then for {x} = S do the
following:

• Set F 0 = {S 2 F | x /2 S},
• Call Emum Hitting Sets(F 0,X [ {x}).
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Branching rule

Select S 2 F .

• If |S | = 2, then for {x , y} = S do the following:

(i) Set F 0 = {S 2 F | x /2 S} and call
Emum Hitting Sets(F 0,X [ {x}).

(ii) Set F 00 = {S \ {x} | S 2 F s.t. y /2 S} and call
Emum Hitting Sets(F 00,X [ {y}).

• If |S | = 3, then for {x , y , z} = S do the following:

(i) Set F 0 = {S 2 F | x /2 S} and call
Emum Hitting Sets(F 0,X [ {x}).

(ii) Set F 00 = {S \ {x} | S 2 F s.t. y /2 S} and call
Emum Hitting Sets(F 00,X [ {y}).

(iii) Set F 000 = {S \ {x , y} | S 2 F s.t. z /2 S} and call
Emum Hitting Sets(F 000,X [ {z}).
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Branching vectors and numbers

• If |S | = 2, then

• the branching vector is (1, 2),
• the characteristic polynomial is x2 � x � 1 = 0,
• �(2, 1) ⇡ 1.6181.

• If |S | = 3, then
• the branching vector is (1, 2, 3),
• the characteristic polynomial is x3 � x2 � x � 1 = 0,
• �(2, 1) ⇡ 1.8394.

• Emum Hitting Sets enumerates minimal hitting sets in time
O(1.8394n) where n = |U|.

• there are at most 1.8394n minimal hitting sets if S contains
sets of size at most 3.
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Exercises

1. Enumerate all maximal matchings in a graph.
• Construct an algorithm that runs in time O⇤(cm) for c < 2

where m is the number of edges.
• Is it possible to enumerate the maximal matchings in time

O⇤(cn) where n is the number of vertices?

2. Let G be a graph, s, t 2 V (G ). Enumerate all induced
(s, t)-paths.

• Construct an algorithm.
• Give a lower bound.

3. Enumerate all induced cycles in a graph.
• Construct an algorithm.
• Give a lower bound.

(⇤) Improve the running time O(1.8394n) for the enumeration of
minimal hitting sets.



Introduction Branching algorithms Exercises

Exercises

1. Enumerate all maximal matchings in a graph.
• Construct an algorithm that runs in time O⇤(cm) for c < 2

where m is the number of edges.
• Is it possible to enumerate the maximal matchings in time

O⇤(cn) where n is the number of vertices?

2. Let G be a graph, s, t 2 V (G ). Enumerate all induced
(s, t)-paths.

• Construct an algorithm.
• Give a lower bound.

3. Enumerate all induced cycles in a graph.
• Construct an algorithm.
• Give a lower bound.

(⇤) Improve the running time O(1.8394n) for the enumeration of
minimal hitting sets.



Introduction Branching algorithms Exercises

Exercises

1. Enumerate all maximal matchings in a graph.
• Construct an algorithm that runs in time O⇤(cm) for c < 2

where m is the number of edges.
• Is it possible to enumerate the maximal matchings in time

O⇤(cn) where n is the number of vertices?

2. Let G be a graph, s, t 2 V (G ). Enumerate all induced
(s, t)-paths.

• Construct an algorithm.
• Give a lower bound.

3. Enumerate all induced cycles in a graph.
• Construct an algorithm.
• Give a lower bound.

(⇤) Improve the running time O(1.8394n) for the enumeration of
minimal hitting sets.



Introduction Branching algorithms Exercises

Exercises

1. Enumerate all maximal matchings in a graph.
• Construct an algorithm that runs in time O⇤(cm) for c < 2

where m is the number of edges.
• Is it possible to enumerate the maximal matchings in time

O⇤(cn) where n is the number of vertices?

2. Let G be a graph, s, t 2 V (G ). Enumerate all induced
(s, t)-paths.

• Construct an algorithm.
• Give a lower bound.

3. Enumerate all induced cycles in a graph.
• Construct an algorithm.
• Give a lower bound.

(⇤) Improve the running time O(1.8394n) for the enumeration of
minimal hitting sets.


	Introduction
	Branching algorithms
	Exercises

