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Plan of the lectures

• Introduction to branching enumeration algorithms and their
analysis.

• Advanced analysis of branching algorithms; the “Measure and
Conquer” technique.

• Lower bounds.

• Conclusions and open problems.
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Branching algorithms

The majority of input-sensitive enumeration algorithms are
Recursive branching algorithms.

Pros

• Branching algorithms could be simple and easy to implement.

• Typically, they use polynomial space.

• Could be efficient in practice.

Cons

• Difficult to analyze.

• Could be difficult to apply for some classes of problems.
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Branching algorithms

Branching algorithms are recursively applied to (specially tailored)
instances of a problem using reduction and branching rules.

• Reduction rules
• used to simplify instances,
• typically reduce the size,
• typically run in polynomial time.

• Branching rules
• solve the problem for an instance by recursively solving t ≥ 2

(smaller) instances,
• typically run in polynomial time (without recursive calls).
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Search trees

Search trees are used to illustrate, understand and analyze
branching algorithms:

• Root: assign the input to the root.

• Node: assign to each node a problem instance.

• Child: each instance produced by a branching rule is assigned
to a child.

• Leaf: outputs are assigned to leaves.
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Analysis of branching algorithms

Running time analysis:

• upper bound of the maximum number of leaves L(s) of a
search tree for an input of given size s,

• if each reduction and branching rule can be done in
polynomial time, then we have running time O∗(L(s)),

• L(s) gives a combinatorial upper bound for the number of
enumerating objects.
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Bounding the number of leaves

Let A be a recursive branching algorithm that uses a single
branching rule that generates r ≥ 2 instances of the problem.

We associate a measure µ(I ) with each instance I of the problem.

Typically, for simple branching algorithms, µ(I ) is integer, and
often µ(I ) is the number of vertices for graph problems.

Let I1, . . . , Ir be the instances of the problem generated by the
branching rule from I .

Assume that there are positive (integers) t1, . . . , tr such that

µ(Ii ) ≤ µ(I )− ti for i ∈ {1, . . . , r}.

It is said that
b = (t1, . . . , tr )

is the branching vector for the rule.



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Bounding the number of leaves

Let L(s) be the maximum number of leaves of a search tree for the
instances I with µ(I ) = s.

We have that

L(s) ≤ L(s − t1) + . . .+ L(s − tr ).

Let t = max{t1, . . . , tr}. We associate with b = (t1, . . . , tr ) the
characteristic polynomial:

p(x) = x t − x t−t1 − . . .− x t−tr .

Claim: p(x) has a unique positive real root λ and L(s) = O∗(λs).

It is said that λ = λ(t1, . . . , tr ) is the branching number of b.
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Bounding the number of leaves

Given a branching vector

b = (t1, . . . , tr ),

we solve the equation

x t − x t−t1 − . . .− x t−tr = 0

for t = max{t1, . . . , tr} and find the branching number

λ = λ(t1, . . . , tr ).

Then we obtain the bound

L(s) = O∗(λs).

Often we can show that L(s) ≤ λs .
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Analyzing collections of recurrences

We consider all branching rules and construct the family of
branching vectors

B = {b(i) | i ∈ N}

b(i) = (t
(i)
1 , . . . , t

(i)
r(i)).

We compute
λ = sup{λ(b(i)) | b(i) ∈ B}.

Claim:
L(s) = O∗(λs).

Often it could be shown that L(s) ≤ λs .
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Analyzing collections of recurrences

The family of branching vectors B could be infinite.

Nevertheless, it is usually sufficient to consider few “worst”
branching vectors and find

λ = max{λ(b(i)) | b(i) ∈ B}.

Huge problem: The bound O∗(λs) is limited by the worst
branching number even if the corresponding branching occur in
some few special cases.
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Measure & Conquer
Fedor V. Fomin, Fabrizio Grandoni, Dieter Kratsch: A measure &
conquer approach for the analysis of exact algorithms. J. ACM
56(5): 25:1-25:32 (2009)

Nerode Prize 2017:
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Bounding the number of leaves

Let A be a recursive branching algorithm that uses a single
branching rule that generates r ≥ 2 instances of the problem.

We associate a measure µ(I ) with each instance I of the problem.

Typically, for simple branching algorithms, µ(I ) is integer, and
often µ(I ) is the number of vertices for graph problems.

Let I1, . . . , Ir be the instances of the problem generated by the
branching rule from I .
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Bounding the number of leaves

Observe that to obtain the bound L(s) = O∗(λs), we have not
made any assumption about µ(I ).

We can chose µ(I ) to improve the running time analysis.

The measure µ(I ) not necessarily should be integer.

Assume that we consider an enumeration problem for graphs where
the aim is to list all vertex subsets that satisfy a property P.

Claim: If µ(I ) ≤ n for the inputs containing n-vertex graphs, then

L(n) = O∗(λn).
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Measure for graph problems

Assume that we consider an enumeration problem for graphs where
the aim is to list all vertex subsets that satisfy a property P.

We construct a weight function:

ω : V (G )→ R≥0.

We set
µ(G ) =

∑
v∈V (G)

ω(v).

If ω(v) ≤ 1, then µ(G ) ≤ n.

This is what we need to obtain that for n-vertex graphs,

L(n) = O∗(λn).
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Minimal connected dominating sets

A set of vertices D of a graph G is a dominating set if every
v ∈ V (G ) is either in D or is adjacent to a vertex of D.

A set D is a connected dominating set if

• D is a dominating set and

• G [D] is connected.

A connected dominating set is (inclusion) minimal if for every
Y ⊂ X , Y is not a connected dominating set.
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Minimal connected dominating sets

Problem (Minimal CDS enumeration)

Input: A graph G.

Task: Enumerate all minimal connected dominating sets of
G.
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Minimal connected dominating sets

Problem (Minimal CDS enumeration)

Input: A graph G.

Task: Enumerate all minimal connected dominating sets of
G.

Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh: Below all
subsets for Minimal Connected Dominating Set. CoRR
abs/1611.00840 (2016)

Theorem
There is ε > 0 such that all minimal connected dominating sets of
an n-vertex graph can be enumerated in time 2(1−ε)n.
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Chordal graphs

A graph G is chordal if it has no induced cycle with at least 4
vertices.
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Simplicial vertices

A vertex v of a graph G is simplicial if NG (v) is a clique, that is,
the neighbors of v are pairwise adjacent.

Lemma
Every chordal graph has a simplicial vertex.
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Semi-simplicial vertices

For a vertex u of a graph G , denote by SG (u) the set of all
simplicial vertices v of G such that vu ∈ E (G ).

A vertex u is semi-simplicial if SG (u) 6= ∅ and u is a simplicial
vertex of G − SG (u).
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Semi-simplicial vertices

Lemma (Heggernes and Abu-Khzam, 2016)

Every connected chordal graph with at least two vertices has a
semi-simplicial vertex.

• If G is a complete graph with at least two vertices, then every
vertex is semi-simplicial.

• Suppose that G is not complete. Denote by S the set of all
simplicial vertices of G .

• Then G ′ = G − S is not empty and has a simplicial vertex u.

• We have that u is a semi-simplicial vertex of G .
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Contractions

Let D be a minimal connected dominating set of G .

Suppose that x , y ∈ D are adjacent.

Let G ′ = G/xy and vxy is the vertex of G ′ obtained from x and y .

Let D ′ = (D \ {x , y}) ∪ {vxy}.

We write that D ′ = D/xy

Claim: D ′ is a minimal connected dominating set of G ′.
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Sketch of the proof

• We have that D ′ is a connected dominating set.

• Assume that D ′ is not minimal. Then there is u ∈ D ′ such
that

• D ′ \ {u} is connected,
• D ′ \ {u} is a dominating set of G ′.

• If u 6= vxy , then D \ {u} is a connected dominating set of G .

• If u = vxy , then either x or y is not a cut-vertex of G [D].

• If x is not a cut-vertex of G [D], then D \ {x} is a connected
dominating set of G .
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Observation: Let (A,B) be a separation of a connected graph G ,
that is, A,B ⊆ V (G ), A ∪ B = V (G ) and there is no edge
uv ∈ E (G ) with u ∈ A \ B and v ∈ B \ A.

If A \ B 6= ∅ and
B \ A 6= ∅, then D ∩ (A ∩ B) 6= ∅ for every minimal connected
dominating set D.
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Enumeration of minimal CDS

Let G be a connected chordal graph.

Let H is an induced minor of G (i.e., H is obtained by vertex
deletions and edge contractions).

For X ⊆ V (H), exp(X ) denotes the set of vertices of G that are
contracted to the vertices of X .

For X ⊆ V (H), D is an X -minimal connected dominating set of H
if

(i) X ⊆ D,

(ii) D is a connected dominating set, and

(ii) D is (inclusion) minimal subject to (i) and (ii).
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Enumeration of minimal CDS

We construct the algorithm Emum MCDS(H,X ).

Input: A graph H that is an induced minor of G and X ⊆ V (H).

Output: X -Minimal CDS D of H such that exp(D) is a minimal
CDS of G .

We generate all X -minimal CDS D of H, and for each D, we test
whether exp(D) is minimal CDS of G .

To enumerate minimal connected dominating sets of G , we call
Emum MCDS(G , ∅).

The measure of the instance is |V (H)|.
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Initial steps

• If X is a minimal CDS of H, then check whether exp(X ) is a
minimal CDS of G and output X if this holds.

• If X = ∅ and H is a complete graph, then consider all
D = {v} for v ∈ V (H).

Note that the last step could be seen as a branching rule: we
branch on k = |V (H)| instances (H − NH(v), {v}).

The branching vector is
(k, . . . , k︸ ︷︷ ︸

k

)

and the maximum branching number is λ(3, 3, 3) = 31/3 ≈ 1.4423
for k = 3.
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Emum MCDS(H/xy ,X/xy).

• If H has a cut-vertex v /∈ X , then call
Emum MCDS(H,X ∪ {v}).
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• If H has a simplicial vertex v such that NH(v) ∩ X 6= ∅, then
call Emum MCDS(H − v ,X ).
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Branching

If the initial steps cannot be applied, then

• H is not complete,

• simplicial vertices of H are pairwise non-adjacent,

• the minimum degree of H is at least 2.

We select a semi-simplicial vertex x and branch depending on
|SH(x)|:
• |SH(x)| = 1,

• |SH(x)| = 2,

• |SH(x)| ≥ 3.
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Branching for |SH(x)| = 1

Let y be the unique vertex of SH(x).

We consider two cases:

• dH(y) = 2,

• dH(y) ≥ 3.
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Branching for |SH(x)| = 1 and dH(y) = 2

Let z be the neighbor of y distinct from x .

• If y ∈ X , then

(i) call Emum MCDS(H/xy − z , (X ∪ {x})/xy),
(ii) call Emum MCDS(H/yz − x , (X ∪ {z})/yz).
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• If y /∈ X , then
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• If y /∈ X , then

(i) call Emum MCDS(H − {y , z},X ∪ {x}),
(ii) call Emum MCDS(H − {x , y},X ∪ {z}).

The branching vector is (2, 2) and λ(2, 2) = 21/2 ≈ 1.4143.
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Branching for |SH(x)| = 1 and dH(y) ≥ 3

• If y ∈ X , then

(i) call Emum MCDS(H − (NH(y) \ {x})/xy , (X ∪ {x})/xy),
(ii) call Emum MCDS(H − x ,X ).
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Branching for |SH(x)| = 1 and dH(y) ≥ 3

• If y ∈ X , then

(i) call Emum MCDS(H − (NH(y) \ {x})/xy , (X ∪ {x})/xy),
(ii) call Emum MCDS(H − x ,X ).

• If y /∈ X , then

(i) call Emum MCDS(H − (NH [y ] \ {x}),X ∪ {x}),
(ii) call Emum MCDS(H − x ,X ).

The worst branching vector is (3, 1) for dH(y) = 3 and
λ(3, 1) ≈ 1.4656.
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Branching for |SH(x)| = 2

Let y and z be the neighbors of x , dH(y) ≤ dH(z).

Observation: if for an X -minimal connected dominating set D, it
holds that x ∈ D \ X , then

• either (NH(y) \ {x}) ∩ D = ∅
• or (NH(z) \ {x}) ∩ D = ∅.

zy x
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Branching for |SH(x)| = 2

We consider the cases:

• dH(y) = dH(z) = 2,

• dH(y) = 2 and dH(z) ≥ 3,

• dH(y), dH(z) ≥ 3,

and branch depending on the inclusion of y and z in X .
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Branching for |SH(x)| = 2

Let dH(y), dH(z) ≥ 3 and y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

zy x



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Branching for |SH(x)| = 2

Let dH(y), dH(z) ≥ 3 and y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

zy x



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Branching for |SH(x)| = 2

Let dH(y), dH(z) ≥ 3 and y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

zy x



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Branching for |SH(x)| = 2

Let dH(y), dH(z) ≥ 3 and y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

zy x



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Branching for |SH(x)| = 2

Let dH(y), dH(z) ≥ 3 and y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

The worst branching vector (4, 4, 1) for dH(y) = dH(z) = 3 and
λ(4, 4, 1) ≈ 1.5437.
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Branching for |SH(x)| ≥ 3

Assume that SH(x) ∩ X = ∅.

(i) call Emum MCDS(H − SH(x),X ∪ {x}),

(ii) call Emum MCDS(H − x ,X ).

The worst branching vector is (3, 1) for |SH(x)| = 3 and
λ(3, 1) ≈ 1.4656.
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Introducing measure

We have that the worst case is |SH(x)| = 2 and
dH(y) = dH(z) = 3 for {y , z} = SH(x).

zy x

The branching vector is (4, 4, 1) and λ(4, 4, 1) ≈ 1.5437.



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Introducing measure

We have that the worst case is |SH(x)| = 2 and
dH(y) = dH(z) = 3 for {y , z} = SH(x).

zy x

The branching vector is (4, 4, 1) and λ(4, 4, 1) ≈ 1.5437.



Recaps Measure & Conquer Minimal CDS for chordal graphs Minimal Dominating Sets

Introducing measure

We have that the worst case is |SH(x)| = 2 and
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zy x

If we delete x , then the vertices y and z get degree 2 in the
obtained graph.

Simplicial verices of degree 2 are good!
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Introducing measure

Let 0 < ε < 1.

We set

ω(v) =

{
1− ε if v is a simplicial vertex of degree 2

1 otherwise
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Improving branching numbers
Let |SH(x)| = 2 and dH(y) = dH(z) = 3 for {y , z} = SH(x), and
assume that y , z /∈ X .

(i) call Emum MCDS(H − (NH [y ] \ {x}) ∪ {z},X ∪ {x}),

(ii) call Emum MCDS(H − (NH [z ] \ {x}) ∪ {y},X ∪ {x}),

(iii) call Emum MCDS(H − x ,X ).

zy x

The branching vector is (4, 4, 1 + 2ε) and
λ(4, 4, 1 + 2ε) < λ(4, 4, 1).
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Some branching numbers grow

Let |SH(x)| = 1 and dH(y) = 2 for {y} = SH(x). Let
NH(y) = {y , z} and assume that y /∈ X .

(i) call Emum MCDS(H − {y , z},X ∪ {x}),

(ii) call Emum MCDS(H − {x , y},X ∪ {z}).
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Let |SH(x)| = 1 and dH(y) = 2 for {y} = SH(x). Let
NH(y) = {y , z} and assume that y /∈ X .
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The branching vector is (2− ε, 2− ε) > λ(2, 2).
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Balancing branching numbers
Let λi (ε) be the branching numbers considered as functions of ε.

We have to find
λ = min

ε
max

i
λi (ε)

We consider two families of branching numbers.

B = {λi (ε) | λi (ε) is a decreasing function}

and

B′ = {λi (ε) | λi (ε) is an increasing function}.

Eventually, we have to solve some equation

λi (ε) = λj(ε)

for λi ∈ B and λj ∈ B′.
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Balancing branching numbers

For (4, 4, 1 + 2ε) and (2− ε, 2− ε), we have

{
x4 − x4−(1−2ε) − 2 = 0

x2−ε − 2 = 0.

ε ≈ 0.21199 . . . and x ≈ 1.47353 . . .
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Enumeration of minimal CDS for chordal graphs

Theorem
An n-vertex chordal graph has at most 1.4736n minimal connected
dominating sets and these sets can be enumerated in time
O(1.4736).

There are chordal graphs with at least 3(n−1)/3 = Ω(1.4422n)
minimal CDS
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Measure & Conquer

Suppose that we consider the enumeration problem where the aim
is to list all subsets of verices that satisfy a certain property.

Then the typical strategy is the following.

• define a weight function

ω : V (G )→ R≥0.

• Set the measure of an instance

µ(G ) =
∑

v∈V (G)

ω(v).
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Weight function

• Usually, the weight ω(v) is a function of the degree, that is,

ω(v) = w(d(v)).

• Typically,

0 ≤ w(0) < w(1) < . . .w(k) = . . . = 1.

• The main idea: the removal of a vertex decreases the degrees
of the neighbors.

• To determine k and w(0), . . . ,w(k − 1), we have to solve an
auxiliary optimization problem.
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Enumeration of minimal dominating sets

A set of vertices D of a graph G is a dominating set if every
v ∈ V (G ) is either in D or is adjacent to a vertex of D.

A dominating set is (inclusion) minimal if for every Y ⊂ X , Y is
not a connected dominating set.

Theorem (Fomin, Grandoni, Pyatkin, Stepanov, 2008)

An n-vertex graph has at most 1.7159n minimal dominating sets
and these sets can be enumerated in time O(1.7159n).

Lower bound: there are graphs with 15n/6 (1.5704n) minimal
dominating sets.
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and these sets can be enumerated in time O(1.7159n).

Lower bound: there are graphs with 15n/6 (1.5704n) minimal
dominating sets.
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Minimal set covers

Let S be a family of subsets over a universe U .

S∗ ⊆ S is a set cover if for every u ∈ U there is S ∈ S∗ that covers
u, that is, u ∈ S .

A set cover S∗ is (inclusion) minimal if every Ŝ ⊂ S∗ is not a set
cover.

Let G be a graph and

U = V (G ) and S = {NG [v ] | v ∈ V (G )}.

Observation: D ⊆ V (G ) is a minimal dominating set of G if and
only if S∗ = {NG [v ] | v ∈ D} is a minimal set cover for (S,U).
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Measure & Conquer for minimal set covers

The weight of (S,U) is defined as follows:

• every set S ∈ S has weight α|S |,

• every u ∈ U has weight β|u| where |u| denotes the frequency
of u, that is the number of sets in S containing u.

The measure
µ(S,U) =

∑
S∈S

α|S | +
∑
u∈U

β|u|.

• 1 ≤ α1 < α2 < α3 < α4 = αi for i ≥ 5,

• 0 = β1 < β2 < β3 < β4 < β5 = 1 = βj for j ≥ 6.

The weights α1, . . . , α4 and β2, . . . , β5 are found by making use of
the quasiconvex programming.
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