Input-Sensitive Enumerations

Petr Golovach

Department of Informatics, University of Bergen

SGT 2018, Sète, France, 15.06.2018
Plan of the lectures

- Introduction to branching enumeration algorithms and their analysis.
- Advanced analysis of branching algorithms; the “Measure and Conquer” technique.
- Lower bounds.
- Conclusions and open problems.
Plan of the lectures

- Introduction to branching enumeration algorithms and their analysis.
- Advanced analysis of branching algorithms; the “Measure and Conquer” technique.
- Lower bounds.
- Conclusions and open problems.
Upper and Lower bounds

Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with $|I| = n$ and the number of enumerated objects for $I \in \mathcal{I}$ is $f(|I|)$. Then $f(n)$ provides an unconditional running time lower bound for every enumeration algorithm.
Upper and Lower bounds

Suppose that there is a family of instances \(\mathcal{I} \) of an enumeration problem such that for every \(n \in \mathbb{N} \), \(\mathcal{I} \) contains an instance \(I \) with \(|I| = n \) and the number of enumerated objects for \(I \in \mathcal{I} \) is \(f(|I|) \).

Then \(f(n) \) provides an unconditional \textit{running time lower bound} for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the “best” running time.
- Construct the “best” lower bound.
Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with $|I| = n$ and the number of enumerated objects for $I \in \mathcal{I}$ is $f(|I|)$.

Then $f(n)$ provides an unconditional running time lower bound for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the “best” running time.
- Construct the “best” lower bound.
- Ideally, we wish to get (asymptotically) tight upper and lower bounds for running time and combinatorial bounds for the number of enumerated objects.
Upper and Lower bounds

Suppose that there is a family of instances \(\mathcal{I} \) of an enumeration problem such that for every \(n \in \mathbb{N} \), \(\mathcal{I} \) contains an instance \(I \) with \(|I| = n \) and the number of enumerated objects for \(I \in \mathcal{I} \) is \(f(|I|) \).

Then \(f(n) \) provides an unconditional running time lower bound for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the “best” running time.
- Construct the “best” lower bound.
- Ideally, we wish to get (asymptotically) tight upper and lower bounds for running time and combinatorial bounds for the number of enumerated objects.
- If we fails to produce a lower bound that is “sufficiently close” to our upper bound, then this usually means that the upper bound is too big.
An n-vertex graph has at most $3^{n/3}$ maximal independent sets that can be enumerated in time $O^*(3^{n/3})$ and there are $n = 3k$-vertex graphs that have $3^{n/3}$ maximal independent sets.
Maximal independent sets

An n-vertex graph has at most $3^{n/3}$ maximal independent sets that can be enumerated in time $O^*(3^{n/3})$ and there are $n = 3k$-vertex graphs that have $3^{n/3}$ maximal independent sets.
Minimal connected dominating sets

An n-vertex chordal graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.4736^n)$ and there are $n = 3k + 2$-vertex interval graphs that have $3^{(n-2)/3}(1.4422^n)$ minimal connected dominating sets.
An n-vertex chordal graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.4736^n)$ and there are $n = 3k + 2$-vertex interval graphs that have $3^{(n-2)/3} (1.44.22^n)$ minimal connected dominating sets.
Minimal dominating sets

An n-vertex graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.7159^n)$ and there are $n = 6k$-vertex graphs that have $15^{n/6} (1.5704^n)$ minimal dominating sets.
Minimal dominating sets

An n-vertex graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.7159^n)$ and there are $n = 6k$-vertex graphs that have $15^{n/6} (1.5704^n)$ minimal dominating sets.
Minimal dominating sets for trees

Naive bound: Three are $n = 2k$-vertex trees that have $2^{n/2}$ minimal dominating sets.
Minimal dominating sets for trees

Naive bound: Three are $n = 2k$-vertex trees that have $2^{n/2}$ minimal dominating sets.
Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are $n = 27k$-vertex trees that have $12161^{n/27}$ minimal dominating sets.
Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are $n = 27k$-vertex trees that have $12161^{n/27}$ minimal dominating sets.

$$12161^{1/27} \approx 1.4167 > 2^{1/2} \approx 1.4142$$
Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are \(n = 27k \)-vertex trees that have \(12161^{n/27} \) minimal dominating sets.

\[
12161^{1/27} \approx 1.4167 > 2^{1/2} \approx 1.4142
\]

Current upper bound: \(3^{n/3} \).
Proof

A

B

x

y

z
Proof

There are $3 \cdot (2^6 - 1)^2$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B \neq \emptyset$.
Proof

There are $3 \cdot (2^6 - 1)^2$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B \neq \emptyset$.

![Diagram of sets A and B with vertices labeled x, y, and z.]
Proof

There are $3 \cdot (2^6 - 1)^2$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B \neq \emptyset$.
Proof

There are $3 \cdot (2^6 - 1)^2$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B \neq \emptyset$.
Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$.

![Diagram showing the construction of the dominating sets](image)
Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$.
Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$
Proof

There are 2 minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B = \emptyset$.

![Diagram showing a tree structure with nodes x, y, z and sets A and B]
Proof

There are 2 minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B = \emptyset$.
Proof

The total number of minimal dominating sets is

$$3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161.$$
Proof

The total number of minimal dominating sets is

\[3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161. \]
Proof

The total number of minimal dominating sets is

$$3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161.$$

This tree has $12161^{n/27}$ minimal dominating sets.
Let G be a graph, and let s and t be distinct vertices of G.

Minimal separators
Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an \textit{(s, t)-separator} if s and t are in distinct components of $G - \{s, t\}$.
Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is (inclusion) minimal if every $S' \subset S$ is not an (s, t)-separator.
Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is (inclusion) minimal if every $S' \subset S$ is not an (s, t)-separator.
Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is (inclusion) minimal if every $S' \subset S$ is not an (s, t)-separator.
Minimal separators

Naive bound: Three are $n = 3k + 2$-vertex graphs that have $3^{(n-2)/3}$ minimal separators.
Minimal separators

Naive bound: Three are $n = 3k + 2$-vertex graphs that have $3^{(n-2)/3}$ minimal separators.
Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are \(n \)-vertex graphs that have at least \(1.4457^n \) minimal \((s, t)\)-separators.
Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457^n minimal (s, t)-separators.

$1.4457 > 3^{1/3} \approx 1.4422.$
Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457^n minimal (s, t)-separators.

$1.4457 > 3^{1/3} \approx 1.4422.$

Current upper bound: $O(1.6180^n).$
Note that $126 = (9^4)$; we make each a_i adjacent to 4 vertices of $\{u_1, \ldots, u_9\}$ in such a way that a_i-s have distinct neighborhoods.
Note that $126 = \binom{9}{4}$; we make each a_i adjacent to 4 vertices of $\{u_1, \ldots, u_9\}$ in such a way that a_i-s have distinct neighborhoods.
Symmetrically we make each \(c_i \) adjacent to 4 vertices of \(\{w_1, \ldots, w_9\} \) in such a way that \(c_i \)-s have distinct neighborhoods.
Claim: This graph has \(> 2.4603 \cdot 10^{63} \) minimal \((s, t)\)-separators.
For $0 \leq p, q \leq 9$, let $N_{s,t}$ be the number of minimal (s, t)-separators that have p vertices from $\{u_1, \ldots, u_9\}$ and q vertices from $\{w_1, \ldots, w_9\}$.
For $0 \leq p, q \leq 9$, let $N_{s,t}$ be the number of minimal (s, t)-separators that have p vertices from $\{u_1, \ldots, u_9\}$ and q vertices from $\{w_1, \ldots, w_9\}$.

Consider the cases (i) $p, q = 0$, (ii) $p = 0$ and $q \geq 4$, (iii) $p \geq 4$ and $q = 0$, (iv) $p, q \geq 4$ and lower bound $|S_{p,q}|$.
Sketch of the proof

This graph has at least 1 minimal \((s, t)\)-separators.
Sketch of the proof

This graph has at least 1.4457^n minimal (s, t)-separators.
Input-sensitive enumeration

- The running time depends on the length of the input only (e.g., the number of vertices of the input graph).
- We use the classical worst case running time analysis.
- If the number of objects to be enumerated is exponential (in the worst case), then an input-sensitive enumeration algorithm runs in exponential time.
- We use exact exponential-time algorithms, in particular branching algorithms.
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.

Other techniques:
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.

Other techniques:

- Brute force.
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.

Other techniques:

- Brute force.
- Dynamic programming.
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.

Other techniques:

- Brute force.
- Dynamic programming.
- …
Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the “Measure & Conquer” technique,
- lower bounds.

Other techniques:

- Brute force.
- Dynamic programming.
- ...
- Combinations of distinct techniques.
Problem (3-Satisfiability)

Input: A Boolean formula ϕ with n variables in the conjunctive normal form such that each clause contain 3 literals.

Task: Decide whether ϕ has a satisfying assignment of variables.
Schöning’s algorithm for 3-Satisfiability

Problem (3-Satisfiability)

Input: A Boolean formula ϕ with n variables in the conjunctive normal form such that each clause contain 3 literals.

Task: Decide whether ϕ has a satisfying assignment of variables.

$$\phi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$
Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of the variables uniformly at random.
• Search for a satisfying assignment at Hamming distance at most $n/4$.

The algorithm runs in time $O^*(1.5^n)$.
Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

- Assign the values of the variables uniformly at random.
Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of the variables uniformly at random.
• Search for a satisfying assignment at Hamming distance at most $n/4$.
Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

- Assign the values of the variables uniformly at random.
- Search for a satisfying assignment at Hamming distance at most $n/4$.

The algorithm runs in time $O^*(1.5^n)$.
Parameterized complexity

Parameterized Complexity is a two-dimensional framework for studying the computations complexity;

- one dimension is the input size n,
- another one is a *parameter* k.
Parameterized complexity

Parameterized Complexity is a two-dimensional framework for studying the computations complexity;

- one dimension is the input size n,
- another one is a *parameter* k.

A parameterized problem is *fixed-parameter tractable (FPT)* if it can be solved in time

\[f(k) \cdot n^{O(1)}. \]
Extension problems

Let P be a property of vertex subsets of a graph.
Extension problems

Let P be a property of vertex subsets of a graph. The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.
Let P be a property of vertex subsets of a graph. The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set $U \subseteq V(G)$ satisfying P.
Extension problems

Let P be a property of vertex subsets of a graph. The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set $U \subseteq V(G)$ satisfying P.

Problem (P-Extension)

Input: A graph G, $U \subseteq V(G)$, and a non-negative integer k.

Parameter: k

Task: Decide whether there is a set $X \subseteq V(G) \setminus U$ of size at most k such that $U \cup X$ satisfies P.
Theorem
If there exists an algorithm for \(P \)-Extension with running time \(c^k n^{O(1)} \), then there exists a randomized algorithm for \(P \)-Subset with running time \(O^*((2 - 1/c)^n) \).

Theorem
If there exists an algorithm for \(P \)-Extension with running time \(c^k n^{O(1)} \), then there exists a deterministic algorithm for \(P \)-Subset with running time \(O^*((2 - 1/c)^n + o(n)) \).
Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh: Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem

If there exists an algorithm for P-Extension with running time $c^k n^{O(1)}$, then there exists a randomized algorithm for P-Subset with running time $O^*((2 - \frac{1}{c})^n)$.
Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh: Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem

If there exists an algorithm for P-Extension with running time $c^k n^{O(1)}$, then there exists a randomized algorithm for P-Subset with running time $O^*((2 - \frac{1}{c})^n)$.

Theorem

If there exists an algorithm for P-Extension with running time $c^k n^{O(1)}$, then there exists a deterministic algorithm for P-Subset with running time $O^*((2 - \frac{1}{c})^{n+o(n)})$.
Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if $G - X$ is acyclic.
A set of vertices X of a graph G is a feedback vertex set if $G - X$ is acyclic.

A feedback vertex set is (inclusion) minimal if every $Y \subset X$ is not a feedback vertex set.
Minimal feedback vertex sets

A set of vertices X of a graph G is a *feedback vertex set* if $G - X$ is acyclic.

A feedback vertex set is *(inclusion) minimal* if every $Y \subset X$ is not a feedback vertex set.
Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if $G - X$ is acyclic.

A feedback vertex set is (inclusion) minimal if every $Y \subset X$ is not a feedback vertex set.
Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

Lower bound: There are $n = 10^k$-vertex graphs with at least $10^5 n / 10^{1.5926n}$ minimal feedback vertex sets.
Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)
An n-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

Theorem (Gaspers and Lee, 2017)
An n-vertex graph has $O(1.8527^n)$ minimal feedback vertex sets and these sets can be enumerated in time $O(1.8527^n)$.
Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

Theorem (Gaspers and Lee, 2017)

An n-vertex graph has $O(1.8527^n)$ minimal feedback vertex sets and these sets can be enumerated in time $O(1.8527^n)$.

Lower bound: There are $n = 10k$-vertex graphs with at least $105^n/10 (1.5926^n)$ minimal feedback vertex sets.
Enumeration of minimal hitting sets

Let S be a family of subsets over an universe \mathcal{U}.
Let S be a family of subsets over an universe \mathcal{U}.

$X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

Enumeration of minimal hitting sets
Let S be a family of subsets over an universe \mathcal{U}.

$X \subseteq \mathcal{U}$ is a **hitting set** for S if for every $S \in S$, $X \cap S \neq \emptyset$.

A hitting set X is **(inclusion) minimal** if every $Y \subset X$ is not a hitting set.
Let S be a family of subsets over an universe U.

$X \subseteq U$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

A hitting set X is (inclusion) minimal if every $Y \subset X$ is not a hitting set.
Enumeration of minimal hitting sets

Let S be a family of subsets over an universe \mathcal{U}.

$X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

A hitting set X is (inclusion) minimal if every $Y \subset X$ is not a hitting set.
Enumeration of minimal hitting sets

Let S be a family of subsets over an universe \mathcal{U}.

$X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

A hitting set X is (inclusion) minimal if every $Y \subset X$ is not a hitting set.
Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394^n minimal hitting sets and these sets can be enumerated in time $O(1.8394^n)$ where $n = |U|$.
Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394^n minimal hitting sets and these sets can be enumerated in time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated in time $O(1.6755^n)$ where $n = |\mathcal{U}|$.
Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394^n minimal hitting sets and these sets can be enumerated in time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated in time $O(1.6755^n)$ where $n = |\mathcal{U}|$.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated in time $O(1.6727^n)$ where $n = |\mathcal{U}|$.
Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394^n minimal hitting sets and these sets can be enumerated in time $O(1.8394^n)$ where $n = |U|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated in time $O(1.6755^n)$ where $n = |U|$.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated in time $O(1.6727^n)$ where $n = |U|$.

Lower bound: There is a family of sets S that have 1.5848^n minimal hitting sets.
Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.
Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example,
Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

- for every $v \in X$, the neighbors of v are not in X,
Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

- for every $v \in X$, the neighbors of v are not in X,
- for every $u \in V(G)$, at least one neighbor of u is in X.

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

- for every $v \in X$, the neighbors of v are not in X,
- for every $u \in V(G)$, at least one neighbor of u is in X.

Task: Develop enumeration techniques for sets defined by *non-local* properties.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- D is a dominating set,
Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

- D is a dominating set,
- $G[D]$ is connected.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

- D is a dominating set,
- $G[D]$ is connected.

A connected dominating set D is minimal if D is a connected dominating set and for every $D' \subset D$, D' is not a connected dominating set.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if
- D is a dominating set,
- $G[D]$ is connected.

A connected dominating set D is *minimal* if D is a connected dominating set and for every $D' \subset D$, D' is not a connected dominating set.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- D is a dominating set,
- $G[D]$ is connected.

A connected dominating set D is *minimal* if D is a connected dominating set and for every $D' \subset D$, D' is not a connected dominating set.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- D is a dominating set,
- $G[D]$ is connected.

A connected dominating set D is *minimal* if D is a connected dominating set and for every $D' \subset D$, D' is not a connected dominating set.
Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if
- D is a dominating set,
- $G[D]$ is connected.

A connected dominating set D is *minimal* if D is a connected dominating set and for every $D' \subset D$, D' is not a connected dominating set.
Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.
Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be enumerated in time $O^*(2^n)$.

All minimal connected dominating sets can be enumerated in time $O^*(2^{(1-\varepsilon)n})$ for some (small) $\varepsilon > 0$ (Lokshtanov, Pilipczuk, Saurabh, 2016).

There are graphs with at least $3\left(\frac{n}{3} - 2\right)$ minimal CDS:
Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be enumerated in time $O^*(2^n)$.

All minimal connected dominating sets can be enumerated in time $O^*(2^{(1-\varepsilon)n})$ for some (small) $\varepsilon > 0$ (Lokshtanov, Pilipczuk, Saurabh, 2016).
Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be enumerated in time $O^*(2^n)$.

All minimal connected dominating sets can be enumerated in time $O^*(2^{(1-\varepsilon)n})$ for some (small) $\varepsilon > 0$ (Lokshtanov, Pilipczuk, Saurabh, 2016).

There are graphs with at least $3^{(n-2)/3}$ minimal CDS:
A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
A set of vertices X of a graph G is a connected vertex cover if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.
Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.

A connected vertex cover X is minimal if X is a connected vertex cover and for every $X' \subset X$, X' is not a connected vertex cover.
Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.

A connected vertex cover X is minimal if X is a connected vertex cover and for every $X' \subset X$, X' is not a connected vertex cover.
Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if
- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.

A connected vertex cover X is \textit{minimal} if X is a connected vertex cover and for every $X' \subset X$, X' is not a connected vertex cover.
Enumeration of connected vertex covers

A set of vertices X of a graph G is a \textit{connected vertex cover} if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.

A connected vertex cover X is \textit{minimal} if X is a connected vertex cover and for every $X' \subset X$, X' is not a connected vertex cover.
A set of vertices X of a graph G is a connected vertex cover if

- X is a vertex cover, that is, for every $uv \in E(G)$, $u \in X$ or $v \in X$,
- $G[X]$ is connected.

A connected vertex cover X is minimal if X is a connected vertex cover and for every $X' \subset X$, X' is not a connected vertex cover.
Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G.

Task: Enumerate all minimal connected vertex covers.
Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

\textbf{Input:} A connected graph G.

\textbf{Task:} Enumerate all minimal connected vertex covers.

An n-vertex graph has at most $2 \cdot 1.7076^n$ connected vertex covers and these sets can be enumerated in time $O^*(1.7076^n)$ (Wingsternes, 2018).
Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G.

Task: Enumerate all minimal connected vertex covers.

An n-vertex graph has at most $2 \cdot 1.7076^n$ connected vertex covers and these sets can be enumerated in time $O^*(1.7076^n)$ (Wingsternes, 2018).

There are graphs with at least 1.5197^n minimal connected vertex covers (Ryland, 2018).
Enumeration of irredundant sets

A set of vertices D of a graph G is an *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.
Enumeration of irredundant sets

A set of vertices D of a graph G is an **irredundant** set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a **private** vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

An irredundant set D is *maximal* if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.
A set of vertices D of a graph G is a \textit{irredundant} set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a \textit{private} vertex for v.

An irredundant set D is \textit{maximal} if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.
Enumeration of irredundant sets

A set of vertices D of a graph G is an *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

An irredundant set D is *maximal* if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.
Enumeration of irredundant sets

A set of vertices D of a graph G is a **irredundant** set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a **private** vertex for v.

An irredundant set D is **maximal** if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.
A set of vertices D of a graph G is a **irredundant** set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a **private** vertex for v.

An irredundant set D is **maximal** if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.
Enumeration of irredundant sets

A set of vertices D of a graph G is a \textit{irredundant} set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a \textit{private} vertex for v.

An irredundant set D is \textit{maximal} if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.

Every minimal dominating set is a maximal irredundant set but not the other way around.
Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.
Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an n vertex graph can be enumerated in time $O^*(2^n)$.
Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an n vertex graph can be enumerated in time $O^*(2^n)$.

There are graphs with at least $10^{n/5}$ maximal irredundant sets: