
Lower bounds Conclusions Open problems

Input-Sensitive Enumerations

Petr Golovach

Department of Informatics, University of Bergen

SGT 2018, Sète, France, 15.06.2018



Lower bounds Conclusions Open problems

Plan of the lectures

• Introduction to branching enumeration algorithms and their
analysis.

• Advanced analysis of branching algorithms; the “Measure and
Conquer” technique.

• Lower bounds.

• Conclusions and open problems.



Lower bounds Conclusions Open problems

Plan of the lectures

• Introduction to branching enumeration algorithms and their
analysis.

• Advanced analysis of branching algorithms; the “Measure and
Conquer” technique.

• Lower bounds.

• Conclusions and open problems.



Lower bounds Conclusions Open problems

Upper and Lower bounds
Suppose that there is a family of instances I of an enumeration
problem such that for every n ∈ N, I contains an instance I with
|I | = n and the number of enumerated objects for I ∈ I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.

• If we fails to produce a lower bound that is “sufficiently close”
to our upper bound, then this usually means that the upper
bound is too big.



Lower bounds Conclusions Open problems

Upper and Lower bounds
Suppose that there is a family of instances I of an enumeration
problem such that for every n ∈ N, I contains an instance I with
|I | = n and the number of enumerated objects for I ∈ I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.

• If we fails to produce a lower bound that is “sufficiently close”
to our upper bound, then this usually means that the upper
bound is too big.



Lower bounds Conclusions Open problems

Upper and Lower bounds
Suppose that there is a family of instances I of an enumeration
problem such that for every n ∈ N, I contains an instance I with
|I | = n and the number of enumerated objects for I ∈ I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.

• If we fails to produce a lower bound that is “sufficiently close”
to our upper bound, then this usually means that the upper
bound is too big.



Lower bounds Conclusions Open problems

Upper and Lower bounds
Suppose that there is a family of instances I of an enumeration
problem such that for every n ∈ N, I contains an instance I with
|I | = n and the number of enumerated objects for I ∈ I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.

• If we fails to produce a lower bound that is “sufficiently close”
to our upper bound, then this usually means that the upper
bound is too big.



Lower bounds Conclusions Open problems

Maximal independent sets

An n-vertex graph has at most 3n/3 maximal independent sets that
can be enumerated in time O∗(3n/3) and there are n = 3k-vertex
graphs that have 3n/3 maximal independent sets.

n/3



Lower bounds Conclusions Open problems

Maximal independent sets

An n-vertex graph has at most 3n/3 maximal independent sets that
can be enumerated in time O∗(3n/3) and there are n = 3k-vertex
graphs that have 3n/3 maximal independent sets.

n/3



Lower bounds Conclusions Open problems

Minimal connected dominating sets

An n-vertex chordal graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.4736n) and
there are n = 3k + 2-vertex interval graphs that have 3(n−2)/3

(1.44.22n) minimal connected dominating sets.

(n − 2)/3



Lower bounds Conclusions Open problems

Minimal connected dominating sets

An n-vertex chordal graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.4736n) and
there are n = 3k + 2-vertex interval graphs that have 3(n−2)/3

(1.44.22n) minimal connected dominating sets.

(n − 2)/3



Lower bounds Conclusions Open problems

Minimal dominating sets

An n-vertex graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.7159n) and
there are n = 6k-vertex i graphs that have 15n/6 (1.5704n)
minimal dominating sets.

n/6



Lower bounds Conclusions Open problems

Minimal dominating sets

An n-vertex graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.7159n) and
there are n = 6k-vertex i graphs that have 15n/6 (1.5704n)
minimal dominating sets.

n/6



Lower bounds Conclusions Open problems

Minimal dominating sets for trees

Naive bound: Three are n = 2k-vertex trees that have 2n/2

minimal dominating sets.

(n − 2)/2



Lower bounds Conclusions Open problems

Minimal dominating sets for trees

Naive bound: Three are n = 2k-vertex trees that have 2n/2

minimal dominating sets.

(n − 2)/2



Lower bounds Conclusions Open problems

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have 12161n/27 minimal
dominating sets.

121611/27 ≈ 1.4167 > 21/2 ≈ 1.4142

Current upper bound: 3n/3.



Lower bounds Conclusions Open problems

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have 12161n/27 minimal
dominating sets.

121611/27 ≈ 1.4167 > 21/2 ≈ 1.4142

Current upper bound: 3n/3.



Lower bounds Conclusions Open problems

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have 12161n/27 minimal
dominating sets.

121611/27 ≈ 1.4167 > 21/2 ≈ 1.4142

Current upper bound: 3n/3.



Lower bounds Conclusions Open problems

Proof

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 3 · (26 − 1)2 minimal dominating sets D such that
D ∩ A 6= ∅ and D ∩ B 6= ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 3 · (26 − 1)2 minimal dominating sets D such that
D ∩ A 6= ∅ and D ∩ B 6= ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 3 · (26 − 1)2 minimal dominating sets D such that
D ∩ A 6= ∅ and D ∩ B 6= ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 3 · (26 − 1)2 minimal dominating sets D such that
D ∩ A 6= ∅ and D ∩ B 6= ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 2 · (26 − 1) minimal dominating sets D such that
D ∩A = ∅ and D ∩B 6= ∅ and, symmetrically, there are 2 · (26 − 1)
minimal dominating sets D such that D ∩ A 6= ∅ and D ∩ B = ∅

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 2 · (26 − 1) minimal dominating sets D such that
D ∩A = ∅ and D ∩B 6= ∅ and, symmetrically, there are 2 · (26 − 1)
minimal dominating sets D such that D ∩ A 6= ∅ and D ∩ B = ∅

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 2 · (26 − 1) minimal dominating sets D such that
D ∩A = ∅ and D ∩B 6= ∅ and, symmetrically, there are 2 · (26 − 1)
minimal dominating sets D such that D ∩ A 6= ∅ and D ∩ B = ∅

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 2 minimal dominating sets D such that D ∩ A = ∅ and
D ∩ B = ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

There are 2 minimal dominating sets D such that D ∩ A = ∅ and
D ∩ B = ∅.

B

x

y

z

A



Lower bounds Conclusions Open problems

Proof

The total number of minimal dominating sets is

3 · (26 − 1)2 + 2 · 2 · (26 − 1) + 2 = 12161.

n/27

This tree has 12161n/27 minimal dominating sets.



Lower bounds Conclusions Open problems

Proof

The total number of minimal dominating sets is

3 · (26 − 1)2 + 2 · 2 · (26 − 1) + 2 = 12161.

n/27

This tree has 12161n/27 minimal dominating sets.



Lower bounds Conclusions Open problems

Proof

The total number of minimal dominating sets is

3 · (26 − 1)2 + 2 · 2 · (26 − 1) + 2 = 12161.

n/27

This tree has 12161n/27 minimal dominating sets.



Lower bounds Conclusions Open problems

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts



Lower bounds Conclusions Open problems

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts



Lower bounds Conclusions Open problems

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts



Lower bounds Conclusions Open problems

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts



Lower bounds Conclusions Open problems

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts



Lower bounds Conclusions Open problems

Minimal separators

Naive bound: Three are n = 3k + 2-vertex graphs that have
3(n−2)/3 minimal separators.

(n − 2)/3
s t



Lower bounds Conclusions Open problems

Minimal separators

Naive bound: Three are n = 3k + 2-vertex graphs that have
3(n−2)/3 minimal separators.

(n − 2)/3
s t



Lower bounds Conclusions Open problems

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457n minimal
(s, t)-separators.

1.4457 > 31/3 ≈ 1.4422.

Current upper bound: O(1.6180n).



Lower bounds Conclusions Open problems

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457n minimal
(s, t)-separators.

1.4457 > 31/3 ≈ 1.4422.

Current upper bound: O(1.6180n).



Lower bounds Conclusions Open problems

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457n minimal
(s, t)-separators.

1.4457 > 31/3 ≈ 1.4422.

Current upper bound: O(1.6180n).



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

Note that 126 =
(9
4

)
; we make each ai adjacent to 4 vertices of

{u1, . . . , u9} in such a way that ai -s have distinct neighborhoods.



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

Note that 126 =
(9
4

)
; we make each ai adjacent to 4 vertices of

{u1, . . . , u9} in such a way that ai -s have distinct neighborhoods.



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

Symmetrically we make each ci adjacent to 4 vertices of
{w1, . . . ,w9} in such a way that ci -s have distinct neighborhoods.



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

Claim: This graph has > 2.4603 · 1063 minimal (s, t)-separators.



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

For 0 ≤ p, q ≤ 9, let Ns,t be the number of minimal
(s, t)-separators that have p vertices from {u1, . . . , u9} and q
vertices from {w1, . . . ,w9}.

Consider the cases (i) p, q = 0, (ii) p = 0 and q ≥ 4, (iii) p ≥ 4
and q = 0, (iv) p, q ≥ 4 and lower bound |Sp,q|.



Lower bounds Conclusions Open problems

Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

For 0 ≤ p, q ≤ 9, let Ns,t be the number of minimal
(s, t)-separators that have p vertices from {u1, . . . , u9} and q
vertices from {w1, . . . ,w9}.

Consider the cases (i) p, q = 0, (ii) p = 0 and q ≥ 4, (iii) p ≥ 4
and q = 0, (iv) p, q ≥ 4 and lower bound |Sp,q|.



Lower bounds Conclusions Open problems

Sketch of the proof

ts

This graph has at least 1.4457n minimal (s, t)-separators.



Lower bounds Conclusions Open problems

Sketch of the proof

ts

This graph has at least 1.4457n minimal (s, t)-separators.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

• The running time depends on the length of the input only
(e.g., the number of vertices of the input graph).

• We use the classical worst case running time analysis.

• If the number of objects to be enumerated is exponential (in
the worst case), then an input-sensitive enumeration algorithm
runs in exponential time.

• We use exact exponential-time algorithms, in particular
branching algorithms.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .

• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

Problem (3-Satisfiability)

Input: A Boolean formula φ with n variables in the
conjunctive normal form such that each clause
contain 3 literals.

Task: Decide whether φ has a satisfying assignment of
variables.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

Problem (3-Satisfiability)

Input: A Boolean formula φ with n variables in the
conjunctive normal form such that each clause
contain 3 literals.

Task: Decide whether φ has a satisfying assignment of
variables.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

• Search for a satisfying assignment at Hamming distance at
most n/4.

The algorithm runs in time O∗(1.5n).



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

• Search for a satisfying assignment at Hamming distance at
most n/4.

The algorithm runs in time O∗(1.5n).



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

• Search for a satisfying assignment at Hamming distance at
most n/4.

The algorithm runs in time O∗(1.5n).



Lower bounds Conclusions Open problems

Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

• Search for a satisfying assignment at Hamming distance at
most n/4.

The algorithm runs in time O∗(1.5n).



Lower bounds Conclusions Open problems

Parameterized complexity

Parameterized Complexity is a two-dimensional framework for
studying the computations complexity;

• one dimension is the input size n,

• another one is a parameter k .

A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time

f (k) · nO(1).



Lower bounds Conclusions Open problems

Parameterized complexity

Parameterized Complexity is a two-dimensional framework for
studying the computations complexity;

• one dimension is the input size n,

• another one is a parameter k .

A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time

f (k) · nO(1).



Lower bounds Conclusions Open problems

Extension problems

Let P be a property of vertex subsets of a graph.

The property can depend on the input graph but we should be able
to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set U ⊆ V (G ) satisfying P.

Problem (P-Extension)

Input: A graph G, U ⊆ V (G ), and a non-negative integer k.

Parameter: k

Task: Decide whether there is a set X ⊆ V (G ) \ U of size
at most k such that U ∪ X satisfies P.



Lower bounds Conclusions Open problems

Extension problems

Let P be a property of vertex subsets of a graph.
The property can depend on the input graph but we should be able
to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set U ⊆ V (G ) satisfying P.

Problem (P-Extension)

Input: A graph G, U ⊆ V (G ), and a non-negative integer k.

Parameter: k

Task: Decide whether there is a set X ⊆ V (G ) \ U of size
at most k such that U ∪ X satisfies P.



Lower bounds Conclusions Open problems

Extension problems

Let P be a property of vertex subsets of a graph.
The property can depend on the input graph but we should be able
to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set U ⊆ V (G ) satisfying P.

Problem (P-Extension)

Input: A graph G, U ⊆ V (G ), and a non-negative integer k.

Parameter: k

Task: Decide whether there is a set X ⊆ V (G ) \ U of size
at most k such that U ∪ X satisfies P.



Lower bounds Conclusions Open problems

Extension problems

Let P be a property of vertex subsets of a graph.
The property can depend on the input graph but we should be able
to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set U ⊆ V (G ) satisfying P.

Problem (P-Extension)

Input: A graph G, U ⊆ V (G ), and a non-negative integer k.

Parameter: k

Task: Decide whether there is a set X ⊆ V (G ) \ U of size
at most k such that U ∪ X satisfies P.



Lower bounds Conclusions Open problems

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh:
Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a randomized algorithm for P-Subset
with running time O∗((2− 1

c )n).

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a deterministic algorithm for P-Subset
with running time O∗((2− 1

c )n+o(n)).



Lower bounds Conclusions Open problems

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh:
Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a randomized algorithm for P-Subset
with running time O∗((2− 1

c )n).

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a deterministic algorithm for P-Subset
with running time O∗((2− 1

c )n+o(n)).



Lower bounds Conclusions Open problems

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh:
Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a randomized algorithm for P-Subset
with running time O∗((2− 1

c )n).

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a deterministic algorithm for P-Subset
with running time O∗((2− 1

c )n+o(n)).



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if G − X
is acyclic.

A feedback vertex set is (inclusion) minimal if every Y ⊂ X is not
a feedback vertex set.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if G − X
is acyclic.

A feedback vertex set is (inclusion) minimal if every Y ⊂ X is not
a feedback vertex set.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if G − X
is acyclic.

A feedback vertex set is (inclusion) minimal if every Y ⊂ X is not
a feedback vertex set.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if G − X
is acyclic.

A feedback vertex set is (inclusion) minimal if every Y ⊂ X is not
a feedback vertex set.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638n minimal feedback vertex
sets and these sets can be enumerated in time O(1.8638n).

Theorem (Gaspers and Lee, 2017)

An n-vertex graph has O(1.8527n) minimal feedback vertex sets
and these sets can be enumerated in time O(1.8527n).

Lower bound: There are n = 10k-vertex graphs with at least
105n/10 (1.5926n) minimal feedback vertex sets.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638n minimal feedback vertex
sets and these sets can be enumerated in time O(1.8638n).

Theorem (Gaspers and Lee, 2017)

An n-vertex graph has O(1.8527n) minimal feedback vertex sets
and these sets can be enumerated in time O(1.8527n).

Lower bound: There are n = 10k-vertex graphs with at least
105n/10 (1.5926n) minimal feedback vertex sets.



Lower bounds Conclusions Open problems

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638n minimal feedback vertex
sets and these sets can be enumerated in time O(1.8638n).

Theorem (Gaspers and Lee, 2017)

An n-vertex graph has O(1.8527n) minimal feedback vertex sets
and these sets can be enumerated in time O(1.8527n).

Lower bound: There are n = 10k-vertex graphs with at least
105n/10 (1.5926n) minimal feedback vertex sets.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at
most 1.8394n minimal hitting sets and these sets can be
enumerated it time O(1.8394n) where n = |U|.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6755n) where n = |U|.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6727n) where n = |U|.

Lower bound: There is a family of sets S that have 1.5848n

minimal hitting sets.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at
most 1.8394n minimal hitting sets and these sets can be
enumerated it time O(1.8394n) where n = |U|.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6755n) where n = |U|.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6727n) where n = |U|.

Lower bound: There is a family of sets S that have 1.5848n

minimal hitting sets.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at
most 1.8394n minimal hitting sets and these sets can be
enumerated it time O(1.8394n) where n = |U|.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6755n) where n = |U|.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6727n) where n = |U|.

Lower bound: There is a family of sets S that have 1.5848n

minimal hitting sets.



Lower bounds Conclusions Open problems

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at
most 1.8394n minimal hitting sets and these sets can be
enumerated it time O(1.8394n) where n = |U|.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6755n) where n = |U|.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S
can be enumerated it time O(1.6727n) where n = |U|.

Lower bound: There is a family of sets S that have 1.5848n

minimal hitting sets.



Lower bounds Conclusions Open problems

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are
using local properties.

For example, a set of vertices X ⊆ V (G ) is a maximal independent
set if and only if

• for every v ∈ X , the neighbors of v are not in X ,

• for every u ∈ V (G ), at least one neighbor of u is in X .

Task: Develop enumeration techniques for sets defined by
non-local properties.



Lower bounds Conclusions Open problems

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are
using local properties.

For example,

a set of vertices X ⊆ V (G ) is a maximal independent
set if and only if

• for every v ∈ X , the neighbors of v are not in X ,

• for every u ∈ V (G ), at least one neighbor of u is in X .

Task: Develop enumeration techniques for sets defined by
non-local properties.



Lower bounds Conclusions Open problems

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are
using local properties.

For example, a set of vertices X ⊆ V (G ) is a maximal independent
set if and only if

• for every v ∈ X , the neighbors of v are not in X ,

• for every u ∈ V (G ), at least one neighbor of u is in X .

Task: Develop enumeration techniques for sets defined by
non-local properties.



Lower bounds Conclusions Open problems

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are
using local properties.

For example, a set of vertices X ⊆ V (G ) is a maximal independent
set if and only if

• for every v ∈ X , the neighbors of v are not in X ,

• for every u ∈ V (G ), at least one neighbor of u is in X .

Task: Develop enumeration techniques for sets defined by
non-local properties.



Lower bounds Conclusions Open problems

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are
using local properties.

For example, a set of vertices X ⊆ V (G ) is a maximal independent
set if and only if

• for every v ∈ X , the neighbors of v are not in X ,

• for every u ∈ V (G ), at least one neighbor of u is in X .

Task: Develop enumeration techniques for sets defined by
non-local properties.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

A set of vertices D of a graph G is a connected dominating set if

• D is a dominating set,

• G [D] is connected.

A connected dominating set D is minimal if D is a connected
dominating set and for every D ′ ⊂ D, D ′ is not a connected
dominating set.



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be
enumerated in time O∗(2n).

All minimal connected dominating sets can be enumerated in time
O∗(2(1−ε)n) for some (small) ε > 0 (Lokshtanov, Pilipczuk,
Saurabh, 2016).

There are graphs with at least 3(n−2)/3 minimal CDS:



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be
enumerated in time O∗(2n).

All minimal connected dominating sets can be enumerated in time
O∗(2(1−ε)n) for some (small) ε > 0 (Lokshtanov, Pilipczuk,
Saurabh, 2016).

There are graphs with at least 3(n−2)/3 minimal CDS:



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be
enumerated in time O∗(2n).

All minimal connected dominating sets can be enumerated in time
O∗(2(1−ε)n) for some (small) ε > 0 (Lokshtanov, Pilipczuk,
Saurabh, 2016).

There are graphs with at least 3(n−2)/3 minimal CDS:



Lower bounds Conclusions Open problems

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an n vertex graph can be
enumerated in time O∗(2n).

All minimal connected dominating sets can be enumerated in time
O∗(2(1−ε)n) for some (small) ε > 0 (Lokshtanov, Pilipczuk,
Saurabh, 2016).

There are graphs with at least 3(n−2)/3 minimal CDS:



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

• X is a vertex cover, that is, for every uv ∈ E (G ), u ∈ X or
v ∈ X ,

• G [X ] is connected.

A connected vertex cover X is minimal if X is a connected vertex
cover and for every X ′ ⊂ X , X ′ is not a connected vertex cover.



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G.

Task: Enumerate all minimal connected vertex covers.

An n-vertex graph has at most 2 · 1.7076n connected vertex covers
an these sets can be enumerated in time O∗(1.7076n)
(Wingsternes, 2018).

There are graphs with at least 1.5197n minimal connected vertex
covers (Ryland, 2018).



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G.

Task: Enumerate all minimal connected vertex covers.

An n-vertex graph has at most 2 · 1.7076n connected vertex covers
an these sets can be enumerated in time O∗(1.7076n)
(Wingsternes, 2018).

There are graphs with at least 1.5197n minimal connected vertex
covers (Ryland, 2018).



Lower bounds Conclusions Open problems

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G.

Task: Enumerate all minimal connected vertex covers.

An n-vertex graph has at most 2 · 1.7076n connected vertex covers
an these sets can be enumerated in time O∗(1.7076n)
(Wingsternes, 2018).

There are graphs with at least 1.5197n minimal connected vertex
covers (Ryland, 2018).



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.

Every minimal dominating set is a maximal irredundant set but not
the other way around.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

A set of vertices D of a graph G is a irredundant set if for every
v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
other vertices of D.

It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.

Every minimal dominating set is a maximal irredundant set but not
the other way around.



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an n vertex graph can be
enumerated in time O∗(2n).

There are graphs with at least 10n/5 maximal irredundant sets:



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an n vertex graph can be
enumerated in time O∗(2n).

There are graphs with at least 10n/5 maximal irredundant sets:



Lower bounds Conclusions Open problems

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an n vertex graph can be
enumerated in time O∗(2n).

There are graphs with at least 10n/5 maximal irredundant sets:


	Lower bounds
	Conclusions
	Open problems

