◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Input-Sensitive Enumerations

Petr Golovach

Department of Informatics, University of Bergen

SGT 2018, Sète, France, 15.06.2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan of the lectures

- Introduction to branching enumeration algorithms and their analysis.
- Advanced analysis of branching algorithms; the "Measure and Conquer" technique.
- Lower bounds.
- Conclusions and open problems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan of the lectures

- Introduction to branching enumeration algorithms and their analysis.
- Advanced analysis of branching algorithms; the "Measure and Conquer" technique.
- Lower bounds.
- Conclusions and open problems.

Upper and Lower bounds

Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with |I| = n and the number of enumerated objects for $I \in \mathcal{I}$ is f(|I|).

Then f(n) provides an unconditional *running time lower bound* for every enumeration algorithm.

Upper and Lower bounds

Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with |I| = n and the number of enumerated objects for $I \in \mathcal{I}$ is f(|I|).

Then f(n) provides an unconditional *running time lower bound* for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the "best" running time.
- Construct the "best" lower bound.

Upper and Lower bounds

Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with |I| = n and the number of enumerated objects for $I \in \mathcal{I}$ is f(|I|).

Then f(n) provides an unconditional *running time lower bound* for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the "best" running time.
- Construct the "best" lower bound.
- Ideally, we wish to get (asymptotically) tight upper and lower bounds for running time and combinatorial bounds for the number of enumerated objects.

Upper and Lower bounds

Suppose that there is a family of instances \mathcal{I} of an enumeration problem such that for every $n \in \mathbb{N}$, \mathcal{I} contains an instance I with |I| = n and the number of enumerated objects for $I \in \mathcal{I}$ is f(|I|).

Then f(n) provides an unconditional *running time lower bound* for every enumeration algorithm.

Our aim is

- Construct an enumeration algorithm with the "best" running time.
- Construct the "best" lower bound.
- Ideally, we wish to get (asymptotically) tight upper and lower bounds for running time and combinatorial bounds for the number of enumerated objects.
- If we fails to produce a lower bound that is "sufficiently close" to our upper bound, then this usually means that the upper bound is too big.

Maximal independent sets

An *n*-vertex graph has at most $3^{n/3}$ maximal independent sets that can be enumerated in time $O^*(3^{n/3})$ and there are n = 3k-vertex graphs that have $3^{n/3}$ maximal independent sets.

Maximal independent sets

An *n*-vertex graph has at most $3^{n/3}$ maximal independent sets that can be enumerated in time $O^*(3^{n/3})$ and there are n = 3k-vertex graphs that have $3^{n/3}$ maximal independent sets.

Minimal connected dominating sets

An *n*-vertex chordal graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.4736^n)$ and there are n = 3k + 2-vertex interval graphs that have $3^{(n-2)/3}$ (1.44.22ⁿ) minimal connected dominating sets.

Minimal connected dominating sets

An *n*-vertex chordal graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.4736^n)$ and there are n = 3k + 2-vertex interval graphs that have $3^{(n-2)/3}$ (1.44.22^{*n*}) minimal connected dominating sets.

Minimal dominating sets

An *n*-vertex graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.7159^n)$ and there are n = 6k-vertex i graphs that have $15^{n/6}$ (1.5704ⁿ) minimal dominating sets.

Minimal dominating sets

An *n*-vertex graph has at most 1.4736^n minimal connected dominating sets that can be enumerated in time $O(1.7159^n)$ and there are n = 6k-vertex i graphs that have $15^{n/6}$ (1.5704ⁿ) minimal dominating sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Minimal dominating sets for trees

Naive bound: Three are n = 2k-vertex trees that have $2^{n/2}$ minimal dominating sets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Minimal dominating sets for trees

Naive bound: Three are n = 2k-vertex trees that have $2^{n/2}$ minimal dominating sets.

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have $12161^{n/27}$ minimal dominating sets.

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have $12161^{n/27}$ minimal dominating sets.

$12161^{1/27}\approx 1.4167>2^{1/2}\approx 1.4142$

Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have $12161^{n/27}$ minimal dominating sets.

$12161^{1/27}\approx 1.4167>2^{1/2}\approx 1.4142$

Current upper bound: $3^{n/3}$.

Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof

Proof

Proof

Proof

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$

ヘロン 人間 とくほと くほとう

Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$

ヘロン 人間 とくほと くほとう

Proof

There are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A = \emptyset$ and $D \cap B \neq \emptyset$ and, symmetrically, there are $2 \cdot (2^6 - 1)$ minimal dominating sets D such that $D \cap A \neq \emptyset$ and $D \cap B = \emptyset$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof

There are 2 minimal dominating sets *D* such that $D \cap A = \emptyset$ and $D \cap B = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof

There are 2 minimal dominating sets *D* such that $D \cap A = \emptyset$ and $D \cap B = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof

The total number of minimal dominating sets is

$$3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161.$$

・ロト ・ 一下・ ・ モト ・ モト・

æ

Proof

The total number of minimal dominating sets is

$$3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161.$$

Proof

The total number of minimal dominating sets is

$$3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161.$$

This tree has $12161^{n/27}$ minimal dominating sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is *(inclusion) minimal* if every $S' \subset S$ is not an (s, t)-separator.

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is *(inclusion) minimal* if every $S' \subset S$ is not an (s, t)-separator.

Minimal separators

Let G be a graph, and let s and t be distinct vertices of G.

A set of vertices $S \subseteq V(G) \setminus \{s, t\}$ is an (s, t)-separator if s and t are in distinct components of $G - \{s, t\}$.

An (s, t)-separator is *(inclusion) minimal* if every $S' \subset S$ is not an (s, t)-separator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Minimal separators

Naive bound: Three are n = 3k + 2-vertex graphs that have $3^{(n-2)/3}$ minimal separators.

Minimal separators

Naive bound: Three are n = 3k + 2-vertex graphs that have $3^{(n-2)/3}$ minimal separators.

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457^n minimal (s, t)-separators.

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457^n minimal (s, t)-separators.

 $1.4457 > 3^{1/3} \approx 1.4422.$

Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457^n minimal (s, t)-separators.

 $1.4457 > 3^{1/3} \approx 1.4422.$

Current upper bound: $O(1.6180^n)$.

Sketch of the proof

Sketch of the proof

Note that $126 = \binom{9}{4}$; we make each a_i adjacent to 4 vertices of $\{u_1, \ldots, u_9\}$ in such a way that a_i -s have distinct neighborhoods.

(日)、

- 2

Sketch of the proof

Symmetrically we make each c_i adjacent to 4 vertices of $\{w_1, \ldots, w_9\}$ in such a way that c_i -s have distinct neighborhoods.

Sketch of the proof

Claim: This graph has $> 2.4603 \cdot 10^{63}$ minimal (*s*, *t*)-separators.

Sketch of the proof

For $0 \le p, q \le 9$, let $N_{s,t}$ be the number of minimal (s, t)-separators that have p vertices from $\{u_1, \ldots, u_9\}$ and q vertices from $\{w_1, \ldots, w_9\}$.

Sketch of the proof

For $0 \le p, q \le 9$, let $N_{s,t}$ be the number of minimal (s, t)-separators that have p vertices from $\{u_1, \ldots, u_9\}$ and q vertices from $\{w_1, \ldots, w_9\}$.

Consider the cases (i) p, q = 0, (ii) p = 0 and $q \ge 4$, (iii) $p \ge 4$ and q = 0, (iv) $p, q \ge 4$ and lower bound $|S_{p,q}|$. Conclusions

Open problems

Sketch of the proof

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Conclusions

Open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sketch of the proof

This graph has at least 1.4457^n minimal (s, t)-separators.

Input-sensitive enumeration

- The running time depends on the length of the input only (e.g., the number of vertices of the input graph).
- We use the classical worst case running time analysis.
- If the number of objects to be enumerated is *exponential* (in the worst case), then an input-sensitive enumeration algorithm runs in *exponential* time.
- We use *exact exponential-time algorithms*, in particular *branching algorithms*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Input-sensitive enumeration

We considered

· basics of branching enumeration algorithms and their analysis,

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

Other techniques:

• Brute force.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

- Brute force.
- Dynamic programming.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

- Brute force.
- Dynamic programming.
- ...

Input-sensitive enumeration

We considered

- basics of branching enumeration algorithms and their analysis,
- advanced analysis of branching algorithms using the "Measure & Conquer" technique,
- lower bounds.

- Brute force.
- Dynamic programming.
- . . .
- Combinations of distinct techniques.

Schöning's algorithm for 3-Satisfiability

Problem (3-Satisfiability)

- **Input:** A Boolean formula ϕ with n variables in the conjunctive normal form such that each clause contain 3 literals.
- **Task:** Decide whether ϕ has a satisfying assignment of variables.

Schöning's algorithm for 3-Satisfiability

Problem (3-Satisfiability)

- **Input:** A Boolean formula ϕ with n variables in the conjunctive normal form such that each clause contain 3 literals.
- **Task:** Decide whether ϕ has a satisfying assignment of variables.

$$\phi = (x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee x_2 \vee \neg x_3)$$

Schöning's algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Schöning's algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Schöning's algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

- Assign the values of of the variables uniformly at random.
- Search for a satisfying assignment at Hamming distance at most n/4.

Schöning's algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

- Assign the values of of the variables uniformly at random.
- Search for a satisfying assignment at Hamming distance at most n/4.

The algorithm runs in time $O^*(1.5^n)$.

Parameterized complexity

Parameterized Complexity is a two-dimensional framework for studying the computations complexity;

- one dimension is the input size n,
- another one is a *parameter k*.

Parameterized complexity

Parameterized Complexity is a two-dimensional framework for studying the computations complexity;

- one dimension is the input size n,
- another one is a *parameter k*.

A parameterized problem is *fixed-parameter tractable (FPT)* if it can be solved in time

 $f(k) \cdot n^{O(1)}$.

Extension problems

Let P be a property of vertex subsets of a graph.

Extension problems

Let P be a property of vertex subsets of a graph.

The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.

Extension problems

Let P be a property of vertex subsets of a graph.

The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.

Problem (*P***-Subset)**

Input: A graph G.

Task: Decide whether there is a set $U \subseteq V(G)$ satisfying *P*.

Extension problems

Let P be a property of vertex subsets of a graph.

The property can depend on the input graph but we should be able to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G.

Task: Decide whether there is a set $U \subseteq V(G)$ satisfying *P*.

Problem (*P***-Extension)**

Input: A graph G, $U \subseteq V(G)$, and a non-negative integer k. **Parameter:** k

Task: Decide whether there is a set $X \subseteq V(G) \setminus U$ of size at most k such that $U \cup X$ satisfies P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh: Exact algorithms via monotone local search. STOC 2016: 764-775.

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh: Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem

If there exists an algorithm for *P*-Extension with running time $c^k n^{O(1)}$, then there exists a randomized algorithm for *P*-Subset with running time $O^*((2 - \frac{1}{c})^n)$.

Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh: Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem

If there exists an algorithm for *P*-Extension with running time $c^k n^{O(1)}$, then there exists a randomized algorithm for *P*-Subset with running time $O^*((2 - \frac{1}{c})^n)$.

Theorem

If there exists an algorithm for P-Extension with running time $c^k n^{O(1)}$, then there exists a deterministic algorithm for P-Subset with running time $O^*((2 - \frac{1}{c})^{n+o(n)})$.

Minimal feedback vertex sets

A set of vertices X of a graph G is a *feedback vertex set* if G - X is acyclic.

Minimal feedback vertex sets

A set of vertices X of a graph G is a *feedback vertex set* if G - X is acyclic.

A feedback vertex set is *(inclusion) minimal* if every $Y \subset X$ is not a feedback vertex set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimal feedback vertex sets

A set of vertices X of a graph G is a *feedback vertex set* if G - X is acyclic.

A feedback vertex set is *(inclusion) minimal* if every $Y \subset X$ is not a feedback vertex set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimal feedback vertex sets

A set of vertices X of a graph G is a *feedback vertex set* if G - X is acyclic.

A feedback vertex set is *(inclusion) minimal* if every $Y \subset X$ is not a feedback vertex set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An *n*-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An *n*-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

Theorem (Gaspers and Lee, 2017)

An *n*-vertex graph has $O(1.8527^n)$ minimal feedback vertex sets and these sets can be enumerated in time $O(1.8527^n)$.

Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An *n*-vertex graph has at most 1.8638^n minimal feedback vertex sets and these sets can be enumerated in time $O(1.8638^n)$.

Theorem (Gaspers and Lee, 2017)

An *n*-vertex graph has $O(1.8527^n)$ minimal feedback vertex sets and these sets can be enumerated in time $O(1.8527^n)$.

Lower bound: There are n = 10k-vertex graphs with at least $105^{n/10}$ (1.5926ⁿ) minimal feedback vertex sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Enumeration of minimal hitting sets

Let \mathcal{S} be a family of subsets over an universe \mathcal{U} .

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U. $X \subseteq U$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

Enumeration of minimal hitting sets

Let \mathcal{S} be a family of subsets over an universe \mathcal{U} .

 $X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U.

 $X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U.

 $X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U.

 $X \subseteq \mathcal{U}$ is a hitting set for S if for every $S \in S$, $X \cap S \neq \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394ⁿ minimal hitting sets and these sets can be enumerated it time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394ⁿ minimal hitting sets and these sets can be enumerated it time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated it time $O(1.6755^n)$ where $n = |\mathcal{U}|$.

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394ⁿ minimal hitting sets and these sets can be enumerated it time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated it time $O(1.6755^n)$ where $n = |\mathcal{U}|$.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated it time $O(1.6727^n)$ where $n = |\mathcal{U}|$.

Enumeration of minimal hitting sets

We proved that if S contains sets of size at most 3, then S has at most 1.8394ⁿ minimal hitting sets and these sets can be enumerated it time $O(1.8394^n)$ where $n = |\mathcal{U}|$.

Theorem (Cochefert, Couturier, Kratsch, 2016)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated it time $O(1.6755^n)$ where $n = |\mathcal{U}|$.

Theorem (Gaspers and Lee, 2017)

If S contains sets of size at most 3, then minimal hitting sets of S can be enumerated it time $O(1.6727^n)$ where $n = |\mathcal{U}|$.

Lower bound: There is a family of sets S that have 1.5848^n minimal hitting sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example,

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

• for every $v \in X$, the neighbors of v are not in X,

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

- for every $v \in X$, the neighbors of v are not in X,
- for every $u \in V(G)$, at least one neighbor of u is in X.

Limitations of branching algorithms

All efficient branching algorithms for subsets enumerations are using *local* properties.

For example, a set of vertices $X \subseteq V(G)$ is a maximal independent set if and only if

- for every $v \in X$, the neighbors of v are not in X,
- for every $u \in V(G)$, at least one neighbor of u is in X.

Task: Develop enumeration techniques for sets defined by *non-local* properties.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

• D is a dominating set,

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- G[D] is connected.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- *G*[*D*] is connected.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- *G*[*D*] is connected.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- *G*[*D*] is connected.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- *G*[*D*] is connected.

Enumeration of connected dominating sets

A set of vertices D of a graph G is a *connected dominating* set if

- *D* is a dominating set,
- *G*[*D*] is connected.

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

- **Input:** A connected graph G.
 - Task: Enumerate all minimal connected dominated sets.

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G. **Task:** Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an *n* vertex graph can be enumerated in time $O^*(2^n)$.

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an *n* vertex graph can be enumerated in time $O^*(2^n)$.

All minimal connected dominating sets can be enumerated in time $O^*(2^{(1-\varepsilon)n})$ for some (small) $\varepsilon > 0$ (Lokshtanov, Pilipczuk, Saurabh, 2016).

Enumeration of connected dominating sets

Problem (Enumeration of Minimal CDS)

Input: A connected graph G.

Task: Enumerate all minimal connected dominated sets.

All minimal connected dominating sets of an *n* vertex graph can be enumerated in time $O^*(2^n)$.

All minimal connected dominating sets can be enumerated in time $O^*(2^{(1-\varepsilon)n})$ for some (small) $\varepsilon > 0$ (Lokshtanov, Pilipczuk, Saurabh, 2016).

There are graphs with at least $3^{(n-2)/3}$ minimal CDS:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

 X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- *G*[*X*] is connected.

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- G[X] is connected.

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- G[X] is connected.

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- G[X] is connected.

Enumeration of connected vertex covers

A set of vertices X of a graph G is a *connected vertex cover* if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- G[X] is connected.

Enumeration of connected vertex covers

A set of vertices X of a graph G is a connected vertex cover if

- X is a vertex cover, that is, for every uv ∈ E(G), u ∈ X or v ∈ X,
- G[X] is connected.

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G. **Task:** Enumerate all minimal connected vertex covers.

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G. **Task:** Enumerate all minimal connected vertex covers.

An *n*-vertex graph has at most $2 \cdot 1.7076^n$ connected vertex covers an these sets can be enumerated in time $O^*(1.7076^n)$ (Wingsternes, 2018).

Enumeration of connected vertex covers

Problem (Enumeration of Minimal CVC)

Input: A connected graph G. **Task:** Enumerate all minimal connected vertex covers.

An *n*-vertex graph has at most $2 \cdot 1.7076^n$ connected vertex covers an these sets can be enumerated in time $O^*(1.7076^n)$ (Wingsternes, 2018).

There are graphs with at least 1.5197ⁿ minimal connected vertex covers (Ryland, 2018).

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that *u* is a *private* vertex for *v*.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a *private* vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a private vertex for v.

Enumeration of irredundant sets

A set of vertices D of a graph G is a *irredundant* set if for every $v \in D$ there is a vertex $u \in N[v]$ such that u is not adjacent to other vertices of D.

It is said that u is a private vertex for v.

An irredundant set D is *maximal* if D is an irredundant set and for every $D' \supset D$, D' is not an irredundant set.

Every minimal dominating set is a maximal irredundant set but not the other way around.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G. **Task:** Enumerate all maximal irredundant sets.

All maximal irredundant sets of an *n* vertex graph can be enumerated in time $O^*(2^n)$.

Enumeration of irredundant sets

Problem (Enumeration of Maximal IS)

Input: A graph G.

Task: Enumerate all maximal irredundant sets.

All maximal irredundant sets of an *n* vertex graph can be enumerated in time $O^*(2^n)$.

There are graphs with at least $10^{n/5}$ maximal irredundant sets:

