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SGT 2018, Sète, France, 15.06.2018



Lower bounds Conclusions Open problems

Plan of the lectures

• Introduction to branching enumeration algorithms and their
analysis.
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Upper and Lower bounds
Suppose that there is a family of instances I of an enumeration
problem such that for every n ∈ N, I contains an instance I with
|I | = n and the number of enumerated objects for I ∈ I is f (|I |).

Then f (n) provides an unconditional running time lower bound for
every enumeration algorithm.

Our aim is

• Construct an enumeration algorithm with the “best” running
time.

• Construct the “best” lower bound.

• Ideally, we wish to get (asymptotically) tight upper and lower
bounds for running time and combinatorial bounds for the
number of enumerated objects.

• If we fails to produce a lower bound that is “sufficiently close”
to our upper bound, then this usually means that the upper
bound is too big.
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Maximal independent sets

An n-vertex graph has at most 3n/3 maximal independent sets that
can be enumerated in time O∗(3n/3) and there are n = 3k-vertex
graphs that have 3n/3 maximal independent sets.

n/3
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Minimal connected dominating sets

An n-vertex chordal graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.4736n) and
there are n = 3k + 2-vertex interval graphs that have 3(n−2)/3

(1.44.22n) minimal connected dominating sets.

(n − 2)/3
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Minimal dominating sets

An n-vertex graph has at most 1.4736n minimal connected
dominating sets that can be enumerated in time O(1.7159n) and
there are n = 6k-vertex i graphs that have 15n/6 (1.5704n)
minimal dominating sets.

n/6
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Minimal dominating sets for trees

Naive bound: Three are n = 2k-vertex trees that have 2n/2

minimal dominating sets.

(n − 2)/2
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Minimal dominating sets for trees

Theorem (Krzywkowski, 2013)

There are n = 27k-vertex trees that have 12161n/27 minimal
dominating sets.

121611/27 ≈ 1.4167 > 21/2 ≈ 1.4142

Current upper bound: 3n/3.
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3 · (26 − 1)2 + 2 · 2 · (26 − 1) + 2 = 12161.

n/27

This tree has 12161n/27 minimal dominating sets.
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Minimal separators

Let G be a graph, and let s and t be distinct vertices of G .

A set of vertices S ⊆ V (G ) \ {s, t} is an (s, t)-separator if s and t
are in distinct components of G − {s, t}.

An (s, t)-separator is (inclusion) minimal if every S ′ ⊂ S is not an
(s, t)-separator.

ts
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Minimal separators

Theorem (Gaspers and Mackenzie, 2017)

There are n-vertex graphs that have at least 1.4457n minimal
(s, t)-separators.

1.4457 > 31/3 ≈ 1.4422.

Current upper bound: O(1.6180n).
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Sketch of the proof
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Note that 126 =
(9
4

)
; we make each ai adjacent to 4 vertices of

{u1, . . . , u9} in such a way that ai -s have distinct neighborhoods.
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Claim: This graph has > 2.4603 · 1063 minimal (s, t)-separators.
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Sketch of the proof

c126

s t

u9

w1

w9

u1

a1

a126

b1 c1

b126

For 0 ≤ p, q ≤ 9, let Ns,t be the number of minimal
(s, t)-separators that have p vertices from {u1, . . . , u9} and q
vertices from {w1, . . . ,w9}.

Consider the cases (i) p, q = 0, (ii) p = 0 and q ≥ 4, (iii) p ≥ 4
and q = 0, (iv) p, q ≥ 4 and lower bound |Sp,q|.
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Input-sensitive enumeration

• The running time depends on the length of the input only
(e.g., the number of vertices of the input graph).

• We use the classical worst case running time analysis.

• If the number of objects to be enumerated is exponential (in
the worst case), then an input-sensitive enumeration algorithm
runs in exponential time.

• We use exact exponential-time algorithms, in particular
branching algorithms.
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Input-sensitive enumeration

We considered

• basics of branching enumeration algorithms and their analysis,

• advanced analysis of branching algorithms using the “Measure
& Conquer” technique,

• lower bounds.

Other techniques:

• Brute force.

• Dynamic programming.

• . . .
• Combinations of distinct techniques.
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Schöning’s algorithm for 3-Satisfiability

Problem (3-Satisfiability)

Input: A Boolean formula φ with n variables in the
conjunctive normal form such that each clause
contain 3 literals.

Task: Decide whether φ has a satisfying assignment of
variables.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)
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Schöning’s algorithm for 3-Satisfiability

The algorithm (Schöning, 1999):

• Assign the values of of the variables uniformly at random.

• Search for a satisfying assignment at Hamming distance at
most n/4.

The algorithm runs in time O∗(1.5n).
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Parameterized complexity

Parameterized Complexity is a two-dimensional framework for
studying the computations complexity;

• one dimension is the input size n,

• another one is a parameter k .

A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time

f (k) · nO(1).
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Extension problems

Let P be a property of vertex subsets of a graph.

The property can depend on the input graph but we should be able
to test whether a set satisfies the property in polynomial time.

Problem (P-Subset)

Input: A graph G .

Task: Decide whether there is a set U ⊆ V (G ) satisfying P.

Problem (P-Extension)

Input: A graph G , U ⊆ V (G ), and a non-negative integer k .

Parameter: k

Task: Decide whether there is a set X ⊆ V (G ) \ U of size
at most k such that U ∪ X satisfies P.
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Exact algorithm via Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh:
Exact algorithms via monotone local search. STOC 2016: 764-775.

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a randomized algorithm for P-Subset
with running time O∗((2− 1

c )n).

Theorem
If there exists an algorithm for P-Extension with running time
cknO(1), then there exists a deterministic algorithm for P-Subset
with running time O∗((2− 1

c )n+o(n)).
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Minimal feedback vertex sets

A set of vertices X of a graph G is a feedback vertex set if G − X
is acyclic.

A feedback vertex set is (inclusion) minimal if every Y ⊂ X is not
a feedback vertex set.
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Minimal feedback vertex sets

Theorem (Fomin, Gaspers, Pyatkin, Razgon, 2008)

An n-vertex graph has at most 1.8638n minimal feedback vertex
sets and these sets can be enumerated in time O(1.8638n).

Theorem (Gaspers and Lee, 2017)

An n-vertex graph has O(1.8527n) minimal feedback vertex sets
and these sets can be enumerated in time O(1.8527n).

Lower bound: There are n = 10k-vertex graphs with at least
105n/10 (1.5926n) minimal feedback vertex sets.
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Enumeration of minimal hitting sets

Let S be a family of subsets over an universe U .

X ⊆ U is a hitting set for S if for every S ∈ S, X ∩ S 6= ∅.

A hitting set X is (inclusion) minimal if every Y ⊂ X is not a
hitting set.
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Task: Develop enumeration techniques for sets defined by
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v ∈ D there is a vertex u ∈ N[v ] such that u is not adjacent to
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It is said that u is a private vertex for v .

An irredundant set D is maximal if D is an irredundant set and for
every D ′ ⊃ D, D ′ is not an irredundant set.
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