Part B : TSP

1. Classical TSP
 s=t, General metric

2. Graph metric
 ear theorems `graph TSP’, s=t (S., Vygen) 2014
 Submodular functions, matroids
 matroid intersection and approx. of submod max

3. General s,t path TSP
 Zenklusen’s 3/2 approx algorithm (April 2018)

Exercises series 6 Approximation : constant ratio
Optimal orders

s-t-Path Travelling Salesman Problem

INPUT : V «cities», s , t ∈ V, c: V×V → IR+ metric

OUTPUT: shortest s-t -Hamiltonian path

\[P(V,s,t) = \{ x\in \mathbb{R}^E_+: x(\delta(W)) \geq 2, \emptyset \neq W \subseteq V, s, t \in W \text{ or } \in \}, \]
\[\text{min } c^Tx = \text{ on vertices (1 for } s, t \text{ ; else 2)} \]

\[\text{OPT}(c) \]

\[\text{OPT}_{LP}(c) \]

Metric: triangle inequality, satisfied by reasonable applications, without it: even approx is hard
Approximation and Integrality ratio

For a minimization problem

- the approximation ratio is at most ρ if for any input a solution of value at most $\rho \cdot \text{OPT}$ can be found in polynomial time.

- the integrality gap is at most ρ if for any input $\text{OPT} / \text{OPT}_{LP} \leq \rho$.

Lower bound for approximation ratio: 123/122 NP-hard (Karpinski Lampis, Schmied)

Lower bound for integrality gap: graph metrics
1. Classical TSP
TSP

INPUT: V cities, $c: V \times V \rightarrow \mathbb{IR}_+$ metric

OUTPUT: shortest Hamiltonian circuit

Without it no constant ratio (easy from HAM)

Christofides (1976)

Determine: a minimum weight spanning tree

Add: Add a minimum T_F - join J_F to make it Eulerian

Shortcut the Eulerian tour

NP-hard (Karp, 1972)
A proof of ratio 2 and two proofs of $\frac{3}{2}$

Approximation ratio 2: **Double** a min cost spanning tree F and shortcut J_F.

Approximation ratio $\frac{3}{2}$: $F + J_F$, where $c(F) \leq \text{OPT}$, $c(J_F) \leq \frac{1}{2} \text{OPT}$, since connected, Eulerian \Rightarrow has two disjoint T-joins for all T.

$\text{OPT}_{LP} := \{ \min c(x) : x \in \mathbb{R}^+_E, x(\delta(W)) \geq 2, \text{ for all } \emptyset \neq W \subset V, = \text{ for vertices} \}$

Theorem (Wolsey '80, Cunningham 1984) G = (V, E) graph.

We find at most $\frac{3}{2} \text{OPT}_{LP}$ since $c(F) \leq \text{OPT}_{LP}$, $c(J_F) \leq \frac{1}{2} \text{OPT}_{LP}$

2. Classical TSP with graph metric, and min size Two-edge-connected spanning subgraph
‘Network reliability’

2-Edge Connected Spanning Subgraph, 2ECSS

graph-TSP, graph-TSP paths

Def: A graph $G=(V,E)$ is 2-edge-connected, if $(V, E \setminus e)$ is connected for all $e \in E$.
Ears

The longer the ears, the smaller the quotient $n.\text{ of edges} / \text{vertices}$

$$G = P_0 + P_1 + P_2 + \ldots + P_k$$

2-approx for 2ECSS: delete 1-ears!

Exploited by Cheriyan, S., Szigeti (1998) for a $17/12$-approx
C = (S, ℱ) , ℱ ⊆ ℙ(S) is a matroid if
(i) ∅ ∈ ℱ
(ii) F ∈ ℱ , F' ⊆ F ⇒ F' ∈ ℱ
(iii) F₁, F₂ ∈ ℱ , |F₁| < |F₂| ⇒ ∃ e ∈ F₂ \ F₁ : F₁ ∪ {e} ∈ ℱ

F ∈ ℱ is called an independent set.

The rank function of M is
\(r : 2^S \rightarrow \mathbb{IN} \) defined as
\(r(X) := \max \{ |F| : F \subseteq X, F \in ℱ \} \)

Examples: Forests in graphs, Linearly independent sets, partition matr.
Matroid Intersection Theorem

\[M = (S, F) \text{ matroid} \]

\[\text{conv} \left(\chi_F : F \in \mathcal{F} \right) = \left\{ x \in \mathbb{R}^S : x(A) \leq r(A) \text{ for all } A \subseteq S \right\} \quad \text{(Edmonds)} \]

maximize \{ |F| : F \in F_1 \cap F_2 \} = ?

\[\max \left\{ 1^T x : x(A) \leq r_i(A) \quad (i=1, 2) \text{ for all } A \subseteq S \right\} \]

Theorem (Edmonds 1979):

\[\max |F| = \min_{F \in F_1 \cap F_2} r_1(X) + r_2(S \setminus X) \quad X \subseteq S \]

Polynomial algorithm for both and also if weights are given.
Matroid Intersection Algorithm
Generalization of bipartite matching
(of the alternating paths in the « Hungarian method »)

Proof of \geq: that is, there is F and X with $|F| = r_1(X) + r_2(S \setminus X)$.

We prove that the following algorithm terminates with such an F and X.

What is the INPUT? \Rightarrow **ORACLE** - rank, independence, etc

0.) Let: $F \in \mathcal{F}_1 \cap \mathcal{F}_2$ maximal by inclusion (greedily)

1.) Define arcs from unique cycles:

- $C_1 \in \mathcal{C}_1$
- $C_2 \in \mathcal{C}_2$
Approx for submod max \(\text{mon, size } k, f(0)=0, \)

Algorithm (for sets of size k): (Nemhauser, Wolsey) Having \(X \) already,

\[
\text{WHILE } |X| < k \quad \text{choose } x \text{ that maximizes } f(X \cup \{x\}) - f(X)
\]

Lemma: \(f(X \cup \{x\}) - f(X) \geq \frac{f(OPT) - f(X)}{k} \)

Proof: Since \(\text{mon: } f(OPT) \leq f(OPT \cup X) \leq f(X) + k \left(f(X \cup \{x\}) - f(X) \right) \)

Let \(X^i \) be what we found until step \(i \). Then
\[
f(X^k) - f(X^{k-1}) \geq \frac{f(OPT)}{k} - \frac{f(X^{k-1})}{k}, \text{ so }
\]
\[
f(X^k) \geq \frac{f(OPT)}{k} + (1 - \frac{1}{k}) f(X^{k-1})
\]
\[
f(X^k) \geq f(OPT) \left(1 - \left(1 - \frac{1}{k}\right)^k \right) \geq \left(1 - \frac{1}{e} \right) f(OPT)
\]