Orders and Lattices from Graphs

Spring School SGT 2018 Seté, June 11-15, 2018

Stefan Felsner Technische Universität Berlin

Outline

Orders and Lattices

Definitions The Fundamental Theorem Dimension and Planarity

Lattices and Graphs

α-orientations
 Δ-Bonds and Further Examples
 The ULD-Theorem

Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on α -orientations

Finite Orders

- P = (X, <) is an order iff
 - X finite set
 - < transitive and irreflexive relation on X.

Lattices

- P = (X, <) an order.
 - Let $x \lor y$ be the least upper bound of x and y if it exists.
 - Let $x \wedge y$ be the greatest lower bound of x and y if it exists.
- L = (X, <) is a finite lattice iff
 - *L* is a finite order
 - $x \lor y$ and $x \land y$ exist for all x and y.

Lattices - the algebraic view

 $L = (X, \lor, \land)$ is a finite lattice iff

- X is finite and for all $a, b, c \in X$ and $\diamond \in \{\lor, \land\}$
- $a \diamond (b \diamond c) = (a \diamond b) \diamond c$ (associativity)
- $a \diamond b = b \diamond a$ (commutativity)
- $a \diamond a = a$ (idempotency)
- $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$ (absorption)

Proposition. The two definitions of finite lattices are equivalent:

$$x \leq y \iff x = x \wedge y$$
 and $x \leq y \iff y = x \lor y$.

Distributive Lattice

A lattice $L = (X, \lor, \land)$ is a distributive lattice iff $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $a \land (b \lor c) = (a \land b) \lor (a \land c)$

FTFDL. *L* is a finite distributive lattice \iff there is a poset *P* such that that *L* is isomorphic to the inclusion order on downsets of *P*.

Linear Extensions

A linear extension of $P = (X, <_P)$ is a linear order $L = (X, <_L)$, such that

• $x <_P y \implies x <_L y$

A family \mathcal{L} of linear extensions is a realizer for P = (X, <) provided that

* for every incomparable pair (x, y) there is an $L \in \mathcal{L}$ such that x < y in L.

The dimension, dim(P), of P is the minimum t, such that there is a realizer $\mathcal{L} = \{L_1, L_2, \dots, L_t\}$ for P of size t.

Dimension of Orders II

The dimension of an order P = (X, <) is the least *t*, such that *P* is isomorphic to a suborder of \mathbb{R}^t with the product ordering.

Dilworth's Imbedding Theorem (1950)

Theorem. dim (\mathcal{L}_P) = width(P).

- Let C₁,..., C_w be a chain partition of P.
 Imbed L_P in ℝ^w by I → (|I ∩ C₁|,..., |I ∩ C_w|).
- If P contains an antichain A of size w, then there is a Boolean lattice B_w in L_P. Hence dim(L_P) ≥ dim(B_w) = w.

Small Dimension

• Dimension 2: Containment orders of intervals.

• Dimension 3: Containment orders of triangles.

Critical Pairs

Definition. An incomparable pair (x, y) is critical if

- a < x implies a < y.
- y < b implies x < b.

Critical Pairs

Proposition. A family \mathcal{R} of linear extensions of P is a realizer of $P \iff \mathcal{R}$ reverses all critical pairs.

Standard Examples

• Standard example of an *n* dimensional order:

Dimension and Planarity

Theorem [Baker 1971]. If an order *P* has **0** and **1** and a planar diagram, then $dim(P) \le 2$.

Theorem [and Trotter and Moore 1977]. If an order *P* has **0** and a planar diagram, then dim(*P*) \leq 3. The dimension of an order P with a planar diagram can be unbounded (Kelly 1981).

Dimension beyond Planarity

Theorem [F., Li, and Trotter 2010]. The dimension of an order P of height ≤ 2 with a planar diagram is at most 4.

Theorem [Streib and Trotter 2014]. There is a function f such that $\dim(P) \leq f(h)$ for orders of height $\leq h$ with a planar cover graph.

Theorem [Joret, Micek, and Wiechert 2018]. There is a function $f_{\mathcal{C}}$ such that $\dim(P) \leq f_{\mathcal{C}}(h)$ for orders of height $\leq h$ whose cover graphs belong to a class \mathcal{C} of graphs with bounded expansion. (This includes classes with a forbidden minor.)

Complexity

Theorem [Yannakakis 1982]. To test if a partial order has dimension $\leq k$ is NP-complete for all $k \geq 3$. To test if a partial order of height 2 has dimension $\leq k$ is NP-complete for all $k \geq 4$.

Theorem [F., Mustață, and Pergel 2014]. To test if a partial order of height 2 has dimension 3 is NP-complete.

Theorem [Chalermsook et al. 2013]. Unless NP = ZPP there is no polynomial algorithm to approximate the dimension of a partial order with a factor of $O(n^{1-\varepsilon})$ for any $\varepsilon > 0$

Incidence Orders and Dimension

The incidence order P_G of G

$$P_{G}$$

Theorem [Spencer '72 / Trotter '80 / Hosten und Morris '98]. $\dim(\mathcal{K}_n) = \dim(\mathbf{B}_n[1,2]) = \log \log n + (\frac{1}{2} + o(1)) \log \log \log(n)$

A Planarity Criterion

Theorem [Schnyder 1989]. A Graph *G* is planar $\iff \dim(P_G) \le 3$.

• $\dim(G) \leq 3 \implies G$ planar.

Dimension of Polytopes

Let \mathcal{F}_P be the face lattice of polytope P.

Dimension of Polytopes: Lower Bound

Theorem [Reuter 1990]. If *P* is a *d*-polytope, then $\dim(\mathcal{F}_P) \ge d + 1$.

Dimension of 3-Polytopes

Theorem [Schnyder 1989]. If G is a plane triangulation with a face F, then

• $\dim(P_{VEF}(G \setminus F)) = 3$ • $\dim(P_{VEF}(G)) = 4$

Theorem [Brightwell+Trotter 1993]. If G is a 3-connected plane graph with a face F, then

• $\dim(P_{VEF}(G \setminus F)) = 3$ • $\dim(P_{VEF}(G)) = 4$

Dimension and Planar Graphs

Theorem [Schnyder 1989]. A Graph *G* is planar $\iff \dim(P_G) \le 3$.

Theorem [Brightwell+Trotter 1997]. If G is a plane multi-graph with loops, then

$\dim(P_{VEF}(G)) \leq 4.$

Outline

Orders and Lattices

Definitions The Fundamental Theorem Dimension and Planarity

Lattices and Graphs

α-orientations
 Δ-Bonds and Further Examples
 The ULD-Theorem

Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on α -orientations

α -Orientations

Definition. Given G = (V, E) and $\alpha : V \to \mathbb{N}$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.

Theorem. The set of α -orientations of a planar graph *G* has the structure of a distributive lattice.

• Diagram edge \sim revert a directed essential/facial cycle.

Example 1: Spanning Trees

Spanning trees are in bijection with α_T orientations of a rooted primal-dual completion \widetilde{G} of G

• $\alpha_T(v) = 1$ for a non-root vertex v and $\alpha_T(v_e) = 3$ for an edge-vertex v_e and $\alpha_T(v_r) = 0$ and $\alpha_T(v_r^*) = 0$.

Lattice of Spanning Trees

Gilmer and Litheland 1986, Propp 1993

Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is bijection between f-factors of G and α_f orientations:

Define α_f such that indeg(u) = f(u) for all u ∈ U and outdeg(w) = f(w) for all w ∈ W.

Example. A matching and the corresponding orientation.

Example 3: Eulerian Orientations

Orientations with outdeg(v) = indeg(v) for all v,
 i.e. α(v) = d(v)/2

Example 4: Schnyder Woods

G a plane triangulation with outer triangle $F = \{a_1, a_2, a_3\}$. A coloring and orientation of the interior edges of *G* with colors 1,2,3 is a Schnyder wood of *G* iff

Inner vertex condition:

• Edges $\{v, a_i\}$ are oriented $v \rightarrow a_i$ in color *i*.

Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection. **Proof.**

• All edges incident to a_i are oriented $\rightarrow a_i$.

G has 3n - 9 interior edges and n - 3 interior vertices.

• Define the path of an edge:

- The path is simple (Euler), hence, ends at some a_i.
- Two path starting at a vertex do not cross (Euler).

The Lattice of Schnyder Woods

Theorem. The set of Schnyder woods of a plane triangulation G has the structure of a distributive lattice.

α -Orientations

Definition. Given G = (V, E) and $\alpha : V \to \mathbb{N}$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.

Theorem. The set of α -orientations of a planar graph *G* has the structure of a distributive lattice.

Proof I: Essential Cycles

For the proof we assume that G is 2-connected.

Definition.

A cycle C of G is an essential cycle if

- C is chord-free and simple,
- the interior cut of C is rigid,
- there is an α -orientation X such that C is directed in X.

Lemma.

C is non-essential \iff C has a directed chordal path in every α -orientation.

Proof II

Lemma.

Essential cycles are interiorly disjoint or contained.

Lemma.

If C is a directed cycle of X, then X^{C} can be obtained by a sequence of reversals of essential cycles.

Lemma.

If $(C_1, ..., C_k)$ is a flip sequence $(\operatorname{ccw} \to \operatorname{cw})$ on X then for every edge *e* the essential cycles $C^{l(e)}$ and $C^{r(e)}$ alternate in the sequence.

Proof III: Flip Sequences

Lemma.

The length of any flip sequence (ccw \rightarrow cw) is bounded and there is a unique α -orientation X_{\min} with the property that all cycles in X_{\min} are cw-cycles.

• $Y \prec X$ if a flip sequence $X \rightarrow Y$ exists.

Lemma.

Let $Y \prec X$ and C be an essential cycle. Every sequence $S = (C_1, \ldots, C_k)$ of flips that transforms X into Y contains the same number of flips at C.

Proof IV: Potentials

Definition. An α -potential for G is a mapping $\wp : Ess_{\alpha} \to \mathbb{N}$ such that

- $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.
- $\wp(C^{I(e)}) \le \wp(C^{r(e)})$ for all e (orientation from X_{\min})

Lemma. There is a bijection between α -potentials and α -orientations.

Theorem. α -potentials are a distributive lattice with

- $(\wp_1 \lor \wp_2)(C) = \max\{\wp_1(C), \wp_2(C)\}$ and
- $(\wp_1 \wedge \wp_2)(C) = \min\{\wp_1(C), \wp_2(C)\}$ for all essential C.

A Dual Construction: c-Orientations

 Reorientations of directed cuts preserve flow-difference (#forward arcs – #backward arcs) along cycles.

Theorem [Propp 1993]. The set of all orientations of a graph with prescribed flow-difference for all cycles has the structure of a distributive lattice.

• Diagram edge \sim push a vertex ($\neq v_{\dagger}$).

Circulations in Planar Graphs

Theorem [Khuller, Naor and Klein 1993]. The set of all integral flows respecting capacity constraints $(\ell(e) \le f(e) \le u(e))$ of a planar graph has the structure of a distributive lattice.

 Diagram edge ~ add or subtract a unit of flow in ccw oriented facial cycle.

Δ -Bonds

G = (V, E) a connected graph with a prescribed orientation. With $x \in \mathbb{Z}^{E}$ and C cycle we define the circular flow difference

$$\Delta_x(C) := \sum_{e \in C^+} x(e) - \sum_{e \in C^-} x(e).$$

With $\Delta \in \mathbb{Z}^{\mathcal{C}}$ and $\ell, u \in \mathbb{Z}^{\mathcal{E}}$ define

• $\mathcal{B}_G(\Delta, \ell, u) = \{x \in \mathbb{Z}^E : \Delta_x = \Delta \text{ and } \ell \le x \le u\}.$ $\Delta_x = \Delta \text{ (circular flow difference)}$ $\ell \le x \le u \text{ (capacity constraints).}$

Δ -Bonds as Generalization

Special cases:

- c-orientations are $\mathcal{B}_G(\Delta, 0, 1)$ $(\Delta(C) = \frac{1}{2}(|C^+| - |C^-| - c(C))).$
- Circular flows on planar G are B_{G*}(0, ℓ, u)
 (G* the dual of G).
- *α*-orientations.

Theorem [Felsner & Knauer 2009]. $\mathcal{B}_G(\Delta, \ell, u)$ has the structure of a distributive lattice.