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Finite Orders

P = (X, <) is an order iff
e X finite set

e < transitive and irreflexive relation on X.



Lattices
P = (X, <) an order.
e Let x V y be the least upper bound of x and y if it exists.
e Let x A y be the greatest lower bound of x and y if it exists.
L = (X, <) is a finite lattice iff
e L is a finite order

e xVyand x Ay exist for all x and y.



Lattices - the algebraic view

L= (X,V,A) is a finite lattice iff
e X is finite and for all a,b,c € X and ¢ € {V, A}
e ao(boc)=(aob)oc (associativity)
e 2o b= boa (commutativity)
e 20 a= a (idempotency)

e aV(aAnb)=aand aA(aVb)=a (absorption)
Proposition. The two definitions of finite lattices are equivalent:

x<y < x=xAy and x<y <= y=xVy.




Distributive Lattice

A lattice L = (X, V, A) is a distributive lattice iff
aV(bAc)=(aVvb)A(aVc) and aA(bVvc)=(anb)V(aic)

FTFDL. L is a finite distributive lattice <=
there is a poset P such that that L is isomorphic to the inclusion
order on downsets of P.
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Linear Extensions

A linear extension of P = (X, <p) is a linear order L = (X, <),
such that

o X<py =— X<LYy
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Dimension of Orders |

A family L of linear extensions is a realizer for P = (X, <)
provided that

« for every incomparable pair (x,y) there is an L € £ such that

x <yin L.

The dimension, dim(P), of P is the minimum t, such that there is
a realizer L = {Ly,Lp...,L:} for P of size t.




Dimension of Orders Il

The dimension of an order P = (X, <) is the least t, such that P
is isomorphic to a suborder of R" with the product ordering.




Dilworth's Imbedding Theorem (1950)

Lp
P
Theorem. dim(Lp) = width(P).
o Let (3,...,C, be a chain partition of P.
Imbed Lp in R by I — (|[INGil,...,[I N Cyl).

e If P contains an antichain A of size w,
then there is a Boolean lattice B, in Lp.

Hence dim(Lp) > dim(B,) = w.




Small Dimension

e Dimension 2: Containment orders of intervals.
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e Dimension 3: Containment orders of triangles.
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Critical Pairs

Definition. An incomparable pair (x, y) is critical if

e a< ximpliesa<y.

e y < b implies x < b.




Critical Pairs

Proposition. A family R of linear extensions of P is a realizer of P
<= TR reverses all critical pairs.



Standard Examples

e Standard example of an n dimensional order:

1 2 3 4 (n—1)n

n—1 n




Dimension and Planarity

Theorem | ]- The dimension of an order P
If an order P has 0 and 1 with a planar diagram can be
and a planar diagram, then unbounded (Kelly 1981).
dim(P) < 2. 5/

Theorem |

]- If an order P
has 0 and a planar diagram,
then dim(P) < 3.




Dimension beyond Planarity

Theorem | ]- The dimension of an
order P of height < 2 with a planar diagram is at most 4.

Theorem | ]- There is a function f such
that dim(P) < f(h) for orders of height < h with a planar cover
graph.

Theorem | ]. Thereis a
function f¢ such that dim(P) < fz(h) for orders of height < h
whose cover graphs belong to a class C of graphs with bounded
expansion. (This includes classes with a forbidden minor.)



Complexity

Theorem | ]- To test if a partial order has
dimension < k is NP-complete for all kK > 3.

To test if a partial order of height 2 has dimension < k is
NP-complete for all k > 4.

Theorem [ ]. To test if a partial
order of height 2 has dimension 3 is NP-complete.

Theorem [ ]. Unless NP = ZPP there is
no polynomial algorithm to approximate the dimension of a partial
order with a factor of O(n'~¢) for any € > 0



Incidence Orders and Dimension

The incidence order Pg of G
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Theorem |

dim(Kj,) = dim(B,[1,2]) = loglog n + (3 + o(1)) log log Iog(n)

dm(K,)<[2[3][4|5] 6 | 7 | 8

n; |2 4] 12812646 | 1422564 | 229809982112
a(9) = 423295099074735261830 Andries E. Brouwer, 2012.



A Planarity Criterion

Theorem | ]-
A Graph G is planar <= dim(Pg) < 3.

e dim(G) <3 = G planar.

P¢ in R3 o
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Dimension of Polytopes

Let Fp be the face lattice of polytope P.




Dimension of Polytopes: Lower Bound

Theorem [ Feuter 1000 ],
If P is a d-polytope, then dim(Fp) > d + 1.




Dimension of 3-Polytopes

Theorem | ]-
If G is a plane triangulation with a face F, then

o dim(Pver(G\F)=3 o dim(Pyer(G)) =4

Theorem | ]-
If G is a 3-connected plane graph with a face F, then

o dim(Pyer(G\F)=3 o dim(Pver(G)) =4



Dimension and Planar Graphs

Theorem | ]-
A Graph G is planar <= dim(Pg) < 3.

Theorem | ]-
If G is a plane multi-graph with loops, then

dim(Pver(G)) < 4.
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a-Orientations

Definition. Given G = (V,E) and o : V — N.
An a-orientation of G is an orientation with
outdeg(v) = a(v) for all v.

e Reverting directed cycles preserves a-orientations.
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Theorem. The set of a-orientations of a planar graph G has the
structure of a distributive lattice.

e Diagram edge ~ revert a directed essential /facial cycle.



Example 1: Spanning Trees

Spanning trees are in bijection with a1 orientations of a rooted
primal-dual completion G of G

e a7(v) =1 for a non-root vertex v and a7(ve) = 3 for an
edge-vertex ve and ar(v,) =0 and at(v;) = 0.
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Lattice of Spanning Trees
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Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is bijection
between f-factors of G and «af orientations:

e Define af such that indeg(u) = f(u) for all v € U and
outdeg(w) = f(w) for all w € W.

Example. A matching and the corresponding orientation.



Example 3: Eulerian Orientations

e Orientations with outdeg(v) = indeg(v) for all v,
e a(v) =52




Example 4: Schnyder Woods

G a plane triangulation with outer triangle F = {a1,a2,a3}.
A coloring and orientation of the interior edges of G with colors
1,2,3 is a Schnyder wood of G iff

e Inner vertex condition:

e
ZAN

e Edges {v, a;} are oriented v — a; in color /.




Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.
Proof.
o All edges incident to a; are oriented — a;.
G has 3n — 9 interior edges and n — 3 interior vertices.

e Define the path of an edge:

—a TR

e The path is simple (Euler), hence, ends at some a;.

e Two path starting at a vertex do not cross (Euler).



The Lattice of Schnyder Woods

Theorem. The set of Schnyder woods of a plane triangulation G
has the structure of a distributive lattice.




a-Orientations

Definition. Given G = (V,E) and o : V — N.
An o-orientation of G is an orientation with
outdeg(v) = a(v) for all v.

e Reverting directed cycles preserves a-orientations.

Theorem. The set of a-orientations of a planar graph G has the
structure of a distributive lattice.



Proof |: Essential Cycles

For the proof we assume that G is 2-connected.

Definition.
A cycle C of G is an essential cycle if

e ( is chord-free and simple,

e the interior cut of C is rigid,

e there is an «-orientation X such that C is directed in X.
Lemma.

C is non-essential <= C has a directed chordal path in every
a-orientation.



Proof |l

Lemma.
Essential cycles are interiorly disjoint or contained.
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If C is a directed cycle of X, then X can be obtained by a
sequence of reversals of essential cycles.

Lemma.

If (Cy, .., Cx) is a flip sequence (ccw — cw) on X then for every
edge e the essential cycles C'(®) and C"(®) alternate in the
sequence.




Proof lll: Flip Sequences

Lemma.

The length of any flip sequence (ccw — cw) is bounded and there
is a unique a-orientation Xy, with the property that all cycles in
Xmin are cw-cycles.

e Y < X if a flip sequence X — Y exists.

Lemma.
Let Y < X and C be an essential cycle. Every sequence
S=(G,...,Cy) of flips that transforms X into Y contains the

same number of flips at C.



Proof IV: Potentials

Definition. An a-potential for G is a mapping
© : Ess, — N such that

e |p(C)—p(C")] <1,if C and C’ share an edge e.
o o(C'®)) < o(C(®) for all e (orientation from Xpiy)

Lemma. There is a bijection between a-potentials and
a-orientations.

Theorem. a-potentials are a distributive lattice with

e (p1V92)(C) = max{p1(C), p2(C)} and
o (1N p2)(C)=min{p1(C), p2(C)} for all essential C.



A Dual Construction: c-Orientations

e Reorientations of directed cuts preserve flow-difference
(#forward arcs — #backward arcs) along cycles.

A

Theorem | ]. The set of all orientations of a graph
with prescribed flow-difference for all cycles has the structure of a
distributive lattice.

e Diagram edge ~ push a vertex ( # v;).



Circulations in Planar Graphs

Theorem [ ]-
The set of all integral flows respecting capacity constraints
(U(e) < f(e) < u(e)) of a planar graph has the structure of a

distributive lattice.
N/
0<f(e)<1 @
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FAVAS

e Diagram edge ~ add or subtract a unit of flow in ccw
oriented facial cycle.




A-Bonds

G = (V, E) a connected graph with a prescribed orientation.

With x €ZE and C cycle we define the circular flow difference
ecC+t eeC—

With A €Z€ and ¢, u €ZF define

o Bg(Alu)={xezZF : Ay=Aand (< x<u}.
A, = A (circular flow difference)

¢ < x < u (capacity constraints).



A-Bonds as Generalization

Special cases:

e c-orientations are Bg(A,0,1)
(A(C) = 3(ICT[ = €| = ().

e Circular flows on planar G are Bg+(0, 4, u)
(G* the dual of G).

e (-orientations.

Theorem | ]
Bg(A, ¢, u) has the structure of a distributive lattice.




