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Finite Orders

P = (X , <) is an order iff

• X finite set

• < transitive and irreflexive relation on X .



Lattices

P = (X , <) an order.

• Let x ∨ y be the least upper bound of x and y if it exists.

• Let x ∧ y be the greatest lower bound of x and y if it exists.

L = (X , <) is a finite lattice iff

• L is a finite order

• x ∨ y and x ∧ y exist for all x and y .



Lattices - the algebraic view

L = (X ,∨,∧) is a finite lattice iff

• X is finite and for all a, b, c ∈ X and � ∈ {∨,∧}

• a � (b � c) = (a � b) � c (associativity)

• a � b = b � a (commutativity)

• a � a = a (idempotency)

• a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a (absorption)

Proposition. The two definitions of finite lattices are equivalent:

x ≤ y ⇐⇒ x = x ∧ y and x ≤ y ⇐⇒ y = x ∨ y .



Distributive Lattice

A lattice L = (X ,∨,∧) is a distributive lattice iff

a∨ (b∧ c) = (a∨ b)∧ (a∨ c) and a∧ (b∨ c) = (a∧ b)∨ (a∧ c)

FTFDL. L is a finite distributive lattice ⇐⇒
there is a poset P such that that L is isomorphic to the inclusion
order on downsets of P.
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Linear Extensions

A linear extension of P = (X , <P) is a linear order L = (X , <L),
such that

• x <P y =⇒ x <L y
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Dimension of Orders I

A family L of linear extensions is a realizer for P = (X , <)
provided that

∗ for every incomparable pair (x , y) there is an L ∈ L such that
x < y in L.

The dimension, dim(P), of P is the minimum t, such that there is
a realizer L = {L1, L2 . . . , Lt} for P of size t.



Dimension of Orders II

The dimension of an order P = (X , <) is the least t, such that P
is isomorphic to a suborder of IRt with the product ordering.



Dilworth’s Imbedding Theorem (1950)

Theorem. dim(LP) = width(P).

LP
P

• Let C1, . . . ,Cw be a chain partition of P.

Imbed LP in IRw by I → (|I ∩ C1|, . . . , |I ∩ Cw |).

• If P contains an antichain A of size w ,

then there is a Boolean lattice Bw in LP .

Hence dim(LP) ≥ dim(Bw ) = w .



Small Dimension

• Dimension 2: Containment orders of intervals.
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• Dimension 3: Containment orders of triangles.
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Critical Pairs

Definition. An incomparable pair (x , y) is critical if

• a < x implies a < y .

• y < b implies x < b.
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Critical Pairs

Proposition. A family R of linear extensions of P is a realizer of P
⇐⇒ R reverses all critical pairs.



Standard Examples

• Standard example of an n dimensional order:

1′ 2′ 3′ 4′ (n − 1)′n′

nn − 14321



Dimension and Planarity

Theorem [ Baker 1971 ].
If an order P has 0 and 1
and a planar diagram, then
dim(P) ≤ 2.

Theorem [ and Trotter and
Moore 1977 ]. If an order P
has 0 and a planar diagram,
then dim(P) ≤ 3.

The dimension of an order P
with a planar diagram can be
unbounded (Kelly 1981).
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Dimension beyond Planarity

Theorem [ F., Li, and Trotter 2010 ]. The dimension of an
order P of height ≤ 2 with a planar diagram is at most 4.

Theorem [ Streib and Trotter 2014 ]. There is a function f such
that dim(P) ≤ f (h) for orders of height ≤ h with a planar cover
graph.

Theorem [ Joret, Micek, and Wiechert 2018 ]. There is a
function fC such that dim(P) ≤ fC(h) for orders of height ≤ h
whose cover graphs belong to a class C of graphs with bounded
expansion. (This includes classes with a forbidden minor.)



Complexity

Theorem [ Yannakakis 1982 ]. To test if a partial order has
dimension ≤ k is NP-complete for all k ≥ 3.
To test if a partial order of height 2 has dimension ≤ k is
NP-complete for all k ≥ 4.

Theorem [ F., Mustaţă, and Pergel 2014 ]. To test if a partial
order of height 2 has dimension 3 is NP-complete.

Theorem [ Chalermsook et al. 2013 ]. Unless NP = ZPP there is
no polynomial algorithm to approximate the dimension of a partial
order with a factor of O(n1−ε) for any ε > 0



Incidence Orders and Dimension

The incidence order PG of G

PGG

Theorem [ Spencer ’72 / Trotter ’80 / Hoşten und Morris ’98 ].

dim(Kn) = dim(Bn[1, 2]) = log log n + (12 + o(1)) log log log(n)

dim(Kn) ≤ 2 3 4 5 6 7 8

n ≤ 2 4 12 81 2646 1422564 229809982112

a(9) = 423295099074735261880 Andries E. Brouwer, 2012.



A Planarity Criterion

Theorem [ Schnyder 1989 ].
A Graph G is planar ⇐⇒ dim(PG ) ≤ 3.

• dim(G ) ≤ 3 =⇒ G planar.
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Dimension of Polytopes

Let FP be the face lattice of polytope P.



Dimension of Polytopes: Lower Bound

Theorem [ Reuter 1990 ].
If P is a d-polytope, then dim(FP) ≥ d + 1.



Dimension of 3-Polytopes

Theorem [ Schnyder 1989 ].
If G is a plane triangulation with a face F , then

• dim(PVEF (G \ F )) = 3 • dim(PVEF (G )) = 4

Theorem [ Brightwell+Trotter 1993 ].
If G is a 3-connected plane graph with a face F , then

• dim(PVEF (G \ F )) = 3 • dim(PVEF (G )) = 4



Dimension and Planar Graphs

Theorem [ Schnyder 1989 ].
A Graph G is planar ⇐⇒ dim(PG ) ≤ 3.

Theorem [ Brightwell+Trotter 1997 ].
If G is a plane multi-graph with loops, then

dim(PVEF (G )) ≤ 4.
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α-Orientations

Definition. Given G = (V ,E ) and α : V → IN.
An α-orientation of G is an orientation with
outdeg(v) = α(v) for all v .

• Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the
structure of a distributive lattice.

• Diagram edge ∼ revert a directed essential/facial cycle.



Example 1: Spanning Trees

Spanning trees are in bijection with αT orientations of a rooted
primal-dual completion G̃ of G

• αT (v) = 1 for a non-root vertex v and αT (ve) = 3 for an
edge-vertex ve and αT (vr ) = 0 and αT (v∗r ) = 0.

v∗r

vr



Lattice of Spanning Trees

Gilmer and Litheland 1986, Propp 1993
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Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U,W ). There is bijection
between f -factors of G and αf orientations:

• Define αf such that indeg(u) = f (u) for all u ∈ U and
outdeg(w) = f (w) for all w ∈W .

Example. A matching and the corresponding orientation.



Example 3: Eulerian Orientations

• Orientations with outdeg(v) = indeg(v) for all v ,

i.e. α(v) = d(v)
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Example 4: Schnyder Woods

G a plane triangulation with outer triangle F = {a1,a2,a3}.
A coloring and orientation of the interior edges of G with colors
1,2,3 is a Schnyder wood of G iff

• Inner vertex condition:

• Edges {v , ai} are oriented v → ai in color i .



Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.

Proof.

• All edges incident to ai are oriented → ai .

G has 3n − 9 interior edges and n − 3 interior vertices.

• Define the path of an edge:

• The path is simple (Euler), hence, ends at some ai .

• Two path starting at a vertex do not cross (Euler).



The Lattice of Schnyder Woods

Theorem. The set of Schnyder woods of a plane triangulation G
has the structure of a distributive lattice.



α-Orientations

Definition. Given G = (V ,E ) and α : V → IN.
An α-orientation of G is an orientation with
outdeg(v) = α(v) for all v .

• Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the
structure of a distributive lattice.



Proof I: Essential Cycles

For the proof we assume that G is 2-connected.

Definition.
A cycle C of G is an essential cycle if

• C is chord-free and simple,

• the interior cut of C is rigid,

• there is an α-orientation X such that C is directed in X .

Lemma.
C is non-essential ⇐⇒ C has a directed chordal path in every
α-orientation.



Proof II

Lemma.
Essential cycles are interiorly disjoint or contained.

Lemma.
If C is a directed cycle of X , then XC can be obtained by a
sequence of reversals of essential cycles.

Lemma.
If (C1, ..,Ck) is a flip sequence (ccw→ cw) on X then for every
edge e the essential cycles C l(e) and C r(e) alternate in the
sequence.



Proof III: Flip Sequences

Lemma.
The length of any flip sequence (ccw→ cw) is bounded and there
is a unique α-orientation Xmin with the property that all cycles in
Xmin are cw-cycles.

• Y ≺ X if a flip sequence X → Y exists.
Lemma.
Let Y ≺ X and C be an essential cycle. Every sequence
S = (C1, . . . ,Ck) of flips that transforms X into Y contains the
same number of flips at C .



Proof IV: Potentials

Definition. An α-potential for G is a mapping
℘ : Essα → IN such that

• |℘(C )− ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(C l(e)) ≤ ℘(C r(e)) for all e (orientation from Xmin)

Lemma. There is a bijection between α-potentials and
α-orientations.

Theorem. α-potentials are a distributive lattice with

• (℘1 ∨ ℘2)(C ) = max{℘1(C ), ℘2(C )} and

• (℘1 ∧ ℘2)(C ) = min{℘1(C ), ℘2(C )} for all essential C .



A Dual Construction: c-Orientations

• Reorientations of directed cuts preserve flow-difference
(#forward arcs − #backward arcs) along cycles.

Theorem [ Propp 1993 ]. The set of all orientations of a graph
with prescribed flow-difference for all cycles has the structure of a
distributive lattice.

• Diagram edge ∼ push a vertex ( 6= v†).



Circulations in Planar Graphs

Theorem [ Khuller, Naor and Klein 1993 ].
The set of all integral flows respecting capacity constraints
(`(e) ≤ f (e) ≤ u(e)) of a planar graph has the structure of a
distributive lattice.

0 ≤ f (e) ≤ 1

• Diagram edge ∼ add or subtract a unit of flow in ccw
oriented facial cycle.



∆-Bonds

G = (V ,E ) a connected graph with a prescribed orientation.
With x ∈ ZZ E and C cycle we define the circular flow difference

∆x(C ) :=
∑
e∈C+

x(e)−
∑
e∈C−

x(e).

With ∆ ∈ ZZ C and `, u ∈ ZZ E define

• BG (∆, `, u) =
{
x ∈ ZZ E : ∆x = ∆ and ` ≤ x ≤ u

}
.

∆x = ∆ (circular flow difference)

` ≤ x ≤ u (capacity constraints).



∆-Bonds as Generalization

Special cases:

• c-orientations are BG (∆, 0, 1)

(∆(C ) = 1
2

(
|C+| − |C−| − c(C )

)
).

• Circular flows on planar G are BG∗(0, `, u)

(G ∗ the dual of G ).

• α-orientations.

Theorem [ Felsner & Knauer 2009 ].
BG (∆, `, u) has the structure of a distributive lattice.


