Schnyder Woods and Applications

Spring School SGT 2018
Seté, June 11-15, 2018

Stefan Felsner
Technische Universität Berlin
Outline

Introduction to Schnyder Woods
Dimension
Drawings
Triangle representations
Schnyder Woods

\(G = (V, E) \) a plane triangulation,
\(F = \{a_1, a_2, a_3\} \) the outer triangle.

A coloring and orientation of the interior edges of \(G \) with colors 1, 2, 3 is a Schnyder wood of \(G \) iff

- Inner vertex condition:

 - Edges \(\{v, a_i\} \) are oriented \(v \rightarrow a_i \) in color \(i \).
The set T_i of edges colored i is a tree rooted at a_i.

Proof. Count edges in a cycle — Euler

\square
• Paths of different color have at most one vertex in common.
• Every vertex has three distinguished regions.
If $u \in R_i(v)$ then $R_i(u) \subset R_i(v)$.
Introduction to Schnyder Woods
Dimension
Drawings
Triangle representations
Schnyder’s Dimension Theorem

Q_i the inclusion order with respect to $R_i(.)$
L_i a linear extension of Q_i
L_i^+ include edges as low in L_i as possible

\implies
L_1^+, L_2^+, L_3^+ is a realizer for P_G.

Proof. $e = \{u, v\}$ and edge, $x \not\in e$ a vertex.
We need:

![Diagram showing a linear extension L with vertices u, v, and x, and an edge e between u and v.]
Schnyder’s Dimension Theorem

Q_i the inclusion order with respect to $R_i(.)$
L_i a linear extension of Q_i
L_i^+ include edges as low in L_i as possible

$\implies L_i^+, L_i^+, L_i^+$ is a realizer for P_G.

Proof. $e = \{u, v\}$ and edge, $x \notin e$ a vertex.

We need:

There is an i with $e \in R_i(x)$

$\implies R_i(u) \subset R_i(x)$ and $R_i(v) \subset R_i(x)$

\implies Edge e goes below x in L_i^+.

Dimension of 3-Polytopes

Theorem [Schnyder 1989].
If G is a plane triangulation with a face F, then

- $\dim(P_{VEF}(G) \setminus F) = 3$
- $\dim(P_{VEF}(G)) = 4$

Theorem [Brightwell+Trotter 1993].
If G is a 3-connected plane graph with a face F, then

- $\dim(P_{VEF}(G) \setminus F) = 3$
- $\dim(P_{VEF}(G)) = 4$
Schnyder Woods

Axioms for 3-coloring and orientation of bi-edges:

(W1 - W2) Rule of edges and half-edges:

(W3) Rule of vertices:

(W4) There is no interior face whose boundary is a directed cycle in one color.
We need W4!
3-Orientations?
Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.
A Schnyder wood of G induces a Schnyder wood of the dual of G.
A Schnyder wood of G induces a Schnyder wood of the dual of G.
3-Orientations – Rescued

Theorem. Primal dual Schnyder woods are in bijection with primal dual 3-orientations.
Schnyder Woods - Regions

- If $u \in R_i^o(v)$ then $R_i(u) \subset R_i(v)$.
- If $u \in \partial R_i(v)$ then $R_i(u) \subseteq R_i(v)$

(equality, iff there is a bi-directed path between u and v.)
Brigthwell Trotter Theorem

- \(P \) a 3-polytope with face \(F \).
- \(G \) the graph of \(P \) with outer face \(F \).
- \(S \) a Schnyder wood of \(G \).

Define \(<_i \) on \(V_P \) for \(i = 1, 2, 3 \)

1. \(u <_i v \) if \(R_i(u) \subset R_i(v) \)
2. \(u <_i v \) if \(R_i(u) \parallel R_i(v) \) and \(R_{i+1}(u) \subset R_{i+1}(v) \).

Lemma. The relation \(<_i \) is acyclic.

Theorem. \(L_1, L_2, L_3 \) is a realizer for \(P_{VEF}(G) \setminus F \)
(\(L_i \) a linear extension of \(<_i \)).
Outline

Introduction to Schnyder Woods
Dimension
Drawings
Triangle representations
Schnyder’s Second Theorem

Theorem [Schnyder 1989]. A planar triangulation G admit a straight line drawing on the $(2n - 5) \times (2n - 5)$ grid.

Example.
Schnyder’s Straight Line Embeddings

\[\phi : \text{regions} \rightarrow \mathbb{R}^+ \text{ is S-good iff} \]

(1) \(R_i(u) \subset R_i(v) \implies \phi(R_i(u)) < \phi(R_i(v)) \)

(2) \(\phi(R_1(v)) + \phi(R_2(v)) + \phi(R_3(v)) = C \)

Theorem. The embedding \(v \rightarrow f(v) = (\phi(R_1(v)), \phi(R_2(v))) \) is a straight line embedding in the \(C \times C \) square.

- \(\{x, y\} \in E \) and \(z \not\in \{x, y\} \implies f(z) \not\in [f(x), f(y)] \) because \(x, y \in R_i(z) \) for some \(i \in \{1, 2, 3\} \).

- \(\{u, v\}, \{x, y\} \in E \)

\[x, y \in R_i(u), x, y \in R_j(v), u, v \in R_k(x), u, v \in R_l(y) \implies i = j \text{ or } k = l \]
Grid Embeddings – Faces

The count of faces contained in a region is S-good.

Corollary. Planar triangulations admit a straight line drawing on the \((f - 1) \times (f - 1)\) grid \((f = 2n - 4)\).
Grid Embeddings – Vertices

Counting vertices in regions, including vertices on right path, excluding vertices on left path yields:

Theorem [Schnyder ’90]. Planar triangulations admit a straight line drawing on the \((n - 2) \times (n - 2)\) grid.

We may have
\[R_i(u) \subset R_i(v) \]
and
\[\phi(R_i(u)) = \phi(R_i(v)) \],
still:

- There is no vertex on an edge.
- Edges are separated.
Theorem. 3-connected planar graphs admit convex drawings on the $(f - 1) \times (f - 1)$ grid.
Schnyder Woods - Regions

- If $u \in R_i^o(v)$ then $R_i(u) \subset R_i(v)$.
- If $u \in \partial R_i(v)$ then $R_i(u) \subseteq R_i(v)$
 (equality, iff there is a bi-directed path between u and v.)
Idea of the Proof

(1) The wedges of a vertex.

(2) No vertex on an edge.

(3) Edges are disjoint

\{u, v\}, \{x, y\} \in E

\(x, y \in R_i(u)\), \(x, y \in R_j(v)\), \(u, v \in R_k(x)\), \(u, v \in R_l(y)\)

does not imply \(i = j\) or \(k = l\)

The hard case:

\(x, y \in R_1(u)\) and \(u, v \in R_1(x)\)
Improving the Area

Merging edges preserves the Schnyder wood properties.
Step I: Reduction

Reduce the face count by merging edges.
Step II: Drawing

Draw the reduced graph by counting faces on the \((f↓ - 1) \times (f↓ - 1)\) grid.
Step III: Drawing More

Reinsert the ‘merge edges’.
Correctness

Upon reinsertion of merge edges:

- No crossings.
 (True when all merges are of same kind.)
- Convex faces.
Let $\Delta_{S_{\text{Min}}}^{(2)} \geq 0$ be the number of faces with a counterclockwise edge in each color in S_{Min}.

Theorem. A planar triangulation with n vertices has a straight line drawing on a grid of size $(n - 1 - \Delta_{S_{\text{Min}}}^{(2)}) \times (n - 1 - \Delta_{S_{\text{Min}}}^{(2)})$.

Theorem. A 3-connected planar graph G with n vertices has a convex drawing on a grid of size $(n - 1 - \Delta_{S_{\text{Min}}}^{(2)}) \times (n - 1 - \Delta_{S_{\text{Min}}}^{(2)})$.
Using all three face count coordinates we obtain an embedding of T on an orthogonal surface.
Orthogonal Surfaces and Dimension

A surface S_X is rigid iff

$$e = (x, y) \in G_S \text{ and } z \neq x, y \text{ implies } z \not\leq e = x \lor y.$$

Remark. A rigid orthogonal surface supports a unique Schnyder wood of a 3-connected planar graph.

Theorem [Miller '02].
If G is the graph of a rigid orthogonal surface and P a 3-polytope with graph G, then $\dim(\mathcal{F}_P \setminus F_\infty) = 3$.

Theorem [Brightwell+Trotter '92].
If P is a 3-polytope and F is any face of P, then

- $\dim(\mathcal{F}_P \setminus F) = 3$
- $\dim(\mathcal{F}_P) = 4$
From Graphs to Rigid Surfaces

Two types of non-rigid edges

resolved by shifting red flats.
Red flats form a 2-dimensional order P_r. Compatible height functions of red flats correspond to order preserving maps $\phi : P_r \to \mathbb{R}$.
Adding arcs to prevent non-rigid edges doesn’t spoil acyclicity.

Theorem. There are compatible assignments for the heights of flats of all three colors which together yield a rigid orthogonal surface supporting the original Schnyder wood.

⇒ the Brightwell–Trotter Theorem.
Outline

Introduction to Schnyder Woods
Dimension
Drawings
Triangle representations
Homothetic Triangle Contact Representations

Theorem [Gonçalves, Lévêque, Pinlou (GD 2010)].
Every 4-connected triangulation has a triangle contact representation with homothetic triangles.
Triangle Contact Representations

G-L-P observe that the conjecture follows from a corollary of Schramm’s “Monster Packing Theorem”.

Theorem. Let T be a planar triangulation with outer face $\{a, b, c\}$ and let C be a simple closed curve partitioned into arcs $\{P_a, P_b, P_c\}$. For each interior vertex v of T prescribe a convex set Q_v containing more than one point. Then there is a contact representation of T with homothetic copies.

Remark. In general homothetic copies of the Q_v can degenerate to a point. Gonçalves et al. show that this is impossible if T is 4-connected.
de Fraysséix, de Mendez and Rosenstiehl construct triangle contact representations of triangulations.

Construct along a good ordering of vertices

\[T_1 + T_2^{-1} + T_1^{-1} \]
The abstract triangle contact representation implies equations for the sidelength:

\[x_a + x_b + x_c = x_v \quad \text{and} \quad x_d = x_v \quad \text{and} \quad x_e = x_v \quad \text{and} \quad x_d + x_e = x_w \quad \text{and} \quad \ldots \]
Solving the Equations

Theorem. The system of equations has a unique solution.
The proof is based on counting matchings.
In the solution some variables may be **negative**.
Still the solution yields a triangle contact representation.
Proposition. The boundary of a negative area is a directed cycle in the underlying Schnyder wood.

From the bijection

Schnyder woods \iff 3-orientations

it follows that cycles can be reverted (flipped).
A new Schnyder wood yields new equations and a new solution.

Theorem. A negative triangle becomes positive by flipping.
More Complications

It may be necessary to flip longer cycles.
Status Report and End

- We have no proof that the process always ends with a homothetic triangle representation.

The End