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Schnyder Woods

G = (V ,E ) a plane triangulation,

F = {a1,a2,a3} the outer triangle.

A coloring and orientation of the interior edges of G with colors
1,2,3 is a Schnyder wood of G iff

• Inner vertex

condition:

• Edges {v , ai} are oriented v → ai in color i .



Schnyder Woods - Trees

• The set Ti of edges colored i is a tree rooted at ai .

Proof. Count edges in a cycle — Euler



Schnyder Woods - Paths

• Paths of different color have at most one vertex in common.



Schnyder Woods - Regions

• Every vertex has three distinguished regions.

R1

R2

R3



Schnyder Woods - Regions

• If u ∈ Ri (v) then Ri (u) ⊂ Ri (v).

v

u
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Schnyder’s Dimension Theorem

Qi the inclusion order with respect to Ri (.)
Li a linear extension of Qi

L+i include edges as low in Li as possible
=⇒ L+1 , L

+
2 , L

+
3 is a realizer for PG .

Proof. e = {u, v} and edge, x 6∈ e a vertex.
We need:

L
x

e

vu

There is an i with e ∈ Ri (x)

=⇒ Ri (u) ⊂ Ri (x) and Ri (v) ⊂ Ri (x)

=⇒ Edge e goes below x in L+i . �
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Dimension of 3-Polytopes

Theorem [ Schnyder 1989 ].
If G is a plane triangulation with a face F , then

• dim(PVEF (G ) \ F ) = 3 • dim(PVEF (G )) = 4

Theorem [ Brightwell+Trotter 1993 ].
If G is a 3-connected plane graph with a face F , then

• dim(PVEF (G ) \ F ) = 3 • dim(PVEF (G )) = 4



Schnyder Woods

Axioms for 3-coloring and orientation of bi-edges:

(W1 - W2) Rule of edges and half-edges:

(W3) Rule of
vertices:

(W4) There is no interior face whose boundary is a directed cycle
in one color.



We need W4!



3-Orientations?



Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G .
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Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G .



3-Orientations – Rescued

Theorem. Primal dual Schnyder woods are in bijection with primal
dual 3-orientations.



Schnyder Woods - Regions

• If u ∈ Ro
i (v) then Ri (u) ⊂ Ri (v).

• If u ∈ ∂Ri (v) then Ri (u) ⊆ Ri (v)

(equality, iff there is a bi-directed path between u and v .)

v

u
v u



Brigthwell Trotter Theorem

• P a 3-polytope with face F .

• G the graph of P with outer face F .

• S a Schnyder wood of G .

Define <i on VP for i = 1, 2, 3

(1) u <i v if Ri (u) ⊂ Ri (v)

(2) u <i v if Ri (u)||Ri (v) and Ri+1(u) ⊂ Ri+1(v).

Lemma. The relation <i is acyclic.

Theorem. L1, L2, L3 is a realizer for PVEF (G ) \ F
( Li a linear extension of <i ).
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Schnyder’s Second Theorem

Theorem [ Schnyder 1989 ].
A planar triangulation G admit a straight line drawing on the
(2n − 5)× (2n − 5) grid.

Example.



Schnyder’s Straight Line Embeddings

φ : regions → R+ is S-good iff

(1) Ri (u) ⊂ Ri (v) =⇒ φ(Ri (u)) < φ(Ri (v))

(2) φ(R1(v)) + φ(R2(v)) + φ(R3(v)) = C

Theorem. The embedding v → f (v) = (φ(R1(v), φ(R2(v)) is a
straight line embedding in the C × C square.

• {x , y} ∈ E and z 6∈ {x , y} =⇒ f (z) 6∈ [f (x), f (y)]
because x , y ∈ Ri (z) for some i ∈ {1, 2, 3}.

• {u, v}, {x , y} ∈ E
x , y ∈ Ri (u), x , y ∈ Rj(v), u, v ∈ Rk(x), u, v ∈ Rl(y)

=⇒ i = j or k = l



Grid Embeddings – Faces

The count of faces contained in a region is S-good.

Corollary. Planar triangulations admit a straight line drawing on
the (f − 1)× (f − 1) grid (f = 2n − 4).



Grid Embeddings – Vertices

Counting vertices in regions, including vertices on right path,
excluding vertices on left path yields:

Theorem [ Schnyder ’90 ]. Planar triangulations admit a straight
line drawing on the (n − 2)× (n − 2) grid.

We may have
Ri (u) ⊂ Ri (v) and
φ(Ri (u)) = φ(Ri (v)),
still:

• There is no vertex on an
edge.

• Edges are separated.



Convex Drawings of 3-Connected Plane Graphs

Theorem. 3-connected planar graphs admit convex drawings on
the (f − 1)× (f − 1) grid.



Schnyder Woods - Regions

• If u ∈ Ro
i (v) then Ri (u) ⊂ Ri (v).

• If u ∈ ∂Ri (v) then Ri (u) ⊆ Ri (v)

(equality, iff there is a bi-directed path between u and v .)

v

u
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Idea of the Proof

(1) The wedges of a vertex.

(2) No vertex on an edge.

(3) Edges are disjoint

{u, v}, {x , y} ∈ E
x , y ∈ Ri (u), x , y ∈ Rj(v), u, v ∈ Rk(x), u, v ∈ Rl(y)
does not imply i = j or k = l

The hard case:

x , y ∈ R1(u) and u, v ∈ R1(x) v
y

xu



Improving the Area

cw-merge ccw-merge

Merging edges preserves the Schnyder wood properties.



Step I: Reduction

Reduce the face count by merging edges.



Step II: Drawing

Draw the reduced graph by counting faces on the
(f ↓ − 1)× (f ↓ − 1) grid.



Step III: Drawing More

Reinsert the ‘merge edges’.



Correctness

Upon reinsertion of merge edges:

• No crossings.
(True when all merges are of same kind.)

• Convex faces.



Area Improvement with Merges

Let ∆SMin
≥ 0 be the number of faces with a counterclockwise

edge in each color in SMin.

Theorem. A planar triangulation with n vertices has a straight line
drawing on a grid of size (n − 1−∆SMin

)× (n − 1−∆SMin
).

Theorem. A 3-connected planar graph G with n vertices has a
convex drawing on a grid of size (n−1−∆SMin

)× (n−1−∆SMin
).



Drawings on Orthogonal Surfaces

Using all three face count coordinates we obtain an embedding
of T on an orthogonal surface.



Orthogonal Surfaces and Dimension

A surface SX is rigid iff

e = (x , y) ∈ GS and z 6= x , y implies z 6≤ e = x ∨ y .
Remark. A rigid orthogonal surface supports a unique Schnyder
wood of a 3-connected planar graph.

Theorem [ Miller ’02 ].
If G is the graph of a rigid orthogonal surface and P a 3-polytope
with graph G , then dim(FP \ F∞) = 3.

Theorem [ Brightwell+Trotter ’92 ].
If P is a 3-polytope and F is any face of P, then

• dim(FP \ F ) = 3 • dim(FP) = 4



From Graphs to Rigid Surfaces

Two types of non-rigid edges

resolved by shifting red flats.



Shifting Flats

Red flats form a 2-dimensional order Pr . Compatible height
functions of red flats correspond to order preserving maps
φ : Pr → IR.



Shifting Flats

Adding arcs to prevent non-rigid edges doesn’t spoil acyclicity.

Theorem. There are compatible assignments for the heights of
flats of all three colors which together yield a rigid orthogonal
surface supporting the original Schnyder wood.

=⇒ the Brightwell–Trotter Theorem.
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Homothetic Triangle Contact Representations

Theorem [ Gonçalves, Lévêque, Pinlou (GD 2010) ].
Every 4-connected triangulation has a triangle contact
representation with homothetic triangles.



Triangle Contact Representations

G-L-P observe that the conjecture follows from a corollary of
Schramm’s “Monster Packing Theorem”.

Theorem. Let T be a planar triangulation with outer face
{a, b, c} and let C be a simple closed curve partitioned into arcs
{Pa,Pb,Pc}. For each interior vertex v of T prescribe a convex
set Qv containing more than one point. Then there is a contact
representation of T with homothetic copies.

Remark. In general homothetic copies of the Qv can degenerate to
a point. Gonçalves et al. show that this is impossible if T is
4-connected.



Triangle Contact Representation

de Fraysseix, de Mendez and Rosenstiehl construct triangle contact
representations of triangulations.

Construct along a good ordering of vertices
T1 + T2

−1 + T1
−1



Triangle Contacts and Equations

w

a v

d

e

b
c

The abstract triangle contact representation implies equations for
the sidelength:
xa + xb + xc = xv and xd = xv and xe = xv and xd + xe = xw and
. . .



Solving the Equations

Theorem. The system of equations has a unique solution.

The proof is based on counting matchings.

In the solution some variables may be negative.

Still the solution yields a triangle contact representation.



Flipping Cycles

Proposition. The boundary of a negative area is a directed cycle
in the underlying Schnyder wood.

From the bijection

Schnyder woods ⇐⇒ 3-orientations

it follows that cycles can be reverted (flipped).



Resolving

A new Schnyder wood yields new equations and a new solution.

Theorem. A negative triangle becomes positive by flipping.



More Complications

It may be necessary to flip longer cycles.



Status Report and End

• We have no proof that the process always ends with a
homothetic triangle representation.

The End


