Schnyder Woods and Applications

Spring School SGT 2018 Seté, June 11-15, 2018

Stefan Felsner

Technische Universität Berlin

Introduction to Schnyder Woods Dimension Drawings Triangle representations

Schnyder Woods

G = (V, E) a plane triangulation, $F = \{a_1, a_2, a_3\}$ the outer triangle.

A coloring and orientation of the interior edges of G with colors 1,2,3 is a Schnyder wood of G iff

- Inner vertex condition:
- Edges $\{v, a_i\}$ are oriented $v \to a_i$ in color *i*.

Schnyder Woods - Trees

• The set T_i of edges colored *i* is a tree rooted at a_i .

Proof. Count edges in a cycle — Euler

Schnyder Woods - Paths

• Paths of different color have at most one vertex in common.

Schnyder Woods - Regions

• Every vertex has three distinguished regions.

Schnyder Woods - Regions

• If $u \in R_i(v)$ then $R_i(u) \subset R_i(v)$.

Introduction to Schnyder Woods Dimension Drawings Triangle representations

Schnyder's Dimension Theorem

 Q_i the inclusion order with respect to $R_i(.)$ L_i a linear extension of Q_i L_i^+ include edges as low in L_i as possible $\implies L_1^+, L_2^+, L_3^+$ is a realizer for P_G .

Proof. $e = \{u, v\}$ and edge, $x \notin e$ a vertex. We need:

Schnyder's Dimension Theorem

 Q_i the inclusion order with respect to $R_i(.)$ L_i a linear extension of Q_i L_i^+ include edges as low in L_i as possible $\implies L_1^+, L_2^+, L_3^+$ is a realizer for P_G .

Proof. $e = \{u, v\}$ and edge, $x \notin e$ a vertex. We need:

There is an *i* with $e \in R_i(x)$

 \implies $R_i(u) \subset R_i(x)$ and $R_i(v) \subset R_i(x)$

 \implies Edge *e* goes below x in L_i^+ .

Dimension of 3-Polytopes

Theorem [Schnyder 1989 **].** If G is a plane triangulation with a face F, then

• $\dim(P_{VEF}(G) \setminus F) = 3$ • $\dim(P_{VEF}(G)) = 4$

Theorem [Brightwell+Trotter 1993]. If G is a 3-connected plane graph with a face F, then

• $\dim(P_{VEF}(G) \setminus F) = 3$ • $\dim(P_{VEF}(G)) = 4$

Schnyder Woods

Axioms for 3-coloring and orientation of bi-edges: (W1 - W2) Rule of edges and half-edges:

(W4) There is no interior face whose boundary is a directed cycle in one color.

We need W4!

3-Orientations?

Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.

Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.

Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.

3-Orientations - Rescued

Theorem. Primal dual Schnyder woods are in bijection with primal dual 3-orientations.

Schnyder Woods - Regions

- If $u \in R_i^o(v)$ then $R_i(u) \subset R_i(v)$.
- If $u \in \partial R_i(v)$ then $R_i(u) \subseteq R_i(v)$

(equality, iff there is a bi-directed path between u and v.)

Brigthwell Trotter Theorem

- *P* a 3-polytope with face *F*.
- G the graph of P with outer face F.
- *S* a Schnyder wood of *G*.

Define $<_i$ on V_P for i = 1, 2, 3

- (1) $u <_i v$ if $R_i(u) \subset R_i(v)$
- (2) $u <_i v$ if $R_i(u) || R_i(v)$ and $R_{i+1}(u) \subset R_{i+1}(v)$.

Lemma. The relation $<_i$ is acyclic.

Theorem. L_1, L_2, L_3 is a realizer for $P_{VEF}(G) \setminus F$ (L_i a linear extension of $<_i$).

Introduction to Schnyder Woods Dimension Drawings Triangle representations

Schnyder's Second Theorem

Theorem [Schnyder 1989].

A planar triangulation G admit a straight line drawing on the $(2n-5) \times (2n-5)$ grid.

Example.

Schnyder's Straight Line Embeddings

 $\phi: \operatorname{regions} \to \mathbb{R}^+ \text{ is S-good iff}$

- (1) $R_i(u) \subset R_i(v) \implies \phi(R_i(u)) < \phi(R_i(v))$
- (2) $\phi(R_1(v)) + \phi(R_2(v)) + \phi(R_3(v)) = C$

Theorem. The embedding $v \to f(v) = (\phi(R_1(v), \phi(R_2(v)))$ is a straight line embedding in the $C \times C$ square.

• $\{x, y\} \in E$ and $z \notin \{x, y\} \implies f(z) \notin [f(x), f(y)]$ because $x, y \in R_i(z)$ for some $i \in \{1, 2, 3\}$.

• $\{u, v\}, \{x, y\} \in E$ $x, y \in R_i(u), x, y \in R_j(v), u, v \in R_k(x), u, v \in R_l(y)$ $\implies i = j \text{ or } k = l$

Grid Embeddings – Faces

The count of faces contained in a region is S-good.

Corollary. Planar triangulations admit a straight line drawing on the $(f - 1) \times (f - 1)$ grid (f = 2n - 4).

Grid Embeddings - Vertices

Counting vertices in regions, including vertices on right path, excluding vertices on left path yields:

Theorem [Schnyder '90]. Planar triangulations admit a straight line drawing on the $(n-2) \times (n-2)$ grid.

We may have $R_i(u) \subset R_i(v)$ and $\phi(R_i(u)) = \phi(R_i(v))$, still:

- There is no vertex on an edge.
- Edges are separated.

Convex Drawings of 3-Connected Plane Graphs

Theorem. 3-connected planar graphs admit convex drawings on the $(f - 1) \times (f - 1)$ grid.

Schnyder Woods - Regions

- If $u \in R_i^o(v)$ then $R_i(u) \subset R_i(v)$.
- If u ∈ ∂R_i(v) then R_i(u) ⊆ R_i(v) (equality, iff there is a bi-directed path between u and v.)

Idea of the Proof

- (1) The wedges of a vertex.
- (2) No vertex on an edge.
- (3) Edges are disjoint

 $\{u, v\}, \{x, y\} \in E$ $x, y \in R_i(u), x, y \in R_j(v), u, v \in R_k(x), u, v \in R_l(y)$ does not imply <math>i = j or k = l

The hard case:

 $x, y \in R_1(u)$ and $u, v \in R_1(x)$

Improving the Area

Merging edges preserves the Schnyder wood properties.

Step I: Reduction

Reduce the face count by merging edges.

Step II: Drawing

Draw the reduced graph by counting faces on the $(f^{\downarrow}-1) \times (f^{\downarrow}-1)$ grid.

Step III: Drawing More

Reinsert the 'merge edges'.

Correctness

Upon reinsertion of merge edges:

• No crossings.

(True when all merges are of same kind.)

• Convex faces.

Let $\Delta_{S_{Min}}^{\ominus} \ge 0$ be the number of faces with a counterclockwise edge in each color in S_{Min} .

Theorem. A planar triangulation with *n* vertices has a straight line drawing on a grid of size $(n - 1 - \Delta_{S_{Min}}^{\frown}) \times (n - 1 - \Delta_{S_{Min}}^{\frown})$.

Theorem. A 3-connected planar graph *G* with *n* vertices has a convex drawing on a grid of size $(n - 1 - \Delta_{S_{\min}}^{\frown}) \times (n - 1 - \Delta_{S_{\min}}^{\frown})$.

Drawings on Orthogonal Surfaces

Using all three face count coordinates we obtain an embedding of T on an orthogonal surface.

Orthogonal Surfaces and Dimension

A surface S_X is rigid iff

 $e = (x, y) \in G_S$ and $z \neq x, y$ implies $z \not\leq e = x \lor y$. **Remark.** A rigid orthogonal surface supports a unique Schnyder wood of a 3-connected planar graph.

Theorem [Miller '02].

If G is the graph of a rigid orthogonal surface and P a 3-polytope with graph G, then $\dim(\mathcal{F}_P \setminus F_\infty) = 3$.

Theorem [Brightwell+Trotter '92].

If P is a 3-polytope and F is any face of P, then

•
$$\dim(\mathcal{F}_P \setminus F) = 3$$
 • $\dim(\mathcal{F}_P) = 4$

From Graphs to Rigid Surfaces

Two types of non-rigid edges

resolved by shifting red flats.

Shifting Flats

Red flats form a 2-dimensional order P_r . Compatible height functions of red flats correspond to order preserving maps $\phi: P_r \to \mathbb{R}$.

Shifting Flats

Adding arcs to prevent non-rigid edges doesn't spoil acyclicity.

Theorem. There are compatible assignments for the heights of flats of all three colors which together yield a rigid orthogonal surface supporting the original Schnyder wood.

 \implies the Brightwell–Trotter Theorem.

Introduction to Schnyder Woods Dimension Drawings Triangle representations

Homothetic Triangle Contact Representations

Theorem [Gonçalves, Lévêque, Pinlou (GD 2010)]. Every 4-connected triangulation has a triangle contact representation with homothetic triangles.

Triangle Contact Representations

G-L-P observe that the conjecture follows from a corollary of Schramm's "Monster Packing Theorem".

Theorem. Let *T* be a planar triangulation with outer face $\{a, b, c\}$ and let *C* be a simple closed curve partitioned into arcs $\{P_a, P_b, P_c\}$. For each interior vertex *v* of *T* prescribe a convex set Q_v containing more than one point. Then there is a contact representation of *T* with homothetic copies.

Remark. In general homothetic copies of the Q_v can degenerate to a point. Gonçalves et al. show that this is impossible if T is 4-connected.

Triangle Contact Representation

de Fraysseix, de Mendez and Rosenstiehl construct triangle contact representations of triangulations.

Construct along a good ordering of vertices $T_1 + T_2^{-1} + T_1^{-1}$

Triangle Contacts and Equations

The abstract triangle contact representation implies equations for the sidelength:

 $x_a + x_b + x_c = x_v$ and $x_d = x_v$ and $x_e = x_v$ and $x_d + x_e = x_w$ and \dots

Solving the Equations

Theorem. The system of equations has a unique solution.

- The proof is based on counting matchings.
- In the solution some variables may be negative.
- Still the solution yields a triangle contact representation.

Flipping Cycles

Proposition. The boundary of a negative area is a directed cycle in the underlying Schnyder wood.

From the bijection

Schnyder woods \iff 3-orientations

it follows that cycles can be reverted (flipped).

Resolving

A new Schnyder wood yields new equations and a new solution. **Theorem.** A negative triangle becomes positive by flipping.

More Complications

It may be necessary to flip longer cycles.

Status Report and End

• We have no proof that the process always ends with a homothetic triangle representation.

The End