Schnyder Woods and Applications

Spring School SGT 2018

Seté, June 11-15, 2018 V"
V'v"
v V

Y
v

Stefan Felsner
Technische Universitat Berlin




Outline

Introduction to Schnyder Woods

Dimension

Drawings

Triangle representations




Schnyder Woods

G = (V, E) a plane triangulation,
F = {a1,a2,a3} the outer triangle.

A coloring and orientation of the interior edges of G with colors
1,2,3 is a Schnyder wood of G iff

e Inner vertex
condition:
4
AN

e Edges {v,a;} are oriented v — a; in color /.




Schnyder Woods - Trees

e The set T; of edges colored i is a tree rooted at a;.

Proof. Count edges in a cycle — Euler %




Schnyder Woods - Paths

e Paths of different color have at most one vertex in common.

/
—




Schnyder Woods - Regions

e Every vertex has three distinguished regions.




Schnyder Woods - Regions

o If ue Ri(v) then Ri(u) C Ri(v).
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Schnyder's Dimension Theorem

Q; the inclusion order with respect to R;(.)

L; a linear extension of Q;

Lf include edges as low in L; as possible
== Lf, L;r, L;r is a realizer for Pg.

Proof. e = {u, v} and edge, x € e a vertex.

We need:




Schnyder's Dimension Theorem

Q; the inclusion order with respect to R;(.)

L; a linear extension of Q;

Lf include edges as low in L; as possible
== L1+, L;r, L3+ is a realizer for Pg.

Proof. e = {u, v} and edge, x € e a vertex.
We need:

L o o e o o e o o
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There is an | with e € R;(x)
— R,-(u) C R,'(X) and R,'(V) C R,'(X)

= Edge e goes below x in L.



Dimension of 3-Polytopes

Theorem | ]-
If G is a plane triangulation with a face F, then

o dim(Pver(G)\F)=3 e dim(Pver(G)) =4

Theorem | ]-
If G is a 3-connected plane graph with a face F, then

o dim(Pver(G)\F)=3 o dim(Pver(G)) =4



Schnyder Woods

Axioms for 3-coloring and orientation of bi-edges:

(W1 - W2) Rule of edges and half-edges:

Yo Xk —h

(W3) Rule of
vertices: \
g
ZAN

(W4) There is no interior face whose boundary is a directed cycle
in one color.



We need W4!







Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.

!
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Primal and Dual

A Schnyder wood of G induces a Schnyder wood of the dual of G.
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3-Orientations — Rescued

Theorem. Primal dual Schnyder woods are in bijection with primal
dual 3-orientations.

O—=—




Schnyder Woods - Regions

o If ue R?(v) then Ri(u) C Ri(v).
o If uc ORi(v) then Ri(u) C Ri(v)

(equality, iff there is a bi-directed path between u and v.)




Brigthwell Trotter Theorem

e P a 3-polytope with face F.
e G the graph of P with outer face F.
e S a Schnyder wood of G.
Define <; on Vp for i =1,2,3
(1) u<;vif Ri(u) C Ri(v)
(2) u<;vif Ri(u)]|Ri(v) and Ri11(u) C Riy1(v).

Lemma. The relation <; is acyclic.

Theorem. L, L5, L3 is a realizer for Pygr(G) \ F
( L a linear extension of <;).
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Schnyder’s Second Theorem

Theorem | ]-
A planar triangulation G admit a straight line drawing on the
(2n —5) x (2n —5) grid.

Example.




Schnyder's Straight Line Embeddings

¢ : regions — R is S-good iff
(1) Ri(u) € Ri(v) = o(Ri(u)) < ¢(Ri(v))
(2) ¢(Ri(v)) + o(Ra(v)) + &(Rs(v)) = C

Theorem. The embedding v — f(v) = (¢(Ri(v), ¢(R2(v)) is a
straight line embedding in the C x C square.

e {x,y}€Eand z¢ {x,y} = f(z) ¢ [f(x),f(y)]
because x,y € R;(z) for some i € {1,2,3}.
o {uvh{xy}tekE
x,y € Ri(u), x,y € Ri(v), u,v € Re(x), u,v € Ri(y)
= i=jork=1




Grid Embeddings — Faces

The count of faces contained in a region is S-good.

Corollary. Planar triangulations admit a straight line drawing on
the (f — 1) x (f — 1) grid (f = 2n —4).

>
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Grid Embeddings — Vertices

Counting vertices in regions, including vertices on right path,
excluding vertices on left path yields:

Theorem | ] Planar triangulations admit a straight
line drawing on the (n — 2) x (n — 2) grid.

We may have
Ri(u) C Ri(v) and
¢(Ri(u)) = o(Ri(v)),

still:

e There is no vertex on an
edge.

e Edges are separated.



Convex Drawings of 3-Connected Plane Graphs

Theorem. 3-connected planar graphs admit convex drawings on
the (f — 1) x (f — 1) grid.




Schnyder Woods - Regions

o If uc R?(v) then Ri(u) C Ri(v).

o If u € ORi(v) then Ri(u) C Ri(v)
(equality, iff there is a bi-directed path between u and v.)




Idea of the Proof

(1) The wedges of a vertex. \/ A \/
(2) No vertex on an edge. /\ N

(3) Edges are disjoint

{u7 V}7 {X7.y} 6 E
x,y € Ri(u), x,y € Ri(v), u,v € Ri(x), u,v € Ri(y)
does not imply i =j or k=1

The hard case:
x,y € Ri(u) and u,v € Ri(x) y

u X




Improving the Area

o

cw-merge ccw-merge

—>/ —

Merging edges preserves the Schnyder wood properties.

o




Step |: Reduction

Reduce the face count by merging edges.

N/ Y/ N/
V/NY/N




Step Il: Drawing

Draw the reduced graph by counting faces on the
(F¥ — 1) x (F+ — 1) grid.




Step IlI: Drawing More

Reinsert the ‘merge edges’'.




Correctness

Upon reinsertion of merge edges:

e No crossings.
(True when all merges are of same kind.)

e Convex faces.




Area Improvement with Merges

Let A@ . >0 be the number of faces with a counterclockwise
n
edge in each color in Spjn.

Theorem. A planar triangulation with n vertices has a straight line
drawing on a grid of size (n — 1 — A@M, )x (n—1-— A@Min).
n

Theorem. A 3-connected planar graph G with n vertices has a
convex drawing on a grid of size (n—1— A‘?Min) x(n—1- A@Min).



Drawings on Orthogonal Surfaces

Using all three face count coordinates we obtain an embedding
of T on an orthogonal surface.




Orthogonal Surfaces and Dimension

A surface Sy is rigid iff

e=(x,y) € Gs and z # x,y implies z L e = x V y.
Remark. A rigid orthogonal surface supports a unique Schnyder
wood of a 3-connected planar graph.

Theorem | ]-
If G is the graph of a rigid orthogonal surface and P a 3-polytope
with graph G, then dim(Fp \ Fs) = 3.

Theorem | ]-
If P is a 3-polytope and F is any face of P, then

o dim(Fp\F)=3 o dim(Fp) =4



From Graphs to Rigid Surfaces

Two types of non-rigid edges

resolved by shifting red flats.

s




Shifting Flats

Red flats form a 2-dimensional order P,. Compatible height
functions of red flats correspond to order preserving maps
¢:Pr— R




Shifting Flats

Adding arcs to prevent non-rigid edges doesn’t spoil acyclicity.

Theorem. There are compatible assignments for the heights of
flats of all three colors which together yield a rigid orthogonal
surface supporting the original Schnyder wood.

— the Brightwell-Trotter Theorem.
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Homothetic Triangle Contact Representations

Theorem | ]-
Every 4-connected triangulation has a triangle contact
representation with homothetic triangles.




Triangle Contact Representations

G-L-P observe that the conjecture follows from a corollary of
Schramm's “Monster Packing Theorem" .

Theorem. Let T be a planar triangulation with outer face
{a,b,c} and let C be a simple closed curve partitioned into arcs
{P,, Pp, P.}. For each interior vertex v of T prescribe a convex
set @, containing more than one point. Then there is a contact
representation of T with homothetic copies.

Remark. In general homothetic copies of the @, can degenerate to
a point. Gongalves et al. show that this is impossible if T is
4-connected.



Triangle Contact Representation

de Fraysseix, de Mendez and Rosenstiehl construct triangle contact
representations of triangulations.

Construct along a good ordering of vertices W
i+ T+ Tt




Triangle Contacts and Equations

The abstract triangle contact representation implies equations for
the sidelength:
X; + Xp + xc = xy and x4 = x, and x. = x, and x4 + Xe = x,, and




Solving the Equations

Theorem. The system of equations has a unique solution.
The proof is based on counting matchings.
In the solution some variables may be negative.

Still the solution yields a triangle contact representation.

o v Y%




Flipping Cycles

Proposition. The boundary of a negative area is a directed cycle
in the underlying Schnyder wood.
From the bijection
Schnyder woods <= 3-orientations
it follows that cycles can be reverted (flipped).




Resolving

A new Schnyder wood yields new equations and a new solution.

Theorem. A negative triangle becomes positive by flipping.

\




More Complications

It may be necessary to flip longer cycles.




Status Report and End

e We have no proof that the process always ends with a
homothetic triangle representation.

The End




