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Outline

Order Dimension of Planar Graphs – Revisited

Contact Representations with Pentagons

Primal–Dual Contact Representations with Circles



Brightwell–Trotter Theorem I

Theorem [ Brightwell+Trotter ’93 ].
If G is a 3-connected plane graph with a face F , then

• dim(PVEF (G \ F )) = 3 • dim(PVEF (G )) = 4



Brightwell–Trotter Theorem II
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Theorem [ Brightwell+Trotter ’97 ].
If G is a plane multi-graph with loops, then

dim(PVEF (G )) ≤ 4.



Splits and Dimension

The split of P = (X , <) is split(P) = (X ′ ∪ X ′′, <s) with

x ′ <s y
′′ iff x ≤ y

Theorem [ Kimble 78 ].

dim(P) ≤ dim(split(P)) ≤ dim(P) + 1.



Bipartite Orders

A bipartite Graph can be viewed as a height 2 order.

• We can talk about dim(G ) when G is bipartite.



Grid Intersection Graphs

A GIG is an intersection graphs of horizontal and vertical segments
(no two on a common line).

• GIGs are bipartite.



Dimension of GIGs
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Theorem. G a GIG, then
dim(G ) ≤ 4.

Theorem [ generalization ]. If a bipartite graph G = (X ,Y ;E )
has a representation as intersection graphs of objects from a
t-separable class, then dim(G ) ≤ 2t.



Planar Bipartite Graphs

Theorem. Every planar bipartite graph H admits a contact
representation with interiorly disjoint horizontal and vertical
segments.



Angle Graphs of Planar Graphs

• Angle graphs are planar bipartite.



The First Step

G 2-connected plane multi-graph (no loops).

• The order dimension of PVF (G ), the incidence order of
vertices and faces of a planar multigraph G (no loops) is at
most four, moreover dim(split(PVF (G )) ≤ 4.



Adding the Edges

Theorem. If G is a 2-connected and plane multigraph, then
dim(split(PVEF (G )) ≤ 4.



Loops

• Break loops by inserting a new vertex. split(PVEF (G )) is a
suborder of split(PVEF (G+))



Cut Vertices

• Use induction: break G into G1 and G2 at a cut vertex:

G1

G2

G

Theorem. If G is a plane multigraph -loops allowed-, then
dim(split(PVEF (G )) ≤ 4.
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Regular Pentagon Contact Representations

a1

a2

a3a4

a5 Triangulation G of 5-gon a1, . . . , a5
I no multiple edges

I no loops

I no chords

Questions:

I Existence

I Uniqueness

I Combinatorial structure

I Computation



Why Pentagons? Triangles Squares

Existence for all 4-connected G
[Gonçalves et. al. ’11]

for all 5-connected G
[Schramm ’93]

Uniqueness open yes
[Schramm ’93]

Comb. structure Schnyder wood transversal structure
Computation heuristic [Felsner ’09] heuristic [Felsner ’13],

iterative [Schramm ’93]

optimization [Lovász ’06]



Existence

Theorem
Each triangulation G of a 5-gon admits a regular pentagon contact
representation.

Proof.
Application of Convex Packing Theorem [Schramm ’90].

Remember: For triangles G has to be 4-connected, for squares
5-connected.
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The combinatorial structure: five color forests

Definition (Five color forest)

Orientation and coloring of inner
edges of inner triangulation of
5-gon a1, . . . , a5, s.t.
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I no incoming edge of color i
⇒ outgoing edge of color
i − 2 or i + 2 exists

Theorem
Regular pentagon contact
representation induces five color
forest on its contact graph.



Five color forests ↔ α-orientations

I outdeg( ) = 5

I outdeg( ) = 2



Five color forests ↔ α-orientations

Theorem
There is a bijection between the five color forests and
α-orientations of a graph G .



System of linear equations
Computing a regular pentagon contact representation induced by a fixed five color forest
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I Variables:

I one side length for each vertex: xv
I four side lengths for each face: x
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I one inhomogeneous: length of upper segment = 1
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System of linear equations
Computing a regular pentagon contact representation induced by a fixed five color forest

Lemma
The system AF x = e1 is uniquely solvable.

Lemma
x ≥ 0 ⇔ there is a regular pentagon contact repr. inducing F

Corollary

computing a regular pentagon repr.
can be done by

finding a five color forest F
s.t. AF x = e1 has nonnegative solution
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Heuristic
I Guess the right five color forest F

I Case 1: solution of AF x = e1 is nonnegative
I construct contact repr. from solution

I Case 2: solution contains negative and nonnegative variables

I Lemma: neg. and nonneg. variables are separated by oriented
cycles in the α-orientation

I change orientation of these cycles
I restart with new α-orientation, resp. five color forest
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Example

www3.math.tu-berlin.de/diskremath/research/kgon-representations



Number of iterations
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Open problems

Conjecture

The heuristic terminates for each graph and each five color forest
to start with.

Conjecture

Regular pentagon contact representations can be computed in
polynomial time.

Conjecture

Regular pentagon contact representations are unique.
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Coin Graphs

On Primal Dual Circle Packings

Stefan Felsner + Günter Rote

1985 – Ringel’s coin graph conjecture.



Circle Packing – History

• Koebe 1936

• Andreev 1970

• Thurston 1978

• Sachs 1991

• Colin de Verdière 1989

• Colin de Verdière 1991

• Brightwell and Scheinerman 1993

• Pulleyblank and Rote 1992

• Mohar 1997



Primal-Dual Circle Representation – The Statement

G = (V ,E ,F ) 3-connected plane.

(Cx : x ∈ V ) and (Dy : y ∈ F ) families of circles.

Properties:

(i) primal contact structure.

(ii) dual contact structure.

(iii) orthogonality of two straight-line drawings.

Theorem.
G 3-con. plane =⇒ G has a primal-dual circle representation.

• The representation is unique up to Möbius transformations.



Primal Contact Structure



Dual Contact Structure



Orthogonality



Primal and Dual



Kites

• A kite for each incidence (x , y) with x ∈ V , y ∈ F \ fo .

αyx

αxy x ′x

y ′

y

αxy = 2 arctan
ry
rx

and αyx = 2 arctan
rx
ry



Making the Outer Face a Triangle

• Stereographic projections map between primal-dual circle
representation of G in plane and on sphere.

• G or G ∗ has a vertex of degree 3.



Counting Lemma

• Every subset S ⊆ V ∪ F \ fo supports at most 2|S | − 5 kites.



Target Angles

• wlog. the outer triangle equilateral (Möbius transformation).

• target angles:

β(u) =

{
π/3 if u is an outer vertex of G

2π u some other vertex or face 6= fo .∑
u

β(u) =
(
(|V | − 3) + (|F | − 1)

)
2π + 3

π

3
= |K |π.

For any choice of radii the target angles are attained on average

α(u) =
∑

w : uw∈K
αuw =⇒

∑
u

α(u) =
∑
xy∈K

π = |K |π



The Iteration

• Start with any radii r : U → IR+.

• U+ = {u ∈ U : α(u) > β(u)}

• If U+ = ∅ then α(u) = β(u) for all u ∈ U.

• iterate

repeat forever:
for all u ∈ U:

if u ∈ U+ then
increase ru to make α(u) = β(u)



Radii Converge I

Radii are only increased =⇒ if bounded then convergent.

• Let D ⊂ U be the divergent set.

• If u ∈ D and w ∈ U \ D, then αuw → 0.

• For ε > 0 iterate until for each u ∈ D:
∑

w∈U\D : uw∈K

αuw ≤
ε

|U|
.

∑
u∈D

α(u) ≤ ε+
∑

kite with x , y ∈ D

(αxy + αyx)

≤ ε+ (2|D| − 5)π



Radii Converge II

∑
u∈D

α(u) =
∑

u∈D∩U+

α(u) >
∑
u∈D

β(u) = 2π|D| − 5|Do |
3

π.

• 2π|D| − 5|Do |
3

π < ε + (2|D| − 5)π

From this we get:

• |Do | = 3.

• 2|D| − 5 supported kites.

=⇒ D = U this contradicts D ⊂ U.



Laying Out The Kites



The End

Thank You


