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ABOUT:

The school is addressed to advanced undergraduate and graduate students of Mathematics or Computer Science
with interest u:l Dmc:rete Mathmaucs and in particular in Partially Ordered Sets and Discrete Geometry. Basic
knowledge in d is d. The fall school consists of four introductory courses. Each
course consists of lectures and exercises.

LOCATION:

The fall school will take place at Gutshof Sauen. a remote manor 70 km southeast of Berlin. The costs per
participant are EURO 150 and includes full board during the fall school.



Fall School Order and Geometry

LECTURES

e Jean Cardinal, (Université Libre de Bruxelles, Belgium)
Topics on flip graphs

e Bartosz Walczak, (Jagiellonian University, Krakéw, Poland)
e Vida Dujmovi¢, (University of Ottawa, Canada)

e Oswin Aichholzer, (Technische Universitat Graz, Austria)
Crossing numbers of complete and complete bipartite graphs

APPLICATION

e Open until July 31, 2018
page.math.tu-berlin.de/ felsner/FoC/0Gschool2018.html




Outline

Order Dimension of Planar Graphs — Revisited
Contact Representations with Pentagons

Primal-Dual Contact Representations with Circles




Brightwell-Trotter Theorem |

Theorem | ].
If G is a 3-connected plane graph with a face F, then

o dim(Pver(G\F))=3 o dim(Pver(G)) =4




Brightwell-Trotter Theorem Il

Theorem | ]-
If G is a plane multi-graph with loops, then

dim(PVEF(G)) < 4,



Splits and Dimension
The split of P = (X, <) is split(P) = (X' U X", <) with

X' <sy" iff x<y

Theorem | ]-

dim(P) < dim(split(P)) < dim(P) + 1.




Bipartite Orders

A bipartite Graph can be viewed as a height 2 order.

S

e We can talk about dim(G) when G is bipartite.




Grid Intersection Graphs

A GIG is an intersection graphs of horizontal and vertical segments
(no two on a common line).

e GIGs are bipartite.




Dimension of GIGs
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Theorem | ]. If a bipartite graph G = (X, Y} E)

has a representation as intersection graphs of objects from a
t-separable class, then dim(G) < 2t.



Planar Bipartite Graphs

Theorem. Every planar bipartite graph H admits a contact
representation with interiorly disjoint horizontal and vertical
segments.




Angle Graphs of Planar Graphs

e Angle graphs are planar bipartite.




The First Step

G 2-connected plane multi-graph (no loops).

e The order dimension of Pyr(G), the incidence order of
vertices and faces of a planar multigraph G (no loops) is at
most four, moreover dim(split(Pye(G)) < 4.



Adding the Edges

Theorem. If G is a 2-connected and plane multigraph, then
dim(Split(PVEF(G)) <4,




Loops

e Break loops by inserting a new vertex. split(Pyee(G)) is a
suborder of split(Pyer(GT))




Cut Vertices

e Use induction: break G into G; and G at a cut vertex:

G1 =ty ;
Y /AN i1 R
H,

Theorem. If G is a plane multigraph -loops allowed-, then
dim(split(PVE,:(G)) < 4.
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Pentagon contact representations
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Regular Pentagon Contact Representations

a, Triangulation G of 5-gon ay,..., a5

» no multiple edges

» no loops
» no chords
Questions:
» Existence » Combinatorial structure

» Uniqueness » Computation




Why Pentagons?

Existence
Uniqueness

Comb. structure
Computation

Triangles

for all 4-connected G
[Gongalves et. al. '11]
open

Schnyder wood
heuristic [Felsner '09]

Squares

P

for all 5-connected G
[Schramm 93]
yes
[Schramm 93]
transversal structure
heuristic [Felsner '13],
iterative [Schramm '93]
optimization [Lovasz '06]



Existence

Theorem

Each triangulation G of a 5-gon admits a regular pentagon contact
representation.

Proof.

Application of Convex Packing Theorem [Schramm '90]. O
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5-connected.
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The combinatorial structure: five color forests

Definition (Five color forest)

Orientation and coloring of inner
edges of inner triangulation of

5-gon ay, ..., as, s.t.
a1
1
3.4 4
5o L2 ® 2
2 /NS
4 1 3 ag as

» no incoming edge of color /
= outgoing edge of color
i—2or i+ 2 exists

Theorem

Regular pentagon contact
representation induces five color
forest on its contact graph.




Five color forests <> «-orientations

» outdeg(e) =5
» outdeg(o) =2




Five color forests <> a-orientations

Theorem
There is a bijection between the five color forests and
«-orientations of a graph G.



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest
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System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

» Variables:
» one side length for each vertex: x,



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

3) X

Xy
(1
;2) Xg

» Variables:

» one side length for each vertex: x,

» four side lengths for each face: xﬁl), . 7x;4)



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

(4)
x£3) Xf
Xy
(1)
x}z) Xf
» Variables:
» one side length for each vertex: x,
» four side lengths for each face: xﬁl), . 7x;4)

» Equations:
» five for each vertex: x, = sum of touching face side lengths



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

Xy
> Variables:
» one side length for each vertex: x,
» four side lengths for each face: xﬁl), . 7x;4)

» Equations:

» five for each vertex: x, = sum of touching face side Iengths

» two for each face: x§3) = xf ) 4 ¢x! f ; gbx -|—Xf

2)



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

\ 1 |
[ 1
Xy
» Variables:
» one side length for each vertex: x,
» four side lengths for each face: xﬁl), . 7x;4)

» Equations:

» five for each vertex: x, = sum of touching face side Iengths
» two for each face: x§3) = xf ) 4 ¢x! f ; gbx -|—Xf

» one inhomogeneous: length of upper segment =1

2)



System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

Lemma
The system Apx = ey is uniquely solvable.

Lemma
x >0 < there is a regular pentagon contact repr. inducing F




System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

Lemma
The system Apx = ey is uniquely solvable.

Lemma
x >0 <& there is a regular pentagon contact repr. inducing F

Corollary
computing a regular pentagon repr.
can be done by
finding a five color forest F
s.t. AFx = ey has nonnegative solution




Heuristic

» Guess the right five color forest F




Heuristic

» Guess the right five color forest F
» Case 1: solution of AFx = e is nonnegative
» construct contact repr. from solution




Heuristic

» Guess the right five color forest F
» Case 1: solution of AFx = e is nonnegative
» construct contact repr. from solution
» Case 2: solution contains negative and nonnegative variables
» Lemma: neg. and nonneg. variables are separated by oriented
cycles in the a-orientation

dk\é



Heuristic

» Guess the right five color forest F
» Case 1: solution of AFx = e is nonnegative
» construct contact repr. from solution
» Case 2: solution contains negative and nonnegative variables
» Lemma: neg. and nonneg. variables are separated by oriented
cycles in the a-orientation

dk\é

» change orientation of these cycles
» restart with new a-orientation, resp. five color forest



Example

www3.math.tu-berlin.de/diskremath/research/kgon-representations



Number of iterations
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Open problems

Conjecture

The heuristic terminates for each graph and each five color forest
to start with.

Conjecture

Regular pentagon contact representations can be computed in
polynomial time.

Conjecture
Regular pentagon contact representations are unique.
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Coin Graphs

On Primal Buet Circle Packings

Stefan Felsner + Gunter Rote

1985 — Ringel's coin graph conjecture.



Circle Packing — History

o Koebe 1936

e Andreev 1970

e Thurston 1978

e Sachs 1991

e Colin de Verdiere 1989

e Colin de Verdiere 1991

e Brightwell and Scheinerman 1993
e Pulleyblank and Rote 1992

e Mohar 1997




Primal-Dual Circle Representation — The Statement

G = (V, E, F) 3-connected plane.
(Ce:x e V)and (D, : y € F) families of circles.
Properties:

(i) primal contact structure.

(ii) dual contact structure.

(iii) orthogonality of two straight-line drawings.

Theorem.
G 3-con. plane = G has a primal-dual circle representation.

e The representation is unique up to Mobius transformations.



Primal Contact Structure




Dual Contact Structure







Primal and Dual




Kites

e A kite for each incidence (x,y) with x € V, y € F\ f,.

r x
Qxy = 2arctan =~ and «,, = 2arctan —
' ry




Making the Outer Face a Triangle

e Stereographic projections map between primal-dual circle
representation of G in plane and on sphere.

e G or G* has a vertex of degree 3.




Counting Lemma

e Every subset S C VU F \ f, supports at most 2|S| — 5 kites.




Target Angles
e wlog. the outer triangle equilateral (Mobius transformation).
e target angles:

5(u) /3 if uis an outer vertex of G
u) =
2w u some other vertex or face # f,.

> B(uw)

(V] = 3) + (|F| — 1))27 + 3% ~ |K|r.

For any choice of radii the target angles are attained on average

aw)= D aw = > aw)=Y 7=|Kr

w: uweK xyeK



The lteration

Start with any radii r: U — Ry.
o Uy ={uecU:a(u)>pu)}
If Uy =0 then a(u) = B(u) for all ue U.

iterate

repeat forever:
for all u € U:
if u e U then
increase r, to make a(u) = f(u)




Radii Converge |

Radii are only increased = if bounded then convergent.
e Let D C U be the divergent set.
e fue Dand we U\ D, then oy, — 0.

. . €
e For ¢ > 0 iterate until for each v € D: Z Quy < m
weU\D: uweK

Z afu) < e+ Z (axy + ayx)

ueD kite with x,y € D

IN

e+ (2|D] - 5)n




Radii Converge |l

o= > aw) > > B = 2W|Dy—@m

ueD ueDNU+ ueD
5D
e 27|D| — %7‘(‘ < e+ (2|D|-5)r

From this we get:
e |D,|=3.
e 2|D| — 5 supported kites.

—> D = U this contradicts D C U.




Laying Out The Kites

28

<Y



The End

Thank You




