TD 5 : Résultant de polynômes

Théorème fondamental de l'algèbre.

Tout corps K possède une clôture algébrique \bar{K} , telle que $K \subset \bar{K}$ et tout polynôme F de degré m à coefficients dans K possède exactement m racines dans K (en comptant avec multiplicité). Si l'on note f_m le coefficient dominant de F et $\alpha_1, \ldots, \alpha_m$ ses racines, alors $F(X) = f_m \prod_{i=1}^m (X - \alpha_i)$.

Exercice.

Soit F et G deux polynômes de degrés m et n, respectivement, à coefficients dans un corps K. On note x_1, \ldots, x_m les racines de F et y_1, \ldots, y_n celles de G, dans \bar{K} . Le résultant de F et G est défini 1 par

res(F,G) =
$$f_m^n g_n^m \prod_{i=1}^m \prod_{j=1}^n (x_i - y_j)$$

où f_m est le coefficient dominant de F et g_n celui de G, avec la convention que $\operatorname{res}(F,0)=0$.

1. Propriétés.

- i. Donner la valeur de res (F, λ) où λ est une constante.
- ii. Montrer que $\operatorname{res}(F,G) = (-1)^{mn} \operatorname{res}(G,F)$. iii. Montrer que $\operatorname{res}(F,G) = (-1)^{mn} g_n^m \prod_{j=1}^n F(y_j) = f_m^n \prod_{i=1}^m G(x_i)$.
- iv. Soit F = QG + R la division euclidienne de F par G (deg(R) < deg(G)). Montrer que $res(F, G) = (-1)^{mn} g_n^{m-r} res(G, R)$ où r = deg(R).

2. Algorithmes.

- i. Déduire des questions précédentes un algorithme de type Euclide pour calculer le résultant de deux polynômes.
- ii. En généralisant l'algorithme précédent à un algorithme de type « Euclide étendu », montrer que pour tout F et G, il existe deux polynômes U et V tels que res(F,G) = FU + GV.
- iii. Déduire des algorithmes précédents que $res(F, G) \in K$.
- iv. (Bonus) Adapter l'algorithme du demi-PGCD au résultant.
- **3. Lien avec le pgcd.** Montrer que res(F,G) = 0 si et seulement si deg(pgcd(F,G)) > 0.
- **4. Discriminant.** On définit le *discriminant* d'un polynôme F de degré m par

$$\operatorname{disc}(F) = (-1)^{m(m-1)/2} \frac{1}{f_m} \operatorname{res}(F, F')$$

où F' est la dérivée de F et f_m son coefficient dominant.

- i. Calculer le discriminant de $F = aX^2 + bX + c$. ii. Montrer que $\mathrm{disc}(F) = f_m^{2(m-1)} \prod_{1 \leq i < j \leq m} (\alpha_i \alpha_j)^2$ où $\alpha_1, \ldots, \alpha_m$ sont les racines de F dans \bar{K} .
- iii. En déduire que si F est un polynôme à coefficients réels ayant m racines réelles, disc(F) > 0.

Remarque. La réciproque n'est pas vraie. On sait simplement que si F est à coefficient réel et que $\operatorname{disc}(F) > 0$, alors son nombre de racines réelles est congru à m modulo 4, et si $\operatorname{disc}(F) < 0$, alors son nombre de racines réelles est congru à m-2 modulo 4. On retrouve le résultat habituel pour le degré 2.

iv. (Bonus) Démontrer la remarque précédente.

^{1.} On définit habituellement le résultant comme déterminant de la matrice de Sylvester associée à F et G (pour ceux qui connaissent!). La définition donnée ici est strictement équivalente.