TD 10 : Évaluations de polynômes

Exercice 1. Évaluation des dérivées Soit k un corps infini et $P \in k[x]$ un polynôme de degré d. On note $\mathsf{M}(d)$ la complexité arithmétique de la

multiplication de polynômes de degré au plus d. 1. Décrire et analyser un algorithme d'évaluation d'un polynôme P en un point $a \in k$ qui effectue d

- multiplications et d additions. Cet algorithme s'appelle le schéma de Horner, et est optimal 1.
- **2.** On souhaite évaluer P et toutes ses dérivées $P', P'', \dots, P^{(d)}$ sur un point $a \in k$, où $P^{(d)}$ désigne la dérivée $d^{\text{ème}}$ du polynôme. Décrire et analyser un algorithme naïf pour ce problème.

Nous allons maintenant concevoir un algorithme de complexité quasi-linéaire résolvant ce dernier problème.

- **3.** Rappeler la complexité arithmétique des meilleurs algorithmes vus en cours pour l'évaluation et pour l'interpolation d'un polynôme de degré d.
- **4.** En utilisant une évaluation puis une interpolation de polynômes, concevoir un algorithme quasilinéaire qui calcule le polynôme décalé P(x+a) pour $a \in k$. Remarque : « calculer le polynôme » signifie calculer la liste de ses coefficients.
- **5.** Nous allons prouver la formule de Taylor en $a \in k$ pour les polynômes :

$$P(x) = \sum_{i=0}^{d} P^{(i)}(a) \frac{(x-a)^{i}}{i!}.$$

- i. Prouvez la formule quand a=0 et que P est un monôme X^{ℓ} .
- ii. En déduire la formule pour tout polynôme quand a=0.
- iii. En déduire la formule générale.
- **6.** En déduire un algorithme quasi-linéaire pour l'évaluation d'un polynôme et de toutes ses dérivées sur un point $a \in k$.

^{1.} Victor Y. Pan, Methods of computing values of polynomials, Russian Mathematical Surveys, 21(1), p. 105-136, 1966.