Mid-term Exam

The duration of the exam is 1 hour 15 minutes. The grading scale is indicative and subject to change. No document nor any digital device is allowed. The exercises are independent. Not all questions in an exercise are independent, but you may admit a result from a previous question by clearly stating it. For maximum mark, answers must be justified and correctly written out. A probability reminder is given at the end. You can answer in French or English.

Exercise 1. (7 pts)

Basic notions Answer each question in at most a dozen of lines (depends on your handwriting, the language used, etc.). More concise answers are perfectly acceptable!

1. Let Enc be a randomized encryption scheme. In particular, for each key k and message m, several ciphertexts can be produced as $c \leftarrow \operatorname{Enc}_{k}(m)$. Let us assume that for each fixed k and m, the number of possible ciphertexts is 2^{t}.
i. Recall why, intuitively, a secure encryption scheme has to be randomized.
ii. What do you think are acceptable values for $t: t=1$? $t=8$? $t=64$? $t=128$?
iii. Assume the ciphertexts associated to messages of size n all have the same size $\ell(n)$, where ℓ is an increasing function. Prove a lower bound on $\ell(n)$ in terms of n and t.
2. Explain, in plain English/French, what is the IND-CPA experiment for symmetric encryption schemes, and the IND-CPA advantage.
3. Give the two constructions of hash function that we presented in class. For each of them, specify the building block of the construction and give an example of a hash function built using that construction.

Exercise 2. (4 pts)
Compression functions
Let $E:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a block cipher with key size and block size n. We define two compression functions $f_{1}, f_{2}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ by $f_{1}(h, m)=E_{h}(m) \oplus h$ and $f_{2}(h, m)=E_{m}(h) \oplus h$ (that is, f_{2} is obtained using the Davies-Meyer construction).

1. Describe a first preimage attack against f_{1}, that is an algorithm that given t and h, computes a message m such that $f_{1}(h, m)=t$. Analyze its complexity.
2. Explain why the previous attack does not apply to f_{2}. Which supposedly hard problem on the block cipher does it require to solve? $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be the block cipher defined by $E_{k}(m)=\pi\left(m \oplus k_{1}\right) \oplus k_{2}$ where $k=k_{1} \| k_{2} \in\{0,1\}^{2 n}$ is the key, split into two n-bit blocks.
3. Define the decription algorithm for E.
4. Let m_{1}, m_{2} such that $m_{1} \oplus m_{2}=k_{1}$. Prove that $E_{k}\left(m_{1}\right) \oplus \pi\left(m_{1}\right)=E_{k}\left(m_{2}\right) \oplus$ $\pi\left(m_{2}\right)$.
5. We define the following attack: The adversary samples q messages m_{1}, \ldots, m_{q} and queries $E_{k}\left(m_{i}\right)$ for all i, and compute $\pi\left(m_{i}\right)$ for all i; For each collision $E_{k}\left(m_{i}\right) \oplus \pi\left(m_{i}\right)=E_{k}\left(m_{j}\right) \oplus \pi\left(m_{j}\right)$, the adversary computes a tentative key k^{\prime} and checks whether it is correct.
i. What is the probability that there exists $i \neq j$ such that $m_{i}=m_{j} \oplus k_{1}$?
ii. Let m_{i} and m_{j} provoking a collision: how can the adversary compute a tentative (full) key k^{\prime} ?
iii. How can the adversary check that the tentative key is (probably) the correct one?
6. We now turn this key-recovery attack into a significant advantage in the PRP experiment. Recall that the adversary has access to an oracle and must distinguish between the cases where $\leftarrow \operatorname{Perm}_{n}$ is a random permutation and $=E_{k}$ where $k \leftrightarrow\{0,1\}^{2 n}$.
i. Turn the key-recovery attack into an adversary that makes q queries to the oracle, and tries to distinguish between the cases. You must describe the queries the adversary makes, the additional computations and the answer given depending on the results.
ii. Assume that $\leftrightarrow \operatorname{Perm}_{n}$. Explain what must happen for the adversary to be fooled (that is for the adversary to answer that $=E_{k}$), and justify that this happens with very low probability.
iii. Provide a value for q such that the adversary has a constant nonzero advantage in the PRP experiment.

Probability reminder.

- For two events E and $F, \operatorname{Pr}[E \vee F] \leq \operatorname{Pr}[E]+\operatorname{Pr}[F]$ (union bound) and $\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]=\operatorname{Pr}[F \mid E] \operatorname{Pr}[E]$ (Bayes' formula).
- Let F_{1}, \ldots, F_{n} such that $\bigcup_{i} F_{i}=\Omega$ is the universe and $F_{i} \cap F_{j}=\emptyset$ if $i \neq j$. Then, for any event $E, \operatorname{Pr}[E]=\sum_{i=1}^{n} \operatorname{Pr}\left[E \mid F_{i}\right] \operatorname{Pr}\left[F_{i}\right]$ (law of total probability).
- Let y_{1}, \ldots, y_{q} and z_{1}, \ldots, z_{q} be uniform samples from a size- N set, with $q \leq \sqrt{N}$. Then $\operatorname{Pr}\left[\exists i \neq j, y_{i}=y_{j}\right] \geq \frac{q(q-1)}{4 N}$ and $\operatorname{Pr}\left[\exists i, j, y_{i}=z_{j}\right] \geq \frac{q^{2}}{2 N}$ (birthday bounds).

