Digital signatures Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

Introduction

Goal: authenticity of a message, in the context of public key cryptography

- lacktriangle The sender signs a message m with a private key $sk o signature \sigma$
- Anyone, with the sender's public key pk, can *verify* the signature σ

Compare with MACs

- Public key/private key instead of a single key
- ightharpoonup tag ightarrow signature

Advantages compared to MAC

Public verification: using the signer's public key

Transfer: a signed message can be forwarded with its signature

Non-repudiation: the signer cannot deny having signed

Examples of use

Vaccine pass

- ▶ Vaccination → signature (QR code) with the authorities' private key
- ightharpoonup Verification ightharpoonup anyone can verify, with the authorities' public key

Authenticated email

- ightharpoonup Alice publishes her public key pk_A
- ▶ When Alice sends an email, she sends it together with the corresponding signature
- ► The recipient can verify that the sender is Alice or... knows Alice's secret key!

Software distribution

- A software company distributes softwares with a signature
- Users (customers) download a software and check the signature before installing it

Certificates

- ► How can one be sure that pk_A really is Alice's public key?
- ightharpoonup A *certificate authority* signs pk_A using its own secret key
- Web or tree of certificates

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts

Digital signature scheme

Definition

A signature scheme is given by three algorithms:

 $Gen_n()$ generates a pair of keys (pk, sk)

 $\operatorname{Sign}_{sk}(m)$ computes a signature σ for m

 $Vrfy_{pk}(m, \sigma)$ returns 1 if the signature is *valid*, and 0 otherwise

Correction

The scheme is *correct* if for all $(pk, sk) \leftarrow \text{Gen}()$ and $\sigma \leftarrow \text{Sign}_{sk}(m)$, $\text{Vrfy}_{pk}(m, \sigma) = 1$

Compare (again) with MACs

- Public key/private key instead of a single key
- ightharpoonup tag ightarrow signature
- ightharpoonup Mac ightarrow Sign

n usually implicit

Security notions for digital signatures

Goals: unforgeability

Should be hard for an adversary to produce a valid signature without knowing the secret key

- Existential forgery: produce any pair (m, σ) such that $Vrfy_{nk}(m, \sigma) = 1$
- Universal forgery: given m, produce σ such that $Vrfy_{pk}(m, \sigma) = 1$

Means

- Key-Only Attack: the adversary only knows the public key
- ▶ Known Message Attack: the adversary knows some valid pairs (m_i, σ_i)
- ► Chosen Message Attacks: the adversary can query signatures for messages m_i
 - ► Generic: queries must be sent before knowing the public key
 - Non-adaptative: all queries must be sent before receiving any signature
 - Adaptative: queries can be made adaptively after receiving some signatures

Strongness

- ► Standard: Adversary must sign a message for which it does not know any signature
- Strong: Adversary must produce a new signature

A formal definition of security

Existential Unforgeability Game

Challenger
$$(pk, sk) \leftarrow Gen()$$

Adversary queries messages m_i and gets valid signatures $\sigma_i \leftarrow \operatorname{Sign}_{sk}(m_i)$, $1 \le i \le q$ Adversary outputs a candidate pair (m, σ) where $m \notin \{m_1, \ldots, m_q\}$

Advantage

- Advantage of A: $Adv_{Sign/Vrfy}^{EUF-CMA}(A) = Pr\left[Vrfy_{pk}(m, \sigma) = 1\right]$
- Advantage function:

$$\mathsf{Adv}^{\mathsf{EUF}-\mathsf{CMA}}_{\mathsf{Sign/Vrfy}}(q,t) = \max_{A_{q,t}} \mathsf{Adv}^{\mathsf{EUF}-\mathsf{CMA}}_{\mathsf{Sign/Vrfy}}(A_{q,t})$$

where $A_{q,t}$ denotes an algorithm making $\leq q$ queries with running time $\leq t$

Note

Exactly identical to the definition for a MAC!

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts

General principle

Identification protocol: prove one's identity to an interlocutor

Players: A *prover*: owns a secret key *sk*

A *verifier*: knows the corresponding public key *pk*

Goals for the prover:

- convince the verifier that they knows the secret key sk
- without revealing anything about sk to the verifier

Fiat-Shamir construction

Given an identification protocol, we can build a signature scheme

Schnorr's protocols

- Identification protocol
- ► Signature scheme *via* the Fiat-Shamir construction
- Example: DSA & ECDSA are variants of Schnorr's scheme

Schnorr identification protocol (1989)

Protocol definition

Public: a group G of prime order q, with generator g

Keys: $sk = x \in \{0, \dots, q-1\}$ and $pk = h = g^x$ (public) Protocol:

- 1. Prover: $k \leftarrow \{0, ..., q-1\}$; $\ell \leftarrow g^k$; Send ℓ
- 2. Verifier: $r \leftarrow \{0, ..., q-1\}$; Send r
- 3. Prover: $s \leftarrow (k r \cdot x) \mod q$; Send s
- 4. Verifier: accept iff $\ell = g^s \cdot h^r$

r: the challenge using sk = xusing pk = h

Correction
$$Q = g^k$$
 $g^sh^r = g^sg^{xr} = g^{s_{rxr}} m \omega q = g^k = 0$

Security definition

Game: an adversary observes several transcripts, and tries to impersonate a Prover Advantage: probability for the adversary to convince a verifier

Schnorr identification security: proof sketch

Theorem

If the discrete logarithm problem is hard in G, Schnorr identification protocol is secure: If an adversary is able to convince a verifier, it can compute discrete logarithms in G

Hyp: As is able to convince the verifier

- The verifier accepts both s, and s2

-> The verifier accepts both s, and
$$s_2$$

=> $g^k = g^{S_1}h^{\Gamma_{\Lambda}} = g^{S_2}h^{\Gamma_2} => g^{S_1+\Gamma_1 \times} = g^{S_2+\Gamma_2 \times} \Rightarrow s_1-s_2 = \times (r_2-r_1) \mod 1$

p bow (1-5)((5-15) x <= Thissing in the proof: technically involved argument to show that if Ab has prob. E to convince the verifier, then Ab has prob. > E²-erg to compute 2. 11/20

Fiat-Shamir construction (1986)

Build a signature scheme from an identification protocol

Requires: an identification protocol and a hash function

Builds: a signature scheme

 $\operatorname{Sign}_{sk}(m)$: simulation of the identification protocol where the challenge is produced by

the hash function; the signature is the challenge and the answer

 $Vrfy_{pk}(\sigma)$: check that the answer is consistent with the challenge

Theorem (admitted)

Pointcheval, Stern (1996)

If the identification protocol is secure and *H* is random, the resulting signature scheme is EUF-CMA secure

Remarks

► An identification protocol is an interactive *zero-knowledge proof*

ZKP

Fiat-Shamir construction turns any ZKP into a non-interactive one

NIZKP

Schnorr signature scheme (1989)

Protocol description

Public: A cyclic group G of order
$$q \simeq 2^n$$
 and generator g, $H: \{0,1\}^* \to G$

Keys:
$$sk = x \leftarrow \{0, \dots, q-1\}$$
 and $pk = h \leftarrow g^x$

Sign_{sk}(m): Simulation of the identification protocol: \times 1. $k \leftarrow \{0, ..., q-1\}; \ell \leftarrow g^k$

$$m \in \{0,1\}^*$$

1.
$$k \leftarrow \{0, ..., q-1\}; \ell \leftarrow g^k$$

2.
$$r \leftarrow H(\ell || m)$$
; $s \leftarrow k - rx \mod q$

challenge and answer

3. Return the signature (r, s)

Vrfy_{pk}(
$$m, r, s$$
): 1. $\ell \leftarrow g^s \cdot h^r$
2. Accept iff $H(\ell || m) = r$

2. Accept iff
$$H(\ell || m) = r$$

Correction

$$\ell = g^s h^r$$
 as before $+ "H(\ell \parallel m) = H(\ell \parallel m)"$

Theorem

Pointcheval, Stern (1996)

If the DLP is hard in G and H is random, Schnorr signature is EUF-CMA secure

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts

Hash-and-sign

Rationale

- Signature schemes are less efficient than MACs
- Some signature schemes are designed for fixed-length messages only

Obvious idea

- Compute the signature of a hash of the message, rather than the message
- Remark: used in Schnorr's signature scheme

Construction

```
Given a signature scheme (Sign, Vrfy) for fixed-length messages m \in \mathcal{M} a hash function H: \{0,1\}^* \to \mathcal{M}
Build a signature scheme (Sign', Vrfy') for messages in \{0,1\}^*: \operatorname{Sign}'_{sk}(m): \operatorname{Sign}_{sk}(H(m)) \operatorname{Vrfy}'_{pk}(m,\sigma): \operatorname{Vrfy}_{pk}(H(m),\sigma)
```

Hash-and-sign security

Theorem

```
If (Sign, Vrfy) is EUF-CMA secure and H is collision resistant, then (Sign', Vrfy') is
EUF-CMA secure
    Hyp: A an adversary against (Sign', Vrfy')
         - Queries m i \sim signatures \sigma i = Sign' sk(m i) = Sign sk(H(m i))
         - Produces a valid pair (m,σ)
    Case 1: there exists m i such that H(m) = H(m i) \sim H is not collision resistant
    Case 2 : for all m i, H(m) \neq H(m i).
         Let h = H(m) and h i = H(m i) for all i.
         A knows (h i, \sigma i) and computes (h,\sigma) such that Vrfv pk(h,\sigma) = 1
         ⇒ (Sign.Vrfv) is not EUF-CMA secure
```

Remark: Add probabilities for a real proof

Signcryption

Combine signature and public-key encryption

```
A problem with Encrypt-then-sign
```

```
Keys: (pk_S, sk_S) for the Sender and (pk_R, sk_R) for the Recipient
Sender computes c \leftarrow \operatorname{Enc}_{pk_R}(m) and \sigma \leftarrow \operatorname{Sign}_{sk_S}(c)
Recipient decrypts c using \operatorname{Dec}_{sk_R}(c) and verifies it with \operatorname{Vrfy}_{pk_S}(\sigma)
Adversary intercepts c and computes \sigma_A \leftarrow \operatorname{Sign}_{sk_A}(c)
\rightarrow the adversary can pretend to be the sender
```

Workaround

- Each user X has a unique identity idx
- **Each** participant can obtain the public-key pk_X associated to id_X
- Signature of the message or ciphertext and the identity

Secure signcryption

Two examples

```
Encrypt-then-sign: c \leftarrow \operatorname{Enc}_{pk_R}(m); \sigma \leftarrow \operatorname{Sign}_{sk_S}(c \| id_S)
Sign-then-encrypt: \sigma \leftarrow \operatorname{Sign}_{sk_S}(m); c \leftarrow \operatorname{Enc}_{pk_R}(m \| \sigma \| id_S)
```

Security definition

IND-CCA: standard game/advantage, but including the signature

INT-CTXT: game of *ciphertext forgery* ciphertext integrity

Result (informally)

Both *Encrypt-then-Sign* and *Sign-then-Encrypt* are secure if the encryption scheme and the signature schemes are (sufficiently) secure

Public-Key Infrastructures

Where do I find public-keys? How to be sure of the real owner of a key?

Certificates

- ightharpoonup cert $_{B\to C}=\operatorname{Sign}_{sk_B}(id_C\|pk_C)$: B certifies that C's public-key is pk_C
- ► If *A* trusts *B*:
 - ightharpoonup C can send pk_C together with $cert_{B\to C}$
 - ► A can verify $cert_{B\to C}$ and accept pk_C as the public-key of C

Certificate authorities and chains

Certificate authority: trusted entities, used as roots in certificate chains e.g DigiCert Certificate chains: trees of certifications, from authorities to end users

Certificate revokation

- ▶ Short-lived certificates: add an expiration date $cert_{B\to C} = \operatorname{Sign}_{sk_B}(id_C || pk_C || T)$
- Certification revokation lists, using a serial number for each certificate

Conclusion

Signature scheme

- ► Goals:
 - ► Authenticity: *identity of the sender*
 - Non-repudiation: commitment of the sender
- ► Asymmetric (and more powerful!) version of MACs

Constructions

- Based on the same problems as asymmetric encryption (discrete log., RSA, LWE, ...)
- Combination with hashing for efficiency
- Links with zero-knowledge proofs
- ▶ Public-key infrastructures: a whole subject!

Authentication without encryption can be useful...

... encryption without authentication is useless!