RSA public-key encryption and signatures

Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG \& AM
Université Grenoble Alpes - $I M^{2} A G$
https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

 R. Rivest, A. Shamir \& L. Adleman (1978)- Basics of RSA encryption scheme
- Signature using the encryption scheme in reverse mode

Pros

- First proposal of a public-key encryption scheme
- Use of computational difficulty as security

Cons

- As presented, the encryption scheme is completely unsafe!
- The signature is not a good idea!

Remark

- Already known to GHCQ (UK) in 1973, declassified only in 1997

Contents of this lecture

1. The maths of RSA: the trapdoor permutation

- $\mathbb{Z} / N \mathbb{Z}$ where $N=p \times q$
- Designing a trapdoor permutation
$\rightarrow \pm$ the content of the original paper

2. RSA encryption scheme

- What should be added to obtain a proper encryption scheme?

3. RSA signatures

- How to obtain a proper signature scheme?

Contents

1. The maths of RSA: the trapdoor permutation
2. RSA encryption scheme
3. RSA signatures

Representation and ring operations

General context

$N=p \times q$ where p, q are prime numbers; computations modulo N

Representation and modular operations

- $\mathbb{Z} / N \mathbb{Z}=\{0,1, \ldots, N-1\}$ with modular addition, subtraction and multiplication:

1. Perform the operation in the integers
2. Reduce the result modulo N

- Modular reduction: Euclidean division
- Given $a \in \mathbb{Z}$, there exists a unique (q, r) s.t. $a=q \cdot N+r$ with $0 \leq r<N$
$-(q, r) \leftarrow \operatorname{QuoRem}(a, N)$ in time $O\left(\log ^{2} N\right)$ or $O(\log N \log \log N)$
\rightarrow Operations in time $O\left(\log ^{2} N\right)$ or $O(\log N \log \log N)$

Example: $\mathbb{Z} / 35 \mathbb{Z}$
$21+18=39=4$

$$
5 \times 10=50=15
$$

$$
-12=23
$$

Detour by a fundamental algorithm
The extended Euclidean Algorithm (xGCD)
Input: $a, b \in \mathbb{Z}, a>b \geq 0$
Output: $g, u, v \in \mathbb{Z}$ s.t. $g=a u+b v$
and $g=\operatorname{gcd}(a, b)$

1. $\left(r_{0}, u_{0}, v_{0}\right) \leftarrow(a, 1,0)$
2. $\left(r_{1}, u_{1}, v_{1}\right) \leftarrow(b, 0,1)$
3. $i \leftarrow 2$
4. While $r_{i-1} \neq 0$:
5. $\quad\left(q_{i}, r_{i}\right) \leftarrow \operatorname{QuoRem}\left(r_{i-2}, r_{i-1}\right)$
6. $\left(u_{i}, v_{i}\right) \leftarrow\left(u_{i-2}-q_{i} u_{i-1}, v_{i-2}-q_{i} v_{i-1}\right)$
$i \leftarrow i+1$
Return $\left(r_{i-2}, u_{i-2}, v_{i-2}\right)$

$$
x \operatorname{GCD}(21,15)
$$

$$
\begin{array}{lll}
i & r_{i} u_{i} v_{i} q_{i} \\
\hline 0 & 21=1 \times 21+0 \times 15 / \\
1 & 15=0 \times 21+1 \times 15 / \\
2 & 6=1 \times 21+-1 \times 151 \\
3 & 3=-2 \times 21+3 \times 15 & 2 \\
4 & 0=5 \times 21+-7 \times 15 & 2
\end{array}
$$

Detour by a fundamental algorithm
The extended Euclidean Algorithm (xGCD)
Input: $a, b \in \mathbb{Z}, a>b \geq 0$
Output: $g, u, v \in \mathbb{Z}$ s.t. $g=a u+b v$
and $g=\operatorname{gcd}(a, b)$

1. $\left(r_{0}, u_{0}, v_{0}\right) \leftarrow(a, 1,0)$
2. $\left(r_{1}, u_{1}, v_{1}\right) \leftarrow(b, 0,1)$
3. $i \leftarrow 2$
4. While $r_{i-1} \neq 0$:
5. $\quad\left(q_{i}, r_{i}\right) \leftarrow \operatorname{QuoRem}\left(r_{i-2}, r_{i-1}\right)$
6. $\left(u_{i}, v_{i}\right) \leftarrow\left(u_{i-2}-q_{i} u_{i-1}, v_{i-2}-q_{i} v_{i-1}\right)$
7. $i \leftarrow i+1$
8. Return $\left(r_{i-2}, u_{i-2}, v_{i-2}\right)$

Correction

- For all $i, \operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$
- For all $i, r_{i}=a \cdot u_{i}+b \cdot v_{i}$
(1) We have $r_{i-2}=q_{i} r_{i-1}+r_{i}$
$\rightarrow d \mid r_{i-2}$ and $d\left|r_{i-1} \Rightarrow d\right| r_{i}$
$\rightarrow d \mid r_{i-1}$ and $d l_{i} \Rightarrow d \mid r_{i-2}$
$\Rightarrow \operatorname{ged}\left(r_{i-2}, r_{i-1}\right)=\operatorname{gcd}\left(r_{i}, r_{i-1}\right)$
(2)

$$
\begin{aligned}
r_{i} & =r_{i-2}-q_{i} r_{i-1} \\
& =\left(a u_{i-2}+b v_{i-2}\right)-q_{i}\left(a u_{i-1}+b v_{i-1}\right) \\
& =a\left(u_{i-2}-q_{i} u_{i-1}\right)+b\left(v_{i-2}-q_{i} v_{i-1}\right) \\
& =a u_{i}+b v_{i}
\end{aligned}
$$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: $a, b \in \mathbb{Z}, a>b \geq 0$
Output: $g, u, v \in \mathbb{Z}$ s.t. $g=a u+b v$ and $g=\operatorname{gcd}(a, b)$

1. $\left(r_{0}, u_{0}, v_{0}\right) \leftarrow(a, 1,0)$
2. $\left(r_{1}, u_{1}, v_{1}\right) \leftarrow(b, 0,1)$
3. $i \leftarrow 2$
4. While $r_{i-1} \neq 0$:
5. $\left(q_{i}, r_{i}\right) \leftarrow \operatorname{QuoRem}\left(r_{i-2}, r_{i-1}\right)$
6. $\left(u_{i}, v_{i}\right) \leftarrow\left(u_{i-2}-q_{i} u_{i-1}, v_{i-2}-q_{i} v_{i-1}\right)$
7. $i \leftarrow i+1$
8. Return $\left(r_{i-2}, u_{i-2}, v_{i-2}\right)$

Correction

- For all $i, \operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$
- For all $i, r_{i}=a \cdot u_{i}+b \cdot v_{i}$

Consequence

$\operatorname{gcd}(a, b)=1 \Longleftrightarrow$
there exists $u, v \in \mathbb{Z}$ s.t. $1=a \cdot u+b \cdot v$
Complexity
The bit complexity of the extended Euclidean Algorithm is $O(\log (a) \log (b))$

Inversion and division in $\mathbb{Z} / N \mathbb{Z}$

Definition

$a \in \mathbb{Z} / N \mathbb{Z}$ is invertible if there exists $b \in \mathbb{Z} / N \mathbb{Z}$ s.t. $a \times b=1$ modular \times

- one can divide by a in $\mathbb{Z} / N \mathbb{Z}$

Theorem

$a \in \mathbb{Z} / N \mathbb{Z}$ is invertible modulo N of $\operatorname{gcd}(a, N)=1$

Algorithms

$$
\begin{aligned}
& \text { Proof } \operatorname{gcd}(a, N)=1 \\
& \Leftrightarrow \exists u, v \text { s.t. } a u+N v=1 \\
& \Leftrightarrow \exists u, s \text { st. } a u=1-N v \\
& \Leftrightarrow \exists u \text { sit } a u=1 \bmod N \\
& \Leftrightarrow a \text { is invertible }
\end{aligned}
$$

Inverse: Use the extended Euclidean Algorithm
Running time: $O\left(\log ^{2} N\right)$

$$
\text { or } O\left(\log N \log ^{2} \log N\right)
$$

Division: Use multiplication and inverse
Same running time

Invertible elements of $\mathbb{Z} / N \mathbb{Z}$
Definition

- The multiplicative group $\mathbb{Z} / N \mathbb{Z}^{\times}$is the set of invertible elements of $\mathbb{Z} / N \mathbb{Z}$
- Its number of elements is denoted $\varphi(N)$

Proposition
If $N=p \times q$ with primes $p \neq q, \varphi(N)=(p-1)(q-1)$

- a invertible $\Leftrightarrow \operatorname{gcd}(a, N)=1 \Leftrightarrow \operatorname{gcd}(a, p q)=1 \Leftrightarrow$ Neither p nor q divides a
- Multiples of $?: 0, p, 2,3 ?, \ldots,(q-1) p \rightarrow q$ multiples $\rightarrow p+q-1$ multiples

$$
\begin{aligned}
& \text { IF. pus of } q: 0, q, 2 q, 3 q, \ldots,(p-1) q \rightarrow p \text { multiples }\} p+q-1 \text { multipes } \\
& \Rightarrow \varphi(N)=N-(p+q-1)=2 q-(p+q-1)=(p-1)(q-1)
\end{aligned}
$$

The multiplicative group is not cyclic!

The multiplicative group is not cyclic!

(0)

Non-invertible elements

The "RSA theorem"
Theorem
Let $N=p \times q$ with primes $p \neq q$. Then for all $a \in \mathbb{Z} / N \mathbb{Z}, a^{1+\varphi(N)}=a$.
(1) Fermat little tHeorem: $\forall a \in\left\{1, \ldots, p^{-1}\right\}$, $a^{p-1} m_{0} \leq ?=1$

$$
\{\operatorname{ax\operatorname {mod}} p: 1 \leq x \leq p-1\}=\{y: 1 \leq y \leq p-1\}
$$

$(a l l \bmod p)$

$$
\left.\begin{array}{l}
\prod_{x=1}^{p-1}(a x)=\prod_{y=1}^{p-1} y \\
a^{p-1} \prod_{x=1}^{11} \prod_{x-1}^{p} x
\end{array}\right\} \quad a^{p-1}=1
$$

(2) $a^{1+\varphi(N)} \bmod p=a^{1+(p-1)(q-1)} \bmod p=a$ and $a^{1+\varphi(N)} \bmod q=a$ pend q Divide $a^{1+\varphi(N)}-a \Rightarrow N$ divibly $a^{1+\varphi(N)}-a \Rightarrow a^{1+\varphi(N)} \bmod N=a$

The RSA trapdoor permutation
The original (unsafe!) RSA encryption scheme
Definition as an encryption scheme
Public key: (N, e) where $N=p \times q$ with primes $p \neq q$ and $\operatorname{gcd}(e, \varphi(N))=1$
Private key: (N, d) where $d \times e \bmod \varphi(N)=1$
Encryption: Given $m \in \mathbb{Z} / N \mathbb{Z}$, compute $c=m^{e} \bmod N$
Decryption: Given $c \in \mathbb{Z} / N \mathbb{Z}$, compute $m=c^{d} \bmod N$
Correction

$$
\begin{aligned}
& c^{d}=\left(m^{e}\right)^{d}=m^{e d} \text {. And the exists k sit. } e d=1+k \varphi(N) \\
& \Rightarrow c^{d}=m^{1+k \varphi(N)}=m^{1+\varphi(N)} m^{(k-1) \varphi(N)}=m^{1} m^{(k-1) \varphi(N)}=m^{1+(k-1) \varphi(N)}=\cdots=m
\end{aligned}
$$

The algorithms and complexities

Key generation

1. Generate two random primes $p \neq q$

- Sample random (odd) integers
- Test their primality

2. Compute $N=p \times q$ and $\varphi(N)=(p-1) \times(q-1)$
3. Generate e, d such that $e \times d \bmod \varphi(N)=1$

- Sample random integers e
- Apply $\operatorname{xGCD}(e, \varphi(N))$ to test invertibility and get d

$$
\begin{array}{r}
O\left(\log ^{3} N\right) \\
O(\log N) \operatorname{samples}^{\left(\log ^{2} N\right)} \\
O\left(\log ^{2} N\right) \\
O\left(\log ^{2} N\right) \\
1+O(1 / \sqrt{N}) \operatorname{samples}^{\left(\log ^{2} N\right)}
\end{array}
$$

Encryption and decryption

- Modular exponentiation in $\mathbb{Z} / N \mathbb{Z}$
- Binary powering, using $a^{n}= \begin{cases}a^{\lfloor n / 2\rfloor} \cdot a^{\lfloor n / 2\rfloor} & \text { for even } n \\ a \cdot a^{\lfloor n / 2\rfloor} \cdot a^{\lfloor n / 2\rfloor} & \text { for odd } n\end{cases}$
- Complexity; $O\left(\log ^{3} N\right)$

Attacks on the trapdoor

Possible goals

Key recovery: Given (N, e), compute d st. $d \times e \bmod \varphi(N)=1$
Plaintext recovery: Given (N, e) and c, compute m st. $m^{e} \bmod N=c$

Computational problems

Modular e-th root: Given N, c, e, compute m st. $m^{e} \bmod N=c$
Computation of φ : Given $N=p \times q$ (for unknown p, q), compute $\varphi(N)=(p-1)(q-1)$
Factorization: Given $N=p \times q$, compute p and q

$$
=N-(p+q-1)
$$

Reductions between problems

- Plaintext recovery \Longleftrightarrow modular e-th root
- Computation of $\varphi \Longrightarrow$ Key recovery \Longrightarrow plaintext recovery
- Computation of $\varphi \Longleftrightarrow$ Factorization of $N: \Theta$ One you know 2 and q, you can compute
$\varphi(N)=(p-1)(q-1)$
\Leftrightarrow Consider $(x-p)(x-q)=x^{2}-(p+q) x+p q=x^{2}-(N-\varphi(N)+1)+N$
L) polynomial root finding

Integer factorization

Complexity of integer factorization

- Brute force algorithm: $O(\sqrt{N})=O\left(2^{\frac{\log N}{2}}\right)$
- ...
- General Number Field Sieve: $2^{O\left(\log ^{\frac{1}{3}} N \log ^{\frac{2}{3}} \log N\right) \quad \text { Lenstra, Lenstra (1993) and others... }}$
- Quantum algorithm: $O\left(\log ^{3} N\right)=O\left(2^{3 \log \log N}\right)$
(Remark: no known NP-hardness result \rightarrow could be polynomial in $\log N$)
Current record: 829-bit (250-digit) integer factorization
- Boudot, Gaudry, Guillevic, Heninger, Thomé, Zimmermann (Feb. 2020)
- Software: CADO-NFS
- Hardware: (mainly) academic clusters
- Approx. 2,700 core-years in a few months

Contents

1. The maths of RSA: the trapdoor permutation
2. RSA encryption scheme
3. RSA signatures

The original RSA scheme is unsafe!

Deterministic encryption

- Two ciphertexts are equal iff the corresponding messages are equal
- The scheme cannot be IND-CPA/CCA secure

Examples of other difficulties

Small exponent: If e and m are small: $m^{e} \bmod N=m^{e}$ in $\mathbb{Z} \rightarrow \sqrt[e]{c}$ in \mathbb{Z}
Related messages: Given the ciphertexts of m and $m+\delta$ with small $\delta \rightarrow m$
Multiple receivers: Given the ciphertexts of m with several distinct keys $\rightarrow m$

The original RSA encryption scheme is severely flawed and should never be used!

- Solution: use (random) padding

The padded RSA encryption scheme: overview

Construction

Parameters: n : number of bits of N; ℓ : length of the messages
$\operatorname{Gen}_{n}(): \quad 1 . p, q \nleftarrow$ two random primes s.t. $p \times q$ has bit-length n
2. $N \leftarrow p \times q, \varphi(N) \leftarrow(p-1) \times(q-1)$
3. $e \longleftarrow$ random integer invertible modulo $\varphi(N), d \leftarrow e^{-1} \bmod \varphi(N)$
4. return $p k=(N, d), s k=(N, e)$
$\operatorname{Enc}_{p k}(m):$

1. $r \longleftarrow\{0,1\}^{n-\ell}$

$$
m \in\{0,1\}^{\ell}
$$

2. if $\hat{m}=r \| m \in \mathbb{Z} / N \mathbb{Z}$, return $c=\hat{m}^{e} \bmod N$
3. otherwise, restart with a new r
$\operatorname{Dec}_{s k}(c): \quad$ 1. $\hat{m} \leftarrow c^{d} \bmod N$
4. Return $m=\hat{m}_{[n-\ell . . n[}$

Correction

- As for the original RSA

Security of padded RSA

The security depends on $n-\ell$
number of padding bits
Small values of $n-\ell$

- $2^{n-\ell}$ possible paddings
- Sufficient to break $2^{n-\ell}$ original RSA instances
\rightarrow Not secure!
Very large value of $n-\ell: \ell=1$
- If computing e-th root in $\mathbb{Z} / N \mathbb{Z}$ is hard, IND-CPA secure encryption scheme
- Very inefficient secure encryption scheme, one bit at a time
- Slightly better if used as a KEM

Medium values of $n-\ell$

- Open problem!

Padded RSA in practice

RSA PKCS1

- Standardized by RSA laboratories
- Padding: $m \rightarrow 0 \times 00\|0 \times 02\| r\|0 \times 00\| m$ where r is random
- Attack using failure of the unpadding procedure

Bleichenbacher (1998)

- Used against SSL 3.0
- Workaround: in case of failure, return a random value
- Prevents IND-CCA security

RSA Optimal Asymmetric Encryption Padding (OAEP) Bellare, Rogaway (1994)

- Padding: $m \rightarrow s \| t$ where
- G, H : hash functions
- r : random bits
- Standardized as PKCS1 v2
- IND-CCA secure under two assumptions
- RSA trapdoor is one-way

- G and H are random oracles

Contents

1. The maths of RSA: the trapdoor permutation
2. RSA encryption scheme
3. RSA signatures

Original (broken...) version

Construction

$\operatorname{Gen}_{n}():$

1. $p, q \longleftarrow$ two random primes s.t. $p \times q$ has bit-length n
2. $N \leftarrow p \times q, \varphi(N) \leftarrow(p-1) \times(q-1)$
3. $e \longleftarrow$ random integer invertible modulo $\varphi(N), d \leftarrow e^{-1} \bmod \varphi(N)$
4. return $p k=(N, d), s k=(N, e)$
$\operatorname{Sign}_{s k}(m):$ 1. return $m^{d} \bmod N$

$$
m \in \mathbb{Z} / N \mathbb{Z}
$$

$\operatorname{Vrfy}_{p k}(m, \sigma):$ 1. test whether $m=\sigma^{e} \bmod N$

Correction

- As for the original RSA encryption scheme

Attacks

1. The adversary chooses σ and computes $m=\sigma^{e} \bmod N$
2. The adversary sees $\left(m_{1}, \sigma_{1}\right)$ and $\left(m_{2}, \sigma_{2}\right)$ and computes $m=m_{1} \cdot m_{2}$ and $\sigma=\sigma_{1} \cdot \sigma_{2}$

RSA FDH (Full Domain Hash)

Construction

$\operatorname{Gen}_{n}(): \quad$ 1. Compute $p k=(N, d), s k=(N, e)$ as previously
2. Choose a hash function $H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}$
$\operatorname{Sign}_{s k}(m):$

1. return $H(m)^{d} \bmod N$

$$
m \in\{0,1\}^{*}
$$

$\operatorname{Vrfy}_{p k}(m, \sigma): \quad$ 1. test whether $H(m)=\sigma^{e} \bmod N$

What should H satisfy to avoid attacks?

1. $\sigma \rightarrow h=\sigma^{e} \rightarrow H(m)=h$
2. $m_{1}, m_{2} \rightarrow H(m)=H\left(m_{1}\right) \cdot H\left(m_{2}\right) \bmod N$
3. If $H\left(m_{1}\right)=H\left(m_{2}\right), \sigma_{1}=\sigma_{2}$
4. The image of H should be the full $\mathbb{Z} / N \mathbb{Z}$
first preimage resistance "non-multiplicative" collision resistance
full domain

Bad and good news

- We do not know how to build a satisfying H no security proof
- Security proof if RSA trapdoor is one-way and H is a random oracle

Proof sketch of RSA FDH
(Informal) theorem
If e-th roots in $\mathbb{Z} / N \mathbb{Z}$ are hard to compute and H is random, RSA FDH is secure Sone iugresters:

- Since H is random, any Vadversay has to query some values $H\left(m_{1}\right), \ldots, H\left(m_{t}\right)$
- If I know that admusary, at the ed, outputs $\left(m_{i}, \nabla\right)$
and I need to compute $\sqrt[e]{c}$, I will say that $H\left(m_{i}\right)=c$
The successful adversary outputs $\left(m_{i}, \sigma\right)$ when $H\left(m_{i}\right)^{d}=\sigma$ or $\sigma^{e}=H\left(m_{i}\right)$

$$
\Rightarrow \text { I know that } \sigma^{e}=c
$$

Conclusion

RSA is a one-way trapdoor function

- One direction is easy to compute: $(m, e) \rightarrow m^{e} \bmod N$
- The other direction is (hopefully!) hard to compute: $(c, e) \rightarrow \sqrt[e]{c} \bmod N$
- But there is a trapdoor: given $d=e^{-1} \bmod \varphi(N)$, easy to compute $m=c^{d} \bmod N$

Use of RSA trapdoor function

- No direct use!
- Public-key encryption scheme \rightarrow RSA OAEP
- Digital signatures \rightarrow RSA FDH

Security

- No formal proof that RSA is one-way
- Related but not equivalent to the difficulty of integer factorization
- Typical key sizes: N with ≥ 2048 bits
- Many other pitfalls: implementation, randomness quality, dependent keys, ...

