RSA public-key encryption and signatures Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

R. Rivest, A. Shamir & L. Adleman (1978)

- Basics of RSA encryption scheme
- ▶ Signature using the encryption scheme in *reverse mode*

Pros

- First proposal of a public-key encryption scheme
- Use of computational difficulty as security

Cons

- As presented, the encryption scheme is completely unsafe!
- The signature is not a good idea!

Remark

► Already known to GHCQ (UK) in 1973, declassified only in 1997

Clifford Cocks

Contents of this lecture

- 1. The maths of RSA: the trapdoor permutation
 - $ightharpoonup \mathbb{Z}/N\mathbb{Z}$ where $N=p\times q$
 - Designing a trapdoor permutation
- $\rightarrow \pm$ the content of the original paper
- 2. RSA encryption scheme
 - What should be added to obtain a proper encryption scheme?
- 3. RSA signatures
 - How to obtain a proper signature scheme?

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures

Representation and ring operations

General context

 $N = p \times q$ where p, q are prime numbers; computations modulo N

Representation and modular operations

- $\triangleright \mathbb{Z}/N\mathbb{Z} = \{0, 1, \dots, N-1\}$ with modular addition, subtraction and multiplication:
 - 1. Perform the operation in the integers
 - 2. Reduce the result modulo N
- Modular reduction: Fuclidean division
 - ► Given $a \in \mathbb{Z}$, there exists a unique (q, r) s.t. $a = q \cdot N + r$ with $0 \le r < N$
 - ▶ $(q, r) \leftarrow QUOREM(a, N)$ in time $O(\log^2 N)$ or $O(\log N \log \log N)$
- \rightarrow Operations in time $O(\log^2 N)$

or $O(\log N \log \log N)$

Example: $\mathbb{Z}/35\mathbb{Z}$

$$21+16=39=4$$
 $5\times10=50=15$ $-12=23$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input:
$$a, b \in \mathbb{Z}, a > b \ge 0$$
Output: $g, u, v \in \mathbb{Z}$ s.t. $g = au + bv$
and $g = \gcd(a, b)$

- 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$
- 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$
- 3. $i \leftarrow 2$
- 4. While $r_{i-1} \neq 0$:
- 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$
- 6. $(u_i, v_i) \leftarrow (u_{i-2} q_i u_{i-1}, v_{i-2} q_i v_{i-1})$
- 7. $i \leftarrow i + 1$
- 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input:
$$a, b \in \mathbb{Z}, a > b \ge 0$$
Output: $g, u, v \in \mathbb{Z}$ s.t. $g = au + bv$
and $g = \gcd(a, b)$

- 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$
- 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$
- $3, i \leftarrow 2$
- 4. While $r_{i-1} \neq 0$:
- 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$
- 6. $(u_i, v_i) \leftarrow (u_{i-2} q_i u_{i-1}, v_{i-2} q_i v_{i-1})$
- 7. $i \leftarrow i + 1$
- 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

Correction

- For all i, $gcd(a, b) = gcd(r_i, r_{i+1})$
- ightharpoonup For all i, $r_i = a \cdot u_i + b \cdot v_i$

(2)
$$(i = (i-2-9i)(i-1)$$

 $= (au_{i-2}rb\sigma_{i-2}) - q_i(au_{i-1}+b\sigma_{i-1})$
 $= a(u_{i-2}-q_iu_{i-1}) + b(\sigma_{i-2}-q_i\sigma_{i-1})$
 $= au_i + b\sigma_i$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input:
$$a, b \in \mathbb{Z}, a > b \ge 0$$
Output: $g, u, v \in \mathbb{Z} \text{ s.t. } g = au + bv$
and $g = \gcd(a, b)$

- 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$
- 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$
- 3. $i \leftarrow 2$
- 4. While $r_{i-1} \neq 0$:
- 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$
- 6. $(u_i, v_i) \leftarrow (u_{i-2} q_i u_{i-1}, v_{i-2} q_i v_{i-1})$
- 7. $i \leftarrow i + 1$
- 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

Correction

- For all i, $gcd(a, b) = gcd(r_i, r_{i+1})$
- For all i, $r_i = a \cdot u_i + b \cdot v_i$

Consequence

$$gcd(a, b) = 1 \iff$$

there exists $u, v \in \mathbb{Z}$ s.t. $1 = a \cdot u + b \cdot v$

Complexity

The bit complexity of the extended Euclidean Algorithm is $O(\log(a)\log(b))$

Inversion and division in $\mathbb{Z}/N\mathbb{Z}$

Definition

 $a \in \mathbb{Z}/N\mathbb{Z}$ is invertible if there exists $b \in \mathbb{Z}/N\mathbb{Z}$ s.t. $a \times b = 1$

modular ×

Inverse: Use the extended Euclidean Algorithm

Running time: $O(\log^2 N)$

Division: Use multiplication and inverse

Same running time

Theorem $a \in \mathbb{Z}/N\mathbb{Z}$ is invertible modulo N iff gcd(a, N) = 1Algorithms

Inverse: Use the extended Fuelidate Algorithm A = 1 inverse: Use the extended Fuelidate Algorithm A = 1 inverse: A = 1 i

or $O(\log N \log^2 \log N)$

Invertible elements of $\mathbb{Z}/N\mathbb{Z}$

Definition

- ► The multiplicative group $\mathbb{Z}/N\mathbb{Z}^{\times}$ is the set of invertible elements of $\mathbb{Z}/N\mathbb{Z}$
- lts number of elements is denoted $\varphi(N)$

Proposition

If
$$N = p \times q$$
 with primes $p \neq q$, $\varphi(N) = (p-1)(q-1)$

a inartible $(=)$ gcd $(a,N)=1$ => gcd $(a,pq)=1$ => Neither q nor q divides a

- That i.plus of $p: 0$, $q, 2q, 3q, ..., (q-1)p$ -> q multiples

 $q: 0$, $q, 2q, 3q, ..., (q-1)q$ -> p multiples

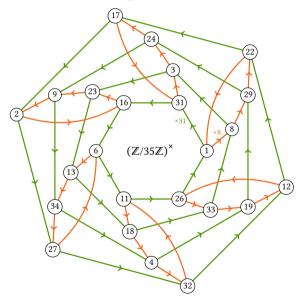
 $q: 0$, $q, 2q, 3q, ..., (q-1)q$ -> p multiples

 $q: 0$, $q, 2q, 3q, ..., (q-1)q$ -> p multiples

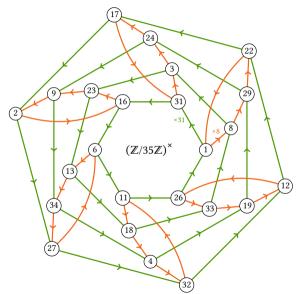
 $q: 0$, $q, 2q, 3q, ..., (q-1)q$ -> q multiples

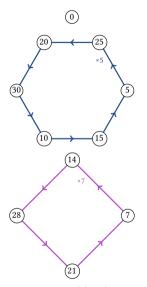
8/24

The multiplicative group is **not** cyclic!



The multiplicative group is **not** cyclic!





Non-invertible elements

The "RSA theorem"

Theorem

Let $N = p \times q$ with primes $p \neq q$. Then for all $a \in \mathbb{Z}/N\mathbb{Z}$, $a^{1+\varphi(N)} = a$.

(2)
$$a^{1+\ell(N)} \mod p = a^{1+(p-1)(q-1)} \mod p = a$$
 and $a^{1+\ell(N)} \mod q = a$

$$p \text{ and } q \text{ diviole } a^{1+\ell(N)} - a = p \text{ N divides } a^{1+\ell($$

The RSA trapdoor permutation

The original (unsafe!) RSA encryption scheme

Definition as an encryption scheme

```
Public key: (N, e) where N = p \times q with primes p \neq q and gcd(e, \varphi(N)) = 1
```

Private key: (N, d) where $d \times e \mod \varphi(N) = 1$

Encryption: Given $m \in \mathbb{Z}/N\mathbb{Z}$, compute $c = m^e \mod N$

Decryption: Given $c \in \mathbb{Z}/N\mathbb{Z}$, compute $m = c^d \mod N$

Correction

$$c^{d} = (m^{e})^{d} = m^{ed}$$
. And then exists k s.t. $e^{d} = \Lambda + k \cdot \ell(N)$
=) $c^{d} = m^{1+k \cdot \ell(N)} = m^{1+\ell(N)} m^{(k-1) \cdot \ell(N)} = m^{1} m^{(k-1) \cdot \ell(N)} = m^{1+(k-1) \cdot$

The algorithms and complexities

Key generation

- 1. Generate two random primes $p \neq q$
 - Sample random (odd) integers
 - ► Test their primality
- 2. Compute $N = p \times q$ and $\varphi(N) = (p-1) \times (q-1)$
- 3. Generate e, d such that $e \times d \mod \varphi(N) = 1$
 - Sample random integers e
 - Apply $xGCD(e, \varphi(N))$ to test invertibility and get d

Encryption and decryption

- ► Modular exponentiation in $\mathbb{Z}/N\mathbb{Z}$
 - $\blacktriangleright \text{ Binary powering, using } a^n = \begin{cases} a^{\lfloor n/2 \rfloor} \cdot a^{\lfloor n/2 \rfloor} & \text{for even } n \\ a \cdot a^{\lfloor n/2 \rfloor} \cdot a^{\lfloor n/2 \rfloor} & \text{for odd } n \end{cases}$
 - ightharpoonup Complexity; $O(\log^3 N)$

 $O(\log^3 N)$ $O(\log N)$ samples $O(\log^2 N)$ $O(\log^2 N)$ $O(\log^2 N)$ $O(\log^2 N)$ $1 + O(1/\sqrt{N})$ samples $O(\log^2 N)$

Attacks on the trapdoor

Possible goals

Key recovery: Given (N, e), compute d s.t. $d \times e \mod \varphi(N) = 1$ Plaintext recovery: Given (N, e) and c, compute m s.t. $m^e \mod N = c$

Computational problems

Modular *e*-th root: Given N, c, e, compute m s.t. $m^e \mod N = c$ Computation of φ : Given $N = p \times q$ (for unknown p, q), compute $\varphi(N) = (p-1)(q-1)$ Factorization: Given $N = p \times q$, compute p and q

Reductions between problems

- ▶ Plaintext recovery ← modular *e*-th root
- ightharpoonup Computation of $\varphi \implies$ Key recovery \implies plaintext recovery
- ► Computation of φ ⇒ Factorization of N: Θ One you know γ and q, you can compute ((N) = (γ-1)(q-1)

Integer factorization

Complexity of integer factorization

- ▶ Brute force algorithm: $O(\sqrt{N}) = O(2^{\frac{\log N}{2}})$
- **.**.
- ► General Number Field Sieve: $2^{O(\log^{\frac{1}{3}} N \log^{\frac{2}{3}} \log N)}$ Lenstra, Lenstra (1993) and others...
- Quantum algorithm: $O(\log^3 N) = O(2^{3 \log \log N})$ Shor (1994)

(Remark: no known NP-hardness result o could be polynomial in log N)

Current record: 829-bit (250-digit) integer factorization

- Boudot, Gaudry, Guillevic, Heninger, Thomé, Zimmermann (Feb. 2020)
- ► Software: CADO-NFS
- ► Hardware: (mainly) academic clusters
- Approx. 2,700 core-years in a few months

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signature:

The original RSA scheme is unsafe!

Deterministic encryption

- ► Two ciphertexts are equal iff the corresponding messages are equal
- ► The scheme cannot be IND-CPA/CCA secure

Examples of other difficulties

```
Small exponent: If e and m are small: m^e \mod N = m^e in \mathbb{Z} \to \sqrt[e]{c} in \mathbb{Z} Related messages: Given the ciphertexts of m and m + \delta with small \delta \to m Multiple receivers: Given the ciphertexts of m with several distinct keys \to m
```

The original RSA encryption scheme is severely flawed and should never be used!

Solution: use (random) padding

The padded RSA encryption scheme: overview

Construction

Parameters: n: number of bits of N; ℓ : length of the messages

$$Gen_n()$$
:

- Gen_n(): 1. p, $q \leftarrow$ two random primes s.t. $p \times q$ has bit-length n
 - 2. $N \leftarrow p \times q$, $\varphi(N) \leftarrow (p-1) \times (q-1)$
 - 3. $e \leftarrow \text{random integer invertible modulo } \varphi(N), d \leftarrow e^{-1} \mod \varphi(N)$
 - 4. return pk = (N, d), sk = (N, e)

$$\mathsf{Enc}_{pk}(m)$$
:

Enc_{pk}(
$$m$$
): 1. $r \leftarrow \{0,1\}^{n-\ell}$

$$m \in \{0,1\}^{\ell}$$

- 2. if $\hat{m} = r || m \in \mathbb{Z}/N\mathbb{Z}$, return $c = \hat{m}^e \mod N$
- 3. otherwise, restart with a new r

$$Dec_{sk}(c)$$
:

- $\operatorname{Dec}_{sk}(c)$: 1. $\hat{m} \leftarrow c^d \mod N$
 - 2. Return $m = \hat{m}_{[n-\ell],n}$

Correction

As for the original RSA

Security of padded RSA

The security depends on $n - \ell$

number of padding bits

Small values of $n - \ell$

- \triangleright 2^{$n-\ell$} possible paddings
- ► Sufficient to break $2^{n-\ell}$ original RSA instances
- \rightarrow Not secure!

Very large value of $n - \ell$: $\ell = 1$

- ▶ If computing e-th root in $\mathbb{Z}/N\mathbb{Z}$ is hard, IND-CPA secure encryption scheme
- Very inefficient secure encryption scheme, one bit at a time
- Slightly better if used as a KEM

still useless!

Medium values of $n - \ell$

Open problem!

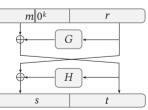
Padded RSA in practice

RSA PKCS1

- Standardized by RSA laboratories
- ▶ Padding: $m \rightarrow 0 \times 00 \|0 \times 02 \|r\| 0 \times 00 \|m$ where r is random
- Attack using failure of the unpadding procedure
 - ► Used against SSL 3.0
 - Workaround: in case of failure, return a random value
 - Prevents IND-CCA security

RSA Optimal Asymmetric Encryption Padding (OAEP) Bellare, Rogaway (1994)

- ▶ Padding: $m \rightarrow s || t$ where
 - ► *G*, *H*: hash functions
 - r: random bits
- Standardized as PKCS1 v2
- ► IND-CCA secure under two assumptions
 - RSA trapdoor is one-way
 - G and H are random oracles



Bleichenbacher (1998)

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures

Original (broken...) version

Construction

Gen_n(): 1.
$$p$$
, $q \leftarrow$ two random primes s.t. $p \times q$ has bit-length n

2.
$$N \leftarrow p \times q, \varphi(N) \leftarrow (p-1) \times (q-1)$$

- 3. $e \leftarrow \text{random integer invertible modulo } \varphi(N), d \leftarrow e^{-1} \mod \varphi(N)$
- 4. return pk = (N, d), sk = (N, e)

$$\operatorname{Sign}_{sk}(m)$$
: 1. return $m^d \mod N$

$$m \in \mathbb{Z}/N\mathbb{Z}$$

$$Vrfy_{pk}(m, \sigma)$$
: 1

 $Vrfy_{pk}(m, \sigma)$: 1. test whether $m = \sigma^e \mod N$

Correction

As for the original RSA encryption scheme

Attacks

existential forgeries

- 1. The adversary chooses σ and computes $m = \sigma^e \mod N$
- 2. The adversary sees (m_1, σ_1) and (m_2, σ_2) and computes $m = m_1 \cdot m_2$ and $\sigma = \sigma_1 \cdot \sigma_2$

RSA FDH (Full Domain Hash)

Construction

- Gen_n(): 1. Compute pk = (N, d), sk = (N, e) as previously
 - 2. Choose a hash function $H: \{0,1\}^* \to \mathbb{Z}/N\mathbb{Z}$
- $\operatorname{Sign}_{sk}(m)$: 1. return $H(m)^d \mod N$

 $m \in \{0,1\}^*$

 $Vrfy_{pk}(m, \sigma)$: 1. test whether $H(m) = \sigma^e \mod N$

What should *H* satisfy to avoid attacks?

- 1. $\sigma \to h = \sigma^e \to H(m) = h$
- 2. $m_1, m_2 \to H(m) = H(m_1) \cdot H(m_2) \mod N$
- 3. If $H(m_1) = H(m_2)$, $\sigma_1 = \sigma_2$
- 4. The image of H should be the full $\mathbb{Z}/N\mathbb{Z}$

first preimage resistance "non-multiplicative" collision resistance full domain

Bad and good news

▶ We *do not know* how to build a satisfying *H*

- no security proof
- Security proof if RSA trapdoor is one-way and H is a random oracle

Proof sketch of RSA FDH

(Informal) theorem

If *e*-th roots in $\mathbb{Z}/N\mathbb{Z}$ are hard to compute and *H* is random, RSA FDH is secure

Some ingrediers:

Since H is random, any Vaduesary has to query some values
$$H(m_1),...,H(m_k)$$

If I know that adversary, at the end, out gots (M_i, T)

and I need to compute T_i I will say that $H(M_i) = C$

The successful adversary out gots (M_i, T) when $H(M_i)^d = T$ or $T^e = H(M_i)$
 $T_i = T_i$ I know that $T_i = C_i$.

Conclusion

RSA is a *one-way* trapdoor function

- ▶ One direction is easy to compute: $(m, e) \rightarrow m^e \mod N$
- ightharpoonup The other direction is (hopefully!) hard to compute: $(c,e) o \sqrt[e]{c} \mod N$
- ▶ But there is a trapdoor: given $d = e^{-1} \mod \varphi(N)$, easy to compute $m = c^d \mod N$

Use of RSA trapdoor function

- No direct use!
- Public-key encryption scheme \rightarrow RSA OAEP
- ightharpoonup Digital signatures ightarrow RSA FDH

Security

No formal proof that RSA is one-way

assumption

- Related but not equivalent to the difficulty of integer factorization
- ▶ Typical key sizes: N with \geq 2048 bits
- Many other pitfalls: implementation, randomness quality, dependent keys, ...