Factoring bivariate lacunary polynomials without heights

Bruno Grenet
ÉNS Lyon & U. Rennes 1

Joint work with

Arkadev Chattopadhyay
TIFR, Mumbai

Natacha Portier
ÉNS Lyon

Pascal Koiran
ÉNS Lyon

Yann Strozecki
U. Versailles

Séminaire de théorie des nombres du LMNO — Caen, le 1er février 2013
Representation of Univariate Polynomials

\[P(X) = X^{10} - 4X^8 + 8X^7 + 5X^3 + 1 \]

Representations

- Dense:
 \[[1, 0, -4, 8, 0, 0, 0, 5, 0, 0, 1] \]

- Sparse:
 \[\{(10 : 1), (8 : -4), (7 : 8), (3 : 5), (0 : 1)\} \]
Representation of Multivariate Polynomials

\[P(X, Y, Z) = X^2 Y^3 Z^5 - 4 X^3 Y^3 Z^2 + 8 X^5 Z^2 + 5 XYZ + 1 \]

Representations

- **Dense:**
 \[[1, \ldots, -4, \ldots, 8, \ldots, 5, \ldots, 1] \]

- **Lacunary (supersparse):**
 \[\{(2, 3, 5 : 1), (3, 3, 2 : -4), (5, 0, 2 : 8), (1, 1, 1 : 5), (0 : 1)\} \]
Size of the lacunary representation

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]

\[\implies \text{size}(P) \sim \sum_{j=1}^{k} \text{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj}) \]
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time [Berlekamp’67]

Example

$X^p - 1 = (X - 1)(1 + X + \cdots + X^{p-1})$
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time
 $\leadsto \mathbb{F}_q[X_1, \ldots, X_n]$

[Berlekamp’67]
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time $\Rightarrow \mathbb{F}_q[X_1, \ldots, X_n]$ [Berlekamp’67]

- $\mathbb{Z}[X]$: deterministic polynomial time $\Rightarrow \mathbb{Q}(\alpha)[X]$, $\mathbb{Q}(\alpha)[X_1, \ldots, X_n]$ [Lenstra-Lenstra-Lovász’82]
Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time $\xrightarrow{} \mathbb{F}_q[X_1, \ldots, X_n]$

 [Berlekamp’67]

- $\mathbb{Z}[X]$: deterministic polynomial time $\xrightarrow{} \mathbb{Q}(\alpha)[X]$

 [Lenstra–Lenstra–Lovász’82] [A. Lenstra’83, Landau’83]
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time
 $\Rightarrow \mathbb{F}_q[X_1, \ldots, X_n]$
 [Berlekamp’67]

- $\mathbb{Z}[X]$: deterministic polynomial time
 $\Rightarrow \mathbb{Q}(\alpha)[X]$
 $\Rightarrow \mathbb{Q}(\alpha)[X_1, \ldots, X_n]$
 [Lenstra-Lenstra-Lovász’82]
 [A. Lenstra’83, Landau’83]
 [Kaltofen’85, A. Lenstra’87]
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time \Rightarrow $\mathbb{F}_q[X_1, \ldots, X_n]$ [Berlekamp’67]

- $\mathbb{Z}[X]$: deterministic polynomial time \Rightarrow $\mathbb{Q}(\alpha)[X]$ \Rightarrow $\mathbb{Q}(\alpha)[X_1, \ldots, X_n]$ [Lenstra-Lenstra-Lovász’82, A. Lenstra’83, Landau’83, Kaltofen’85, A. Lenstra’87]

Example

$$X^p - 1 = (X - 1)(1 + X + \cdots + X^{p-1})$$
Factorization of polynomials

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

- $\mathbb{F}_q[X]$: randomized polynomial time
 \[\leadsto \mathbb{F}_q[X_1, \ldots, X_n]\]

- $\mathbb{Z}[X]$: deterministic polynomial time
 \[\leadsto \mathbb{Q}(\alpha)[X]\]
 \[\leadsto \mathbb{Q}(\alpha)[X_1, \ldots, X_n]\]

Example

\[X^p - 1 = (X - 1)(1 + X + \cdots + X^{p-1})\]

\[\leadsto \text{restriction to finding some factors}\]
Theorem (Cucker-Koiran-Smale'98)
Polynomial-time algorithm to find integer roots if $a_j \in \mathbb{Z}$.

Theorem (H. Lenstra'99)
Polynomial-time algorithm to find factors of degree $\leq d$ if $a_j \in \mathbb{Q}(\alpha)$.
Factorization of sparse univariate polynomials

\[P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} \]

\[\text{size}(P) \simeq \sum_{j=1}^{k} \text{size}(a_j) + \log(\alpha_j) \]

Theorem (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if \(a_j \in \mathbb{Z} \).
Factorization of sparse univariate polynomials

\[P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} \quad \text{size}(P) \approx \sum_{j=1}^{k} \text{size}(a_j) + \log(\alpha_j) \]

Theorem (Cucker-Koiran-Smale’98)
Polynomial-time algorithm to find integer roots if \(a_j \in \mathbb{Z} \).

Theorem (H. Lenstra’99)
Polynomial-time algorithm to find factors of degree \(\leq d \) if \(a_j \in \mathbb{Q}(\alpha) \).

B. Grenet — Factoring bivariate lacunary polynomials without heights
Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran’05)

Polynomial-time algorithm to find \textbf{linear factors} of \textbf{bivariate} lacunary polynomials over \mathbb{Q}.
Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen-Koiran’06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

B. Grenet — Factoring bivariate lacunary polynomials without heights
Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran’05)
Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen-Koiran’06)
Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Theorem (Avendaño-Krick-Sombra’07)
Polynomial-time algorithm to find low-degree factors of bivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Common ideas

Gap Theorem

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \).
Common ideas

Gap Theorem

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > \text{gap}(P) \]
Common ideas

Gap Theorem

\[
P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}
\]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[
\alpha_{\ell+1} - \alpha_\ell > \text{gap}(P),
\]

then \(F \) divides \(P \) iff \(F \) divides both \(P_0 \) and \(P_1 \).
Common ideas

Gap Theorem

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_{\ell} > \text{gap}(P), \]

then \(F \) divides \(P \) iff \(F \) divides both \(P_0 \) and \(P_1 \).

\text{gap}(P): \text{function of the algebraic height of } P.\]
Common algorithmic idea

- Recursively apply the Gap Theorem:

\[P = X^\alpha_1 P_1 + \cdots + X^\alpha_t P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]
Recursively apply the Gap Theorem:

\[P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]

Factor out \(P_1, \ldots, P_s \) using a dense factorization algorithm.
Common algorithmic idea

- Recursively apply the Gap Theorem:
 \[P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]

- Factor out \(P_1, \ldots, P_s \) using a dense factorization algorithm

- Refinements:
Common algorithmic idea

- Recursively apply the Gap Theorem:

\[P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]

- Factor out \(P_1, \ldots, P_s \) using a dense factorization algorithm

- Refinements:
 - Factor out \(\gcd(P_1, \ldots, P_s) \)
Common algorithmic idea

- Recursively apply the Gap Theorem:

\[P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]

- Factor out \(P_1, \ldots, P_s \) using a dense factorization algorithm

- Refinements:
 - Factor out \(\gcd(P_1, \ldots, P_s) \)
 - Factor out only \(P_1 \) & check which factors divide the other \(P_t \)’s
Common algorithmic idea

- Recursively apply the Gap Theorem:

\[P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s \text{ with } \deg(P_t) \leq \text{gap}(P) \]

- Factor out \(P_1, \ldots, P_s \) using a dense factorization algorithm

- Refinements:
 - Factor out \(\gcd(P_1, \ldots, P_s) \)
 - Factor out only \(P_1 \) & check which factors divide the other \(P_t \)'s
 - ...

B. Grenet — Factoring bivariate lacunary polynomials without heights
Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.
Results

Theorem

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials

 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
Results

Theorem

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
- \(\text{gap}(P)\) independent of the height
Theorem

Polynomial time algorithm to find \textit{multilinear} factors of \textit{bivariate} lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
- $\text{gap}(P)$ \textit{independent of the height}
 \implies More elementary algorithms
Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
- gap(P) independent of the height
 - More elementary algorithms
 - Gap Theorem valid over any field of characteristic 0
Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
- \text{gap}(P) \text{ independent of the height}
 \implies \text{More elementary algorithms}
 \implies \text{Gap Theorem valid over any field of characteristic 0}
- Extension to multilinear factors
Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran’05, Avendaño-Krick-Sombra’07]
- gap(P) independent of the height
 - More elementary algorithms
 - Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors
- Results in positive characteristics
Linear factors of bivariate polynomials

\[P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]
Linear factors of bivariate polynomials

\[P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]

Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0 \]
Linear factors of bivariate polynomials

\[P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \]

Observation

\((Y - uX - v)\) divides \(P(X, Y)\) \iff \(P(X, uX + v) \equiv 0\)

- Study of polynomials of the form \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j}\)

B. Grenet — Factoring bivariate lacunary polynomials without heights
Linear factors of bivariate polynomials

$$P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$\frac{\text{Observation}}{(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0}$$

- Study of polynomials of the form $$\sum_{j} a_j X^{\alpha_j}(uX + v)^{\beta_j}$$
- $$\mathbb{K}$$: any field of characteristic 0
Bound on the valuation
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X] \]
Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of $P \in \mathbb{K}[X]

Theorem

Let $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0$, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

B. Grenet — Factoring bivariate lacunary polynomials without heights

12 / 35
Bound on the valuation

Definition

\[
\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X]
\]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_k \).

Then

\[
\text{val}(P) \leq \max_{1 \leq j \leq k} \left(\alpha_j + \binom{k + 1 - j}{2} \right)
\]
Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

Theorem

Let \[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } uv \neq 0 \text{ and } \alpha_1 \leq \cdots \leq \alpha_k. \]

Then

\[\text{val}(P) \leq \alpha_1 + \binom{k}{2} \]

- \(X^{\alpha_j} (uX + v)^{\beta_j} \) linearly independent
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X] \]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_k \).

Then

\[\text{val}(P) \leq \alpha_1 + \binom{k}{2} \]

- \(X^{\alpha_j} (uX + v)^{\beta_j} \) linearly independent
- Hajós’ Lemma: if \(\alpha_1 = \cdots = \alpha_k \), \(\text{val}(P) \leq \alpha_1 + (k - 1) \)
Gap Theorem

Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \]

with \(uv \neq 0, \alpha_1 \leq \cdots \leq \alpha_k \). If

\[\alpha_{\ell+1} > \max_{1 \leq j \leq \ell} \left(\alpha_j + \left(\ell + 1 - j \right) \right) \]

then \(P \equiv 0 \) iff both \(P_0 \equiv 0 \) and \(P_1 \equiv 0 \).
Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \]

with \(uv \neq 0 \), \(\alpha_1 \leq \ldots \leq \alpha_k \). If \(\ell \) is the smallest index s.t.

\[\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2}, \]

then \(P \equiv 0 \) iff both \(P_0 \equiv 0 \) and \(P_1 \equiv 0 \).
The Wronskian

Definition

Let \(f_1, \ldots, f_k \in \mathbb{K}[X] \). Then

\[
\text{wr}(f_1, \ldots, f_k) = \det \begin{bmatrix}
 f_1 & f_2 & \ldots & f_k \\
 f'_1 & f'_2 & \ldots & f'_k \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(k-1)}_1 & f^{(k-1)}_2 & \ldots & f^{(k-1)}_k
\end{bmatrix}.
\]
The Wronskian

Definition

Let \(f_1, \ldots, f_k \in \mathbb{K}[X] \). Then

\[
wr(f_1, \ldots, f_k) = \det \begin{bmatrix}
f_1 & f_2 & \cdots & f_k \\
f'_1 & f'_2 & \cdots & f'_k \\
\vdots & \vdots & \ddots & \vdots \\
f_{(k-1)}^1 & f_{(k-1)}^2 & \cdots & f_{(k-1)}^k
\end{bmatrix}.
\]

Proposition (Bôcher, 1900)

\[wr(f_1, \ldots, f_k) \neq 0 \iff \text{the } f_j\text{'s are linearly independent.}\]
Lemma

$$\text{val}(\text{wr}(f_1, \ldots, f_k)) \geq \sum_{j=1}^{k} \text{val}(f_j) - \binom{k}{2}$$
Wronskian & valuation

Lemma

\[\text{val}(\text{wr}(f_1, \ldots, f_k)) \geq \sum_{j=1}^{k} \text{val}(f_j) - \binom{k}{2} \]

Proof.

\[
\begin{bmatrix}
0 & \text{val}(f_1) & \text{val}(f_2) & \ldots & \text{val}(f_k) \\
-1 & f_1 & f_2 & \ldots & f_k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-(k-1) & f_1^{(k-1)} & f_2^{(k-1)} & \ldots & f_k^{(k-1)}
\end{bmatrix}
\]
Upper bound for the valuation

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j}, \ uv \neq 0, \) linearly independent, and s.t. \(\alpha_j, \beta_j \geq k - 1. \) Then

\[
\text{val}(\text{wr}(f_1, \ldots, f_k)) \leq \sum_{j=1}^{k} \alpha_j.
\]
Upper bound for the valuation

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j} \), \(uv \neq 0 \), linearly independent, and s.t. \(\alpha_j, \beta_j \geq k - 1 \). Then

\[
\text{val}(\text{wr}(f_1, \ldots, f_k)) \leq \sum_{j=1}^{k} \alpha_j.
\]

Proof idea. Write

\[
\text{wr}(f_1, \ldots, f_k) = X^{\sum_j \alpha_j - \binom{k}{2}}(uX + v)^{\sum_j \beta_j - \binom{k}{2}} \times \text{det}(M)
\]

with \(\text{deg}(M_{ij}) \leq i \).
Upper bound for the valuation

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j}, uv \neq 0 \), linearly independent, and s.t. \(\alpha_j, \beta_j \geq k - 1 \). Then

\[
\text{val}(\text{wr}(f_1, \ldots, f_k)) \leq \sum_{j=1}^{k} \alpha_j.
\]

Proof idea. Write

\[
\text{wr}(f_1, \ldots, f_k) = X^{\sum_j \alpha_j - \binom{k}{2}}(uX + v)^{\sum_j \beta_j - \binom{k}{2}} \times \det(M)
\]

with \(\deg(M_{ij}) \leq i \). Use \(\text{val}(\det M) \leq \deg(\det M) \leq \binom{k}{2} \).
Proof of the Theorem

Theorem

Let $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0$, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

Then

$$\text{val}(P) \leq \alpha_1 + \binom{k}{2}.$$
Proof of the Theorem

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_k \).

Then

\[
\text{val}(P) \leq \alpha_1 + \binom{k}{2}.
\]

Proof. \(\text{wr}(P, f_2, \ldots, f_k) = a_1 \text{wr}(f_1, \ldots, f_k) \)
Proof of the Theorem

Theorem

Let $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0$, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

Then

$$\text{val}(P) \leq \alpha_1 + \binom{k}{2}.$$

Proof. $\text{wr}(P, f_2, \ldots, f_k) = a_1 \text{wr}(f_1, \ldots, f_k)$

$$\sum_{j=1}^{k} \alpha_j \geq \text{val}(\text{wr}(f_1, \ldots, f_k)) \geq \text{val}(P) + \sum_{j=2}^{k} \alpha_j - \binom{k}{2}.$$
Proof of the Theorem

Theorem

Let

\[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } uv \neq 0 \text{ and } \alpha_1 \leq \cdots \leq \alpha_k. \]

Then

\[\text{val}(P) \leq \max_{1 \leq j \leq k} \left(\alpha_j + \binom{k+1-j}{2} \right). \]

Proof.

\[\text{wr}(P, f_2, \ldots, f_k) = a_1 \text{wr}(f_1, \ldots, f_k) \]

\[\sum_{j=1}^{k} \alpha_j \geq \text{val wr}(f_1, \ldots, f_k)) \geq \text{val}(P) + \sum_{j=2}^{k} \alpha_j - \binom{k}{2} \]
How far from optimality?

- Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{k} a_j X^\alpha (uX + v)^{\beta_j} \right) \leq \alpha + (k - 1) \)
How far from optimality?

- Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha + (k - 1) \)

- Our result: \(\text{val} \left(\sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{k}{2} \)
How far from optimality?

- Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{k} a_j X^\alpha (uX + v)^{\beta_j} \right) \leq \alpha + (k - 1) \)

- Our result: \(\text{val} \left(\sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{k}{2} \)

- Lemmas: bounds attained, but not simultaneously \(\leadsto \) trade-off?
How far from optimality?

▶ Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha + (k - 1) \)

▶ Our result: \(\text{val} \left(\sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{k}{2} \)

▶ Lemmas: bounds attained, but not simultaneously \(\rightsquigarrow \) trade-off?

▶ Lower bound:

\[
X^{2k-3} = (1 + X)^{2k+3} - 1 - \sum_{j=3}^{k} \frac{2k-3}{2j-5} \binom{k+j-5}{2j-6} X^{2j-5} (1 + X)^{k-1-j}
\]
A generalization

Theorem

Let \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and

\[P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}}, \]

where \(f_i \in \mathbb{K}[X], \) \(\deg(f_i) = d_i\) and \(\text{val}(f_i) = \mu_i.\)
A generalization

Theorem

Let \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and

\[
P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}},
\]

where \(f_i \in \mathbb{K}[X]\), \(\deg(f_i) = d_i\) and \(\text{val}(f_i) = \mu_i\). Then

\[
\text{val}(P) \leq \max_{1 \leq j \leq k} \sum_{i=1}^{m} \left(\mu_i \alpha_{ij} + (d_i - \mu_i) \binom{k+1-j}{2} \right).
\]
A generalization

Theorem

Let $(\alpha_{ij}) \in \mathbb{R}^{k \times m}$ and

$$P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}},$$

where $f_i \in \mathbb{K}[X]$, $\deg(f_i) = d_i$ and $\text{val}(f_i) = \mu_i$. Then

$$\text{val}(P) \leq \max_{1 \leq j \leq k} \sum_{i=1}^{m} \left(\mu_i \alpha_{ij} + (d_i - \mu_i) \left(\frac{k + 1 - j}{2} \right) \right).$$
Algorithms
Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors
Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

\[K = \mathbb{Q}[\xi]/\langle \varphi \rangle, \quad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta \]
Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

\[K = \mathbb{Q}[\xi]/\langle \varphi \rangle, \quad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta \]

- \(x \in K \) represented as \(\left(\frac{n_0}{d_0}, \ldots, \frac{n_{\delta-1}}{d_{\delta-1}} \right) \)
- \(\text{size}(x) \approx \log(n_0d_0) + \cdots + \log(n_{\delta-1}d_{\delta-1}) \)
Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

\[\mathbb{K} = \mathbb{Q}[\xi]/\langle \varphi \rangle, \quad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta \]

- \(x \in \mathbb{K} \) represented as \((\frac{n_0}{d_0}, \ldots, \frac{n_{\delta-1}}{d_{\delta-1}})\)
- size\((x) \simeq \log(n_0d_0) + \cdots + \log(n_{\delta-1}d_{\delta-1})\)

- \(\mathbb{K} \) is part of the input, given by \(\varphi \) in dense representation
Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

\[K = \mathbb{Q}[\xi]/\langle \varphi \rangle, \quad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta \]

- \(x \in K \) represented as \((\frac{n_0}{d_0}, \ldots, \frac{n_\delta - 1}{d_\delta - 1}) \)
- \(\text{size}(x) \simeq \log(n_0d_0) + \cdots + \log(n_\delta - 1d_\delta - 1) \)

- \(K \) is part of the input, given by \(\varphi \) in dense representation
- **N.B.**: Algorithms are from [Kaltofen-Koiran’05]
Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

\[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \]

vanishes.
Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

\[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \] vanishes.

Proof.

- If \(u = 0 \): test \(\sum_j a_j v^{\beta_j} \neq 0 \) \[\text{[Lenstra'99]}\]
There exists a deterministic polynomial-time algorithm to test if
\[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \] vanishes.

Proof.

- If \(u = 0 \): test \(\sum_j a_j v^{\beta_j} \neq 0 \) \[\text{[Lenstra'99]}\]
- If \(v = 0 \): similar \[\text{[Lenstra'99]}\]
Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

\[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \text{ vanishes.} \]

Proof.

- If \(u = 0 \): test \(\sum_j a_j v^{\beta_j} \neq 0 \) \[\text{[Lenstra’99]}\]
- If \(v = 0 \): similar \[\text{[Lenstra’99]}\]
- If \(u, v \neq 0 \): \(P = P_1 + \cdots + P_s \) s.t.
 \[
P = 0 \iff P_1 = \cdots = P_s = 0
 \]
 where \(P_t = \sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \) with \(\alpha_{\max} \leq \alpha_{\min} + \binom{k}{2} \)
Polynomial Identity Testing (2)

\[Q(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \leq \alpha_1 + \binom{k}{2} \]
Polynomial Identity Testing (2)

\[
Q(X) = \sum_{j=1}^{k} a_{j} X^{\alpha_{j}} (uX + v)^{\beta_{j}}, \text{ with } \alpha_{k} \leq \binom{k}{2}
\]
Polynomial Identity Testing (2)

\[Q(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \leq \binom{k}{2} \]

Let \(Y = uX + v \). Then

\[Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j} \]
Polynomial Identity Testing (2)

\[Q(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \leq \binom{k}{2} \]

Let \(Y = uX + v \). Then

\[Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j} \]

\[= \sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_j} a_j u^{-\alpha_j} \binom{\alpha_j}{\ell} (-v)^{\ell} Y^{\alpha_j + \beta_j - \ell} \]
Polynomial Identity Testing (2)

\[Q(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \leq \binom{k}{2} \]

Let \(Y = uX + v \). Then

\[Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j} \]

\[= \sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_j} a_j u^{-\alpha_j} \binom{\alpha_j}{\ell} (-v)^{\ell} Y^{\alpha_j + \beta_j - \ell} \]

number of monomials, exponents \(\leq \text{poly(size}(Q)) \)
Generalization of PIT

Theorem

Let

\[P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}} \]

where \(f_1, \ldots, f_m \in \mathbb{K}[X] \) are given in dense representation, \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and \((a_j) \in \mathbb{K}^k\). Then one can test if \(P \) vanishes in deterministic polynomial time.
Generalization of PIT

Theorem

Let

\[P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}} \]

where \(f_1, \ldots, f_m \in \mathbb{K}[X] \) are given in dense representation, \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and \((a_j) \in \mathbb{K}^k\). Then one can test if \(P \) vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each \(f_i \) and rewrite \(P = \sum_{j=1}^{k} b_j \prod_{i=1}^{M} g_i^{\beta_{ij}} \).
Generalization of PIT

Theorem

Let

\[P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}} \]

where \(f_1, \ldots, f_m \in \mathbb{K}[X] \) are given in dense representation, \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and \((a_j) \in \mathbb{K}^k\). Then one can test if \(P \) vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each \(f_i \) and rewrite \(P = \sum_{j=1}^{k} b_j \prod_{i=1}^{M} g_i^{\beta_{ij}} \).

- Then \(\mu_{g_i}(P) \leq \max_{1 \leq j \leq k} \left(\beta_{ij} + \sum_{\ell \neq i} \frac{\deg(g_\ell)}{\deg(g_i)} \left(k + 1 - j \right) \right) \) for each \(g_i \).
Generalization of PIT

Theorem

Let

\[P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}} \]

where \(f_1, \ldots, f_m \in \mathbb{K}[X] \) are given in **dense** representation, \((\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}\) and \((a_j) \in \mathbb{K}^k\). Then one can test if \(P \) vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each \(f_i \) and rewrite \(P = \sum_{j=1}^{k} b_j \prod_{i=1}^{M} g_i^{\beta_{ij}} \).

- Then \(\mu_{g_i}(P) \leq \max_{1 \leq j \leq k} \left(\beta_{ij} + \sum_{\ell \neq i} \frac{\deg(g_{\ell})}{\deg(g_i)} \binom{k+1-j}{2} \right) \) for each \(g_i \).

- Gap Theorem \(\Rightarrow \) write \(P \) as a sum of low-degree polynomials.
Finding linear factors

Observation + Gap Theorem

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[\iff P(X, uX + v) \equiv 0\]
Finding linear factors

Observation + Gap Theorem

\[(Y - uX - v)\] divides \(P(X, Y)\)

\[\iff \quad P(X, uX + v) \equiv 0\]

\[\iff \quad P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
Finding linear factors

Observation + Gap Theorem

\[(Y - uX - v) \text{ divides } P(X, Y) \]

\[\iff P(X, uX + v) \equiv 0 \]

\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0 \]

\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y) \]
Observation + Gap Theorem

\((Y - uX - v)\) divides \(P(X, Y)\)

\[\iff P(X, uX + v) \equiv 0\]
\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
\[\iff (Y - uX - v)\) divides each \(P_t(X, Y)\)

\[\rightsquigarrow\text{find linear factors of low-degree polynomials}\]
Some details

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)
Some details

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^\alpha_j Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\)
Some details

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\)
 \[\text{[Lenstra’99]}\]
Some details

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) \[\text{Lenstra'99}\]

2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\)
Some details

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) \[\text{[Lenstra’99]}\]
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) \[\text{[Lenstra’99]}\]
Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [Lenstra’99]
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) [Lenstra’99]
3. If \(u, v \neq 0\):
Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [Lenstra’99]

2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) [Lenstra’99]

3. If \(u, v \neq 0\):
 - Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_j a_j X^{\alpha_j} Y^{\beta_j}\) with \(\alpha_{\text{max}} \leq \alpha_{\text{min}} + \binom{k}{2}\)
Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [Lenstra’99]
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) [Lenstra’99]
3. If \(u, v \neq 0\):
 - Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_j a_j X^{\alpha_j} Y^{\beta_j}\) with \(\alpha_{\text{max}} \leq \alpha_{\text{min}} + \binom{k}{2}\)
 - Invert the roles of \(X\) and \(Y\), to get \(\beta_{\text{max}} \leq \beta_{\text{min}} + \binom{k}{2}\)
Some details

Find linear factors \((Y - uX - v)\) of

\[
P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}
\]

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [Lenstra’99]

2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j+\beta_j}\) [Lenstra’99]

3. If \(u, v \neq 0\):
 - Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_j a_j X^{\alpha_j} Y^{\beta_j}\) with
 \(\alpha_{\text{max}} \leq \alpha_{\text{min}} + \binom{k}{2}\)
 - Invert the roles of \(X\) and \(Y\), to get \(\beta_{\text{max}} \leq \beta_{\text{min}} + \binom{k}{2}\)
 - Apply some dense factorization algorithm [Kaltofen’82, \ldots, Lecerf’07]
Comments

Main computational task: Factorization of dense polynomials
Main computational task: Factorization of dense polynomials

\implies Complexity in terms of $\text{gap}(P)$
Main computational task: Factorization of dense polynomials

⇒ Complexity in terms of $\text{gap}(P)$

- [Kaltofen–Koiran’05]: $\text{gap}(P) = \mathcal{O}(k \log k + k \log h_P)$
Main computational task: Factorization of dense polynomials

\[\text{Complexity in terms of } \text{gap}(P) \]

- [Kaltofen-Koiran’05]: \(\text{gap}(P) = \mathcal{O}(k \log k + k \log h_P) \)

\[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X, Y] \]
Comments

Main computational task: Factorization of dense polynomials

\implies Complexity in terms of $\text{gap}(P)$

- [Kaltofen-Koiran’05]: $\text{gap}(P) = O(k \log k + k \log h_P)$

 $h_P = \max_j |a_j|$ if $P \in \mathbb{Z}[X, Y]$

- Here: $\text{gap}(P) = O(k^2)$
Main computational task: Factorization of dense polynomials

⇒ Complexity in terms of \(\text{gap}(P) \)

- \([\text{Kaltofen-Koiran'05}]: \text{gap}(P) = \mathcal{O}(k \log k + k \log h_P)\)
 \[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X, Y] \]
- Here: \(\text{gap}(P) = \mathcal{O}(k^2) \)
- Algebraic number field: only for Lenstra’s algorithm
Finding multilinear factors

Lemma

Let \(P = \sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} (wX + t)^{\gamma_j} \neq 0, \ uvwt \neq 0 \). Then

\[
\text{val}(P) \leq \max_j \left(\alpha_j + 2 \binom{k + 1 - j}{2} \right).
\]
Finding multilinear factors

Lemma

Let \(P = \sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} (wX + t)^{\gamma_j} \neq 0, \ uvwt \neq 0 \). Then

\[
\text{val}(P) \leq \max_j \left(\alpha_j + 2 \left(\frac{k + 1 - j}{2} \right) \right).
\]

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of \(\sum_j a_j X^{\alpha_j} Y^{\beta_j} \).
Finding multilinear factors

Lemma

Let \(P = \sum_j a_j X^{\alpha_j}(uX + v)^{\beta_j}(wX + t)^{\gamma_j} \neq 0, \ uvwt \neq 0 \). Then

\[
\text{val}(P) \leq \max_j \left(\alpha_j + 2 \binom{k+1-j}{2} \right).
\]

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of \(\sum_j a_j X^{\alpha_j} Y^{\beta_j} \).

Proof.

\[
\text{XY} - (uX - vY + w) \text{ divides } P \iff P(X, \frac{uX+w}{X+v}) \equiv 0.
\]
Finding multilinear factors

Lemma

Let \(P = \sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} (wX + t)^{\gamma_j} \neq 0, \ uvwt \neq 0. \) Then

\[
\text{val}(P) \leq \max_j \left(\alpha_j + 2 \left(\frac{k + 1 - j}{2} \right) \right).
\]

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of \(\sum_j a_j X^{\alpha_j} Y^{\beta_j}. \)

Proof.

- \(XY - (uX - vY + w) \) divides \(P \iff P(X, \frac{uX+w}{X+v}) \equiv 0. \)
- Gap Theorem for \(Q(X) = (X + v)^{\max_j \beta_j} P(X, \frac{uX+w}{X+v}). \)
Positive characteristic
Valuation

$$(1 + X)^{2^n} + (1 + X)^{2^n+1} = X^{2^n}(X + 1) \pmod{2}$$
Valuation

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n}(X + 1) \mod 2\]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p^s[X] \), where \(p > \max_j(\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j(\alpha_j + \left(\frac{k+1-j}{2}\right)) \), provided \(P \neq 0 \).
Valuation

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n}(X + 1) \pmod{2}\]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (\frac{k+1}{2} - j)) \), provided \(P \not\equiv 0 \).

Proposition

\(\text{wr}(f_1, \ldots, f_k) \neq 0 \iff f_j \text{'s linearly independent over } \mathbb{F}_{p^s}[X^p]. \)
Theorem

There exists a deterministic polynomial-time algorithm to test if
\[\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X], \]
where \(p > \max_j (\alpha_j + \beta_j) \), vanishes.
Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \), vanishes.

Proof.

- If \(uv \neq 0 \): as in characteristic 0, using a Gap Theorem.
THEOREM

There exists a deterministic polynomial-time algorithm to test if
\[\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p[X], \text{ where } p > \max_j (\alpha_j + \beta_j), \text{ vanishes.} \]

Proof.

- If \(uv \neq 0 \): as in characteristic 0, using a Gap Theorem.
- If \(u = 0 \): Evaluate \(\sum_j a_j v^{\beta_j} \) using repeated squaring.
Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \), vanishes.

Proof.

- If \(uv \neq 0 \): as in characteristic 0, using a Gap Theorem.
- If \(u = 0 \): Evaluate \(\sum_j a_j v^{\beta_j} \) using repeated squaring.
- The case \(v = 0 \) is similar.
Finding linear factors

Theorem

Let $P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_j (\alpha_j + \beta_j)$. Finding factors of the form $(uX + vY + w)$ is

- doable in *randomized polynomial time* if $uvw \neq 0$;
Finding linear factors

Theorem

Let \(P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y] \), where \(p > \max_j(\alpha_j + \beta_j) \).

Finding factors of the form \((uX + vY + w)\) is

- doable in **randomized polynomial time** if \(uvw \neq 0 \);
- **NP-hard** under randomized reductions otherwise.
Finding linear factors

Theorem

Let $P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_p[X, Y]$, where $p > \max_j (\alpha_j + \beta_j)$. Finding factors of the form $(uX + vY + w)$ is

- doable in **randomized polynomial time** if $uvw \neq 0$;
- **NP-hard** under randomized reductions otherwise.

- Only randomized dense factorization algorithms over \mathbb{F}_p
Finding linear factors

Theorem
Let \(P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y] \), where \(p > \max_j(\alpha_j + \beta_j) \).
Finding factors of the form \((uX + vY + w)\) is

- doable in **randomized polynomial time** if \(uvw \neq 0\);
- **NP-hard** under randomized reductions otherwise.

- Only randomized dense factorization algorithms over \(\mathbb{F}_{p^s} \)
- NP-hardness: reduction from **root detection** over \(\mathbb{F}_{p^s} \)
 [Kipnis-Shamir’99, Bi-Cheng-Rojas’12]
Conclusion
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials

 • Easier to implement
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials

 - Easier to implement
 - Two Gap Theorems: mix both!
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - Large coefficients
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - **Large coefficients**
 - Valid to some extent for other fields
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - **Large coefficients**
 - Valid to some extent for other fields

+ Results in large **positive characteristic**
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - *Large coefficients*
 - Valid to some extent for other fields

+ Results in large *positive characteristic*
 - Still relies on [Lenstra’99]
Summary

+ **Elementary** proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - **Large coefficients**
 - Valid to some extent for other fields

+ Results in large **positive characteristic**
 - Still relies on [Lenstra’99]
 - Number fields

− Still relies on [Lenstra’99]
Open questions

- Can we find low-degree factors of multivariate polynomials?
Open questions

- Can we find **low-degree factors** of **multivariate** polynomials?
- And low-degree factors of **univariate** polynomials?
Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?

→ Impossibility results in positive characteristic
Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 \[\implies\] Impossibility results in positive characteristic
- Can we find lacunary factors?
Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?

 \[\Rightarrow\] Impossibility results in positive characteristic

- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
- Is the correct bound for the valuation quadratic or linear?
Open questions

- Can we find **low-degree factors** of **multivariate** polynomials?
- And low-degree factors of **univariate** polynomials?
 \[\Rightarrow \text{Impossibility results in positive characteristic} \]
- Can we find **lacunary factors**?
- Can we handle polynomials in **small characteristic**?
- Is the correct bound for the valuation **quadratic or linear**?

Thank you!

arXiv:1206.4224