Factoring bivariate lacunary polynomials without heights

Bruno Grenet
ÉNS Lyon & U. Rennes 1

Joint work with

Arkadev Chattopadhyay
TIFR, Mumbai

Pascal Koiran
ÉNS Lyon

Natacha Portier
ÉNS Lyon

Yann Strozecki
U. Versailles

ISSAC 2013 — Boston
June 29, 2013
Classical factorization algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.
Classical factorization algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

\[\mathbb{Z}[X] \]

[Lenstra-Lenstra-Lovász’82]

\[\downarrow \]

\[\mathbb{Q}(\alpha)[X] \]

[A. Lenstra’83, Landau’83]

\[\downarrow \]

\[\mathbb{Q}(\alpha)[X_1, \ldots, X_n] \]

[Kaltofen’85, A. Lenstra’87]
Classical factorization algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

$\mathbb{Z}[X]$

$[\text{Lenstra-Lenstra-Lovász’82}]$

$\mathbb{Q}(\alpha)[X]$

$[\text{A. Lenstra’83, Landau’83}]$

$\mathbb{Q}(\alpha)[X_1, \ldots, X_n]$

$[\text{Kaltofen’85, A. Lenstra’87}]$

$\mathbb{F}_q[X]$

$[\text{Berlekamp’67}]$

$\mathbb{F}_q[X_1, \ldots, X_n]$
Classical factorization algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

$\mathbb{Z}[X]$

[Lenstra-Lenstra-Lovász’82]

$\mathbb{Q}(\alpha)[X]$

$\mathbb{F}_q[X]$

[Berlekamp’67]

$\mathbb{Q}(\alpha)[X_1, \ldots, X_n]$

[Kaltofen’85, A. Lenstra’87]

Complexity

Polynomial in the \textbf{degree} of the polynomials
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \ldots + X^{100}Y^{100}) \]
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 = (X + Y - 1) \times (X^{101}Y^{101} - 1) = (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

▷ Algorithms polynomial in \(\log(\deg(P)) \)
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]

\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]

\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

- Algorithms polynomial in \(\log(\deg(P)) \)
- Some factors only
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]

\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]

\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

▶ Algorithms polynomial in \(\log(\deg(P)) \)
▶ Some factors only

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]
Lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

- Algorithms polynomial in \(\log(\deg(P)) \)
- Some factors only

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]

- Lacunary representation: \(\{(\alpha_{1j}, \ldots, \alpha_{nj} : a_j) : 1 \leq j \leq k\} \)
Lacunary polynomials

\[
X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1
= (X + Y - 1) \times (X^{101}Y^{101} - 1)
= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100})
\]

- Algorithms polynomial in \(\log(\deg(P))\)
- Some factors only

Definition

\[
P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}
\]

- Lacunary representation: \(\{ (\alpha_{1j}, \ldots, \alpha_{nj} : a_j) : 1 \leq j \leq k \}\)
- \(\text{size}(P) \simeq \sum_j \text{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj})\)
Factorization of lacunary polynomials

Theorems

Deterministic polynomial time (in $\log(\deg P)$) algorithms for:

- linear factors of \textit{univariate} polynomials over \mathbb{Z};

 \cite{Cucker-Koiran-Smale'98}

- low-degree factors of \textit{univariate} polynomials over $\mathbb{Q}(\alpha)$;

 \cite{H. Lenstra'99}

- linear factors of \textit{bivariate} polynomials over \mathbb{Q};

 \cite{Kaltofen-Koiran'05}

- low-degree factors of \textit{multivariate} polynomials over $\mathbb{Q}(\alpha)$;

 \cite{Kaltofen-Koiran'06}
Theorems

Deterministic polynomial time (in $\log(\deg P)$) algorithms for:

- linear factors of univariate polynomials over \mathbb{Z};
 [Cucker-Koiran-Smale'98]

- low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;
 [H. Lenstra’99]

- linear factors of bivariate polynomials over \mathbb{Q};
 [Kaltofen-Koiran’05]

- low-degree factors of multivariate polynomials over $\mathbb{Q}(\alpha)$;
 [Kaltofen-Koiran’06]

B. Grenet — Factoring bivariate lacunary polynomials without heights
Theorems

Deterministic polynomial time (in $\log(\deg P)$) algorithms for:

- **linear factors of univariate** polynomials over \mathbb{Z};

 [Cucker-Koiran-Smale’98]

- **low-degree factors of univariate** polynomials over $\mathbb{Q}(\alpha)$;

 [H. Lenstra’99]

- **linear factors of bivariate** polynomials over \mathbb{Q};

 [Kaltofen-Koiran’05]
Theorem 1

Deterministic polynomial time (in $\log(\deg P)$) algorithms for:

- linear factors of univariate polynomials over \mathbb{Z};

 [Cucker-Koiran-Smith'98]

- low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;

 [H. Lenstra'99]

- linear factors of bivariate polynomials over \mathbb{Q};

 [Kaltofen-Koiran'05]

- low-degree factors of multivariate polynomials over $\mathbb{Q}(\alpha)$.

 [Kaltofen-Koiran'06]
Integral roots of integral polynomials

Gap Theorem

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right), \]

then for all \(x \in \mathbb{Z}, |x| \geq 2, P(x) = 0 \implies Q(x) = R(x) = 0. \]
Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale’98]

Let

\[
P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X]
\]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k\). Suppose that

\[
\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{1 \leq j \leq \ell} |a_j| \right),
\]

then for all \(x \in \mathbb{Z}, |x| \geq 2\), \(P(x) = 0 \implies Q(x) = R(x) = 0\).

\[
-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X)
\]

B. Grenet — Factoring bivariate lacunary polynomials without heights
Integral roots of integral polynomials

Gap Theorem

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right), \]

then for all \(x \in \mathbb{Z}, |x| \geq 2, P(x) = 0 \implies Q(x) = R(x) = 0 \).

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X)\]
Let
\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]
with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that
\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right) , \]
then for all \(x \in \mathbb{Z}, |x| \geq 2, P(x) = 0 \implies Q(x) = R(x) = 0 \).

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X) \]

-3 + check 0, 1 and -1
Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]
Linear factors of bivariate polynomials

Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]

Gap Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}\]

with \(uv \neq 0\), \(\alpha_1 \leq \cdots \leq \alpha_k\). If \(\ell\) is the smallest index s.t.

\[\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2},\]

then \(P \equiv 0\) iff both \(Q \equiv 0\) and \(R \equiv 0\).
Proof of the Gap Theorem

\(\mathbb{K} \): any field of characteristic 0
Bound on the valuation

Definition
\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

- \[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]
Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X] \]

\[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[\text{val}(P) \leq \max_{1 \leq j \leq \ell} \left(\alpha_j + \left(\frac{\ell + 1 - j}{2} \right) \right). \]
Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

\[\text{val}(x^3 + 2x^5 - x^{17}) = 3 \]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j x^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_{\ell} \).

Then

\[\text{val}(P) \leq \alpha_1 + {\ell \choose 2}. \]

\(x^{\alpha_j} (uX + v)^{\beta_j} \) linearly independent.
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

\[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}. \]

\[X^{\alpha_j} (uX + v)^{\beta_j} \text{ linearly independent} \]

\[\text{If } \alpha_1 = \cdots = \alpha_\ell, \text{ val}(P) \leq \alpha_1 + (\ell - 1) \]

[Hajós’53]
The Wronskian

Definition

Let \(f_1, \ldots, f_\ell \in K[X] \). Then

\[
\text{wr}(f_1, \ldots, f_\ell) = \det \begin{bmatrix}
 f_1 & f_2 & \ldots & f_\ell \\
 f'_1 & f'_2 & \ldots & f'_\ell \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1^{(\ell-1)} & f_2^{(\ell-1)} & \ldots & f_\ell^{(\ell-1)}
\end{bmatrix}.
\]
The Wronskian

Definition

Let \(f_1,\ldots, f_\ell \in \mathbb{K}[X] \). Then

\[
wr(f_1,\ldots, f_\ell) = \det \begin{bmatrix}
 f_1 & f_2 & \cdots & f_\ell \\
 f'_1 & f'_2 & \cdots & f'_\ell \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{(\ell-1)} & f_{(\ell-1)} & \cdots & f_{(\ell-1)}
\end{bmatrix}.
\]

Proposition [Bôcher, 1900]

\(wr(f_1,\ldots, f_\ell) \neq 0 \iff \) the \(f_j \)'s are linearly independent.
Wronskian & valuation

Lemma

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^{\ell} \text{val}(f_j) - \binom{\ell}{2} \]

Proof of the theorem.

\[\text{wr}(P, f_2, \ldots, f_\ell) = a_1 \text{wr}(f_1, \ldots, f_\ell) \]

\[\ell \sum_{j=1}^{\ell} \alpha_j \geq \text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \text{val}(P) + \ell \sum_{j=2}^{\ell} \alpha_j - \binom{\ell}{2} \]
Lemma

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^{\ell} \text{val}(f_j) - \binom{\ell}{2} \]

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j} \), \(uv \neq 0 \), linearly independent, and s.t. \(\alpha_j, \beta_j \geq \ell \). Then

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \leq \sum_{j=1}^{\ell} \alpha_j = \sum_{j=1}^{\ell} \text{val}(f_j). \]
Lemma

\[
\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^{\ell} \text{val}(f_j) - \binom{\ell}{2}
\]

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j}, \ uv \neq 0, \) linearly independent, and s.t. \(\alpha_j, \beta_j \geq \ell. \) Then

\[
\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \leq \sum_{j=1}^{\ell} \alpha_j = \sum_{j=1}^{\ell} \text{val}(f_j).
\]

Proof of the theorem. \(\text{wr}(P, f_2, \ldots, f_\ell) = a_1 \text{wr}(f_1, \ldots, f_\ell) \)
Lemma

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^\ell \text{val}(f_j) - \binom{\ell}{2} \]

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j} \), \(uv \neq 0 \), linearly independent, and s.t. \(\alpha_j, \beta_j \geq \ell \). Then

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \leq \sum_{j=1}^\ell \alpha_j = \sum_{j=1}^\ell \text{val}(f_j). \]

Proof of the theorem. \(\text{wr}(P, f_2, \ldots, f_\ell) = a_1 \text{wr}(f_1, \ldots, f_\ell) \)

\[\sum_{j=1}^\ell \alpha_j \geq \text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \text{val}(P) + \sum_{j=2}^\ell \alpha_j - \binom{\ell}{2} \]
How far from optimality?

\[
\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \begin{cases}
\alpha_1 + (\ell - 1) & \text{[Hajós'53] (constant } \alpha_j) \\
\alpha_1 + \left(\frac{\ell}{2} \right) & \text{[Our result]}
\end{cases}
\]
How far from optimality?

\[
\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \begin{cases}
\alpha_1 + (\ell - 1) & \text{[Hajós'53] (constant } \alpha_j \text{)} \\
\alpha_1 + \left(\frac{\ell}{2} \right) & \text{[Our result]}
\end{cases}
\]

▶ Lemmas: tight, but not simultaneously
How far from optimality?

\[\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \begin{cases} \alpha_1 + (\ell - 1) & \text{[Hajós'53] (constant } \alpha_j) \\ \alpha_1 + \left(\frac{\ell}{2} \right) & \text{[Our result]} \end{cases} \]

- Lemmas: tight, but not simultaneously
- For all \(\ell \geq 3 \), there exists \(P_\ell \) s.t. \(\text{val}(P_\ell) = \alpha_1 + (2\ell - 3) \)
How far from optimality?

\[
\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \left\{ \begin{array}{l}
\alpha_1 + (\ell - 1) \\
\alpha_1 + \left(\frac{\ell}{2} \right)
\end{array} \right.
\]

[Hajós’53] (constant \(\alpha_j \))

[Our result]

▶ Lemmas: tight, but not simultaneously

▶ For all \(\ell \geq 3 \), there exists \(P_\ell \) s.t. \(\text{val}(P_\ell) = \alpha_1 + (2\ell - 3) \)

\[
P_\ell(X) = (1 + X)^{2\ell+3} - 1 - \sum_{j=3}^{\ell} \frac{2\ell - 3}{2j - 5} \binom{\ell + j - 5}{2j - 6} X^{2j-5} (1 + X)^{\ell-1-j}
\]

\[
= X^{2\ell-3}
\]
Gap Theorem

Theorem

Let

\[
P = \sum_{j=1}^{\ell} a_j X^{\alpha_j}(uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j}(uX + v)^{\beta_j}
\]

with \(uv \neq 0\), \(\alpha_1 \leq \cdots \leq \alpha_k\). If \(\ell\) is the smallest index s.t.

\[
\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2},
\]

then \(P \equiv 0\) iff both \(Q \equiv 0\) and \(R \equiv 0\).
Gap Theorem

Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \]

with \(uv \neq 0 \), \(\alpha_1 \leq \cdots \leq \alpha_k \). If \(\ell \) is the smallest index s.t.

\[\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2} \geq \text{val}(Q), \]

then \(P \equiv 0 \) iff both \(Q \equiv 0 \) and \(R \equiv 0 \).

\[P = \left(c_{\text{val}(Q)} X^{\text{val}(Q)} + \cdots \right) + X^{\alpha_{\ell+1}} \left(a_{\ell+1} (uX + v)^{\beta_{\ell+1}} + \cdots \right) \]
Algorithms

$K = \mathbb{Q}(\alpha)$: algebraic number field
Finding linear factors

Observation + Gap Theorem (recursively)

\((Y - uX - v)\) divides \(P(X, Y)\)

\(\iff P(X, uX + v) \equiv 0\)
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[
\iff P(X, uX + v) \equiv 0
\]
\[
\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0
\]

\[\text{Independent from } u \text{ and } v\]
\[X \text{ does not play a special role}\]
Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[\iff P(X, uX + v) \equiv 0\]
\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]

\[\iff \quad P(X, uX + v) \equiv 0\]

\[\iff \quad P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]

\[\iff \quad (Y - uX - v) \text{ divides each } P_t(X, Y)\]

\[P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \quad \text{with } \alpha_{j_t+\ell_t-1} - \alpha_{j_t} \leq \binom{\ell_t}{2}\]

B. Grenet — Factoring bivariate lacunary polynomials without heights
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]

\[\iff P(X, uX + v) \equiv 0\]

\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]

\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]

\[
P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} a_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t + \ell_t - 1} - \alpha_{j_t} \leq \binom{\ell_t}{2}\]

▷ Independent from \(u\) and \(v\)
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[\iff P(X, uX + v) \equiv 0\]
\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]

\[P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t+\ell_t-1} - \alpha_{j_t} \leq \binom{\ell_t}{2}\]

- Independent from \(u\) and \(v\)
- \(X\) does not play a special role
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} - X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 + X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^{9}Y^3 \]
\[+ X^{9}Y^2 - X^{5}Y^6 + X^{3}Y^8 - 2X^{3}Y^7 + X^{3}Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13}
\quad - X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3
\quad + X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]

\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]

\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(-X^2 + Y^2 - 2Y + 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^{9}Y^{3} \]
\[+ X^{9}Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]

\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]

\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]

\[P_2 = X^9Y^2(X - Y + 1) \]

\[P_3 = X^{16}Y^{13}(X + Y)(X - Y + 1) \]

\[P_4 = X^{29}Y^6(X + Y - 1)(X - Y + 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]
\[P_2 = X^9Y^2(X - Y + 1) \]
\[P_3 = X^{16}Y^{13}(X + Y)(X - Y + 1) \]
\[P_4 = X^{29}Y^6(X + Y - 1)(X - Y + 1) \]

\[\implies \text{linear factors of } P: (X - Y + 1, 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} - X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 + X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]
\[P_2 = X^9Y^2(X - Y + 1) \]
\[P_3 = X^{16}Y^{13}(X + Y)(X - Y + 1) \]
\[P_4 = X^{29}Y^6(X + Y - 1)(X - Y + 1) \]

\[\implies \text{linear factors of } P: (X - Y + 1, 1), (X, 3), (Y, 2) \]
Complete algorithm

Find linear factors of $P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$
Complete algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

monomials

\((X, \min_j \alpha_j) \)
\((Y, \min_j \beta_j) \)
Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

- **Monomials**
 - \((X, \min_j \alpha_j)\)
 - \((Y, \min_j \beta_j)\)

- **Binomials**
 - \((X - a)\)
 - \((Y - uX)\)

Factors of \(\sum_j a_j X^{\alpha_j} \)

Roots of \(u \mapsto \sum_j a_j u^{\beta_j} \)

Univariate lacunary factorization

[H. Lenstra’99]
Complete algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

- monomials
- binomials
- trinomials

\((X, \min_j \alpha_j) \)
\((Y, \min_j \beta_j) \)

\((X - a) \)
Factors of \(\sum_j a_j X^{\alpha_j} \)

\((Y - uX) \)
Roots of \(u \mapsto \sum_j a_j u^{\beta_j} \)

Univariate lacunary factorization
[H. Lenstra’99]

Common factors of \(j_t + \ell_t - 1 \)
\(P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} a_j X^{\alpha_j} Y^{\beta_j} \)
\((\deg(P_t) \leq \Theta(\ell_t^2))\)

Low-degree factorization
[Kaltofen’82, ..., Lecerf’07]

B. Grenet — Factoring bivariate lacunary polynomials without heights
Complete algorithm

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{Q}(\alpha)[X, Y] \) be given in lacunary representation. There exists a **deterministic polynomial-time** algorithm to compute its linear factors, with multiplicities.

Monomials
- \((X, \min_j \alpha_j)\)
- \((Y, \min_j \beta_j)\)

Binomials
- \((X - \alpha)\)
- \((Y - uX)\)

Trinomials
- Common factors of \(j_{t+\ell_t-1} \)
 \[P_t = \sum_{j=j_t}^{j_{t+\ell_t-1}} a_j X^{\alpha_j} Y^{\beta_j} \]
 \((\deg(P_t) \leq \mathcal{O}(\ell_t^2))\)

Univariate lacunary factorization
- [H. Lenstra’99]

Low-degree factorization
- [Kaltofen’82, …, Lecerf’07]
Bottleneck: Factorization of low-degree polynomials
Bottleneck: Factorization of low-degree polynomials

Complexity measure: $\text{gap}(P)$
Bottleneck: Factorization of low-degree polynomials

\[\text{Complexity measure: } \text{gap}(P) \]

\[
\text{gap}(P) = \begin{cases}
O(k \log k + k \log h_P) & \text{[Kaltofen-Koiran'05]} \\
O(k^2) & \text{[This work]}
\end{cases}
\]

\[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X,Y] \]
Bottleneck: Factorization of low-degree polynomials

- Complexity measure: $\text{gap}(P)$

- $\text{gap}(P) = \begin{cases} O(k \log k + k \log h_P) & \text{[Kaltofen-Koiran'05]} \\ O(k^2) & \text{[This work]} \end{cases}$

- $h_P = \max_j |a_j|$ if $P \in \mathbb{Z}[X, Y]$

- Algebraic number field only: based on [H. Lenstra'99]
Bottleneck: Factorization of low-degree polynomials

Complexity measure: \(\text{gap}(P) \)

- \(\text{gap}(P) = \begin{cases}
\Theta(\log k + \log h_P) & \text{[Kaltofen-Koiran'05]} \\
\Theta(k^2) & \text{[This work]}
\end{cases} \)

\[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X,Y] \]

- Algebraic number field only: based on \[H. Lenstra'99\]

- Generalization to multilinear factors
Bottleneck: Factorization of low-degree polynomials

Complexity measure: \(\text{gap}(P) \)

\[
\text{gap}(P) = \begin{cases}
\mathcal{O}(k \log k + k \log h_P) & \text{[Kaltofen-Koiran'05]} \\
\mathcal{O}(k^2) & \text{[This work]}
\end{cases}
\]

\[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X,Y] \]

- Algebraic number field only: based on [H. Lenstra'99]
- Generalization to multilinear factors
- PIT algorithm for \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \)
Positive characteristic

\[K = \mathbb{F}_{p^s} : \text{field with } p^s \text{ elements} \]
Valuation & PIT

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]
\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n}(X + 1) \mod 2\]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p s [X] \), where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (\ell + 1 - j)) \), provided \(P \neq 0 \).
\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n}(X + 1) \text{ mod } 2\]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p s[X], \) where \(p > \max_j (\alpha_j + \beta_j). \)

Then \(\text{val}(P) \leq \max_j (\alpha_j + (\ell + \frac{1}{2} - j)), \) provided \(P \neq 0. \)

Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p s[X], \) where \(p > \max_j (\alpha_j + \beta_j), \) vanishes.
Valuation & PIT

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n}(X + 1) \pmod{2}\]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p[X] \), where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (\ell + 1 - j)/2) \), provided \(P \neq 0 \).

Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p[X] \), where \(p > \max_j (\alpha_j + \beta_j) \), vanishes.

Proof.

- If \(uv \neq 0 \): as in characteristic 0, using a Gap Theorem.
\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (\ell + 1 - j)/2) \), provided \(P \not\equiv 0 \).

Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \), vanishes.

Proof.

- If \(uv \neq 0 \): as in characteristic 0, using a Gap Theorem.
- If \(u = 0 \): Evaluate \(\sum_j a_j v^{\beta_j} \) using *repeated squaring*.

B. Grenet — Factoring bivariate lacunary polynomials without heights
\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} \equiv X^{2^n}(X + 1) \pmod{2}\]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X], \) where \(p > \max_j (\alpha_j + \beta_j). \)

Then \(\text{val}(P) \leq \max_j \left(\alpha_j + \left(\frac{\ell + 1 - j}{2} \right) \right), \) provided \(P \neq 0. \)

Theorem

There exists a deterministic polynomial-time algorithm to test if \(\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X], \) where \(p > \max_j (\alpha_j + \beta_j), \) vanishes.

Proof.

- **If** \(uv \neq 0: \) as in characteristic 0, using a Gap Theorem.
- **If** \(u = 0: \) Evaluate \(\sum_j a_j v^{\beta_j} \) using **repeated squaring**.
- **The case** \(v = 0 \) is similar.
Factorization algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

where \(a_j \in \mathbb{F}_p^s \) and \(p > \deg(P) \)
Factorization algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

where \(a_j \in \mathbb{F}_p \) and \(p > \text{deg}(P) \)

monomials

\((X, \min_j \alpha_j)\)

\((Y, \min_j \beta_j)\)

trinomials

Common factors of

\[P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \]

\((\text{deg}(P_t) \leq O(\ell_t^2)) \)

Low-degree factorization

\([Gao'03, Lecerf'10]\)
Factorization algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

where \(a_j \in \mathbb{F}_{p^s} \) and \(p > \deg(P) \)

- monomials
 - \((X, \min_j \alpha_j)\)
 - \((Y, \min_j \beta_j)\)
- binomials
 - \((X - a)\)
 - Factors of \(\sum_j a_j X^{\alpha_j} \)
 - \((Y - uX)\)
 - Roots of \(u \mapsto \sum_j a_j u^{\beta_j} \)
- trinomials
 - Common factors of \(P_t = \sum_{j=t}^{j+t-1} a_j X^{\alpha_j} Y^{\beta_j} \)
 - \((\deg(P_t) \leq O(\ell_t^2)) \)

Low-degree factorization

- \([\text{Gao'03, Lecerf'10}]\)
Factorization algorithm

Find linear factors of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j} \)

where \(a_j \in \mathbb{F}_p \) and \(p > \deg(P) \)

monomials binomials trinomials

\((X, \min_j \alpha_j)\)
\((Y, \min_j \beta_j)\)

Factors of \(\sum_j a_j X^{\alpha_j}(Y-uX)^{\beta_j} \)

Common factors of \(P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \)

\((\deg(P_t) \leq O(\ell_t^3)) \)

Low-degree factorization

[Kipnis-Shamir’99, Bi-Cheng-Rojas’13]
Talk at 2:25pm

[NP-complete under BPP reductions]

B. Grenet — Factoring bivariate lacunary polynomials without heights
Conclusion
Conclusion

- Computing linear factors of lacunary bivariate polynomials
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}

 - NEW! Multivariate polynomials

 - New Gap Theorem (independent of the height)

 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)

 - Two Gap Theorems: mix both!

- Extensions:
 - Low-degree factors
 - Lacunary factors
 - Smaller characteristics

- Correct bound for the valuation?

Thank you!

B. Grenet — Factoring bivariate lacunary polynomials without heights
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - **Multilinear** factors

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- Extensions:
 - Low-degree factors
 - Lacunary factors
 - Smaller characteristics

Thank you!
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials \low-degree bivariate polynomials \}
 - Multilinear factors
 - Multivariate polynomials

NEW!

Thank you!
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \(\{ \) univariate lacunary polynomials, low-degree bivariate polynomials \(\} \)
 - Multilinear factors
 - Multivariate polynomials

- New Gap Theorem (independent of the height)
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - \textbf{Multilinear} factors
 - \textbf{Multivariate} polynomials

- \textbf{New Gap Theorem} (independent of the height)
 - Easy to implement
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials \\
 \quad \text{low-degree bivariate polynomials } \}
 - **Multilinear** factors
 - **Multivariate** polynomials

- **New Gap Theorem** (independent of the height)
 - Easy to implement
 - Large coefficients
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - Multilinear factors
 - Multivariate polynomials

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)

Thank you!
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - Multilinear factors
 - Multivariate polynomials

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to $\begin{cases} \text{univariate lacunary polynomials} \\ \text{low-degree bivariate polynomials} \end{cases}$
 - **Multilinear** factors
 - **Multivariate** polynomials

- **New Gap Theorem** (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- Extensions:
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - **Multilinear** factors
 - **Multivariate** polynomials

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- Extensions:
 - **Low-degree** factors
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \(\{\text{univariate lacunary polynomials}, \text{low-degree bivariate polynomials}\}\)
 - **Multilinear** factors
 - **Multivariate** polynomials
- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!
- Extensions:
 - **Low-degree** factors
 - **Lacunary** factors
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \(\{ \) univariate lacunary polynomials, low-degree bivariate polynomials \(\} \)
 - Multilinear factors
 - Multivariate polynomials

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- Extensions:
 - Low-degree factors
 - Lacunary factors
 - Smaller characteristics

B. Grenet — Factoring bivariate lacunary polynomials without heights
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - **Multilinear** factors
 - **Multivariate** polynomials

- **New Gap Theorem** (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- **Extensions:**
 - **Low-degree** factors
 - **Lacunary** factors
 - **Smaller characteristics**

- Correct bound for the valuation?

B. Grenet — Factoring bivariate lacunary polynomials without heights
Conclusion

- Computing linear factors of lacunary bivariate polynomials
 - Reduction to \{ univariate lacunary polynomials, low-degree bivariate polynomials \}
 - Multilinear factors
 - Multivariate polynomials

- New Gap Theorem (independent of the height)
 - Easy to implement
 - Large coefficients
 - Partial results for other fields (positive characteristic, absolute factorization)
 - Two Gap Theorems: mix both!

- Extensions:
 - Low-degree factors
 - Lacunary factors
 - Smaller characteristics

- Correct bound for the valuation?

Thank you!