Elementary algorithms for the factorization of bivariate lacunary polynomials

Bruno Grenet
U. Rennes 1 & ÉNS Lyon

Based on a joint work with

Arkadev Chattopadhyay
TIFR, Mumbai

Pascal Koiran
ÉNS Lyon

Natacha Portier
ÉNS Lyon

Yann Strozecki
U. Versailles

Journées Nationales de Calcul Formel
CIRM, Marseille — May 16, 2013
Factorization: classical algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.
Factorization: classical algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

- $\mathbb{Z}[X]$: deterministic polynomial time $[\text{Lenstra-Lenstra-Lovász’82}]$
 - $\leadsto \mathbb{Q}(\alpha)[X]$
 - $\leadsto \mathbb{Q}(\alpha)[X_1, \ldots, X_n]$
- $\mathbb{F}_q[X]$: randomized polynomial time $[\text{Berlekamp’67}]$
 - $\leadsto \mathbb{F}_q[X_1, \ldots, X_n]$
Factorization: classical algorithms

Factorization of a polynomial P

Find F_1, \ldots, F_t, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

- $\mathbb{Z}[X]$: deterministic polynomial time \cite{Lenstra-Lenstra-Lovász'82}
 $\leadsto \mathbb{Q}(\alpha)[X]$ \cite{A. Lenstra'83, Landau'83}
 $\leadsto \mathbb{Q}(\alpha)[X_1, \ldots, X_n]$ \cite{Kaltofen'85, A. Lenstra'87}

- $\mathbb{F}_q[X]$: randomized polynomial time \cite{Berlekamp'67}
 $\leadsto \mathbb{F}_q[X_1, \ldots, X_n]$

Complexity

Polynomial in the degree of the polynomials
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 = (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]

\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]

\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \ldots + X^{100}Y^{100}) \]

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 = (X + Y - 1) \times (X^{101}Y^{101} - 1) = (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_1 j} \cdots X_n^{\alpha_n j} \]

- Lacunary representation: \(\{ (\alpha_1 j, \ldots, \alpha_n j : a_j) : 1 \leq j \leq k \} \)
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]

\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]

\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]

- Lacunary representation: \{ (\alpha_{1j}, \ldots, \alpha_{nj} : a_j) : 1 \leq j \leq k \}
- \(\text{size}(P) \simeq \sum_j \text{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj}) \)
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]
\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]
\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]

- Lacunary representation: \(\{ (\alpha_{1j}, \ldots, \alpha_{nj} : a_j) : 1 \leq j \leq k \} \)
- size\((P) \simeq \sum_j \text{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj}) \)

- Algorithms of polynomial complexity in \(\log(\deg(P)) \) and in \(k \)
The case of lacunary polynomials

\[X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \]

\[= (X + Y - 1) \times (X^{101}Y^{101} - 1) \]

\[= (X + Y - 1) \times (XY - 1) \times (1 + XY + \cdots + X^{100}Y^{100}) \]

Definition

\[P(X_1, \ldots, X_n) = \sum_{j=1}^{k} a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}} \]

- Lacunary representation: \(\{ (\alpha_{1j}, \ldots, \alpha_{nj} : a_j) : 1 \leq j \leq k \} \)
- \(\text{size}(P) \simeq \sum_j \text{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj}) \)

- Algorithms of polynomial complexity in \(\log(\deg(P)) \) and in \(k \)
- Restriction to some factors only

B. Grenet — Elementary algorithms for the factorization of bivariate lacunary polynomials
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \).

- Suppose that \(\alpha_{\ell+1} - \alpha_\ell \geq 1 + \log(\max_j |a_j|) \), then for all \(x \in \mathbb{Z} \), \(|x| \geq 2 \), \(P(x) = 0 \) if and only if \(Q(x) = R(x) = 0 \).

\[x^2 + 6x + 2 = x^2 + x(6+2) \]

- Common root: \(-3\) and potentially \(0\), \(1\) and \(-1\).
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_{\ell} > 1 + \log \left(\max_{j \leq \ell} |a_j| \right) \]
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

\(Q \) \(R \)

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right), \]

then for all \(x \in \mathbb{Z}, \ |x| \geq 2, \ P(x) = 0 \implies Q(x) = R(x) = 0. \]
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right) \],

then for all \(x \in \mathbb{Z}, \ |x| \geq 2 \), \(P(x) = 0 \implies Q(x) = R(x) = 0 \).

\[-9 + X^2 + 6X^7 + 2X^8\]
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[
P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X]
\]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k\). Suppose that

\[
\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right),
\]

then for all \(x \in \mathbb{Z}, |x| \geq 2\), \(P(x) = 0 \implies Q(x) = R(x) = 0\).

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X)\]
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale'98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j\leq\ell} |a_j| \right), \]

then for all \(x \in \mathbb{Z}, |x| \geq 2, P(x) = 0 \implies Q(x) = R(x) = 0. \)

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X)\]

- Common root: \(-3\)

B. Grenet — Elementary algorithms for the factorization of bivariate lacunary polynomials
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let

\[P(X) = \sum_{j=1}^{\ell} a_j X^{\alpha_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]

with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that

\[\alpha_{\ell+1} - \alpha_{\ell} > 1 + \log \left(\max_{j \leq \ell} |a_j| \right), \]

then for all \(x \in \mathbb{Z}, |x| \geq 2 \), \(P(x) = 0 \implies Q(x) = R(x) = 0 \).

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X) \]

- Common root: \(-3\) and potentially \(0, 1\) and \(-1\).
Integral roots of integral polynomials

Gap Theorem (Cucker-Koiran-Smale’98)

Let
\[P(X) = \sum^{\ell}_{j=1} a_j X^{\alpha_j} + \sum^{k}_{j=\ell+1} a_j X^{\alpha_j} \in \mathbb{Z}[X] \]
with \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \). Suppose that
\[\alpha_{\ell+1} - \alpha_\ell > 1 + \log \left(\max_{j \leq \ell} |a_j| \right), \]
then for all \(x \in \mathbb{Z}, |x| \geq 2, P(x) = 0 \implies Q(x) = R(x) = 0. \)

\[-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X) \]

▶ Common root: \(-3\) and potentially 0, 1 and \(-1\).
Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial time (in $\log(\deg P)$) algorithms to compute

- linear factors of univariate polynomials over \mathbb{Z};
- low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$; [H. Lenstra'99]
- linear factors of bivariate polynomials over \mathbb{Q}; [Kaltofen-Koiran'05]
- low-degree factors of multivariate polynomials over $\mathbb{Q}(\alpha)$; [Kaltofen-Koiran'06]
Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial time (in $\log(\deg P)$) algorithms to compute

▶ linear factors of univariate polynomials over \mathbb{Z};
 [Cucker-Koiran-Smale’98]

▶ low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;
 [H. Lenstra’99]
Theorems

There exist deterministic polynomial time (in $\log(\deg P)$) algorithms to compute

- linear factors of univariate polynomials over \mathbb{Z};
 [Cucker-Koiran-Smale’98]

- low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;
 [H. Lenstra’99]

- linear factors of bivariate polynomials over \mathbb{Q};
 [Kaltofen-Koiran’05]
Introduction
Valuation
Algorithms
Positive characteristic
Conclusion

Factorization of lacunary polynomials

Theorems
There exist deterministic polynomial time (in $\log(\deg P)$) algorithms to compute

- **linear** factors of univariate polynomials over \mathbb{Z};
 [Cucker-Koiran-Smale’98]

- **low-degree** factors of univariate polynomials over $\mathbb{Q}(\alpha)$;
 [H. Lenstra’99]

- **linear** factors of bivariate polynomials over \mathbb{Q};
 [Kaltofen-Koiran’05]

- **low-degree** factors of multivariate polynomials over $\mathbb{Q}(\alpha)$.
 [Kaltofen-Koiran’06]
Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]
Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]

Gap Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j}(uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j}(uX + v)^{\beta_j}\]

with \(uv \neq 0\), \(\alpha_1 \leq \cdots \leq \alpha_k\).
Linear factors of bivariate polynomials

Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]

Gap Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}\]

with \(uv \neq 0, \alpha_1 \leq \cdots \leq \alpha_k\). If \(\ell\) is the smallest index s.t.

\[\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2},\]

then \(P \equiv 0\) iff both \(Q \equiv 0\) and \(R \equiv 0\).
Linear factors of bivariate polynomials

Observation

\((Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\)

Gap Theorem

Let

\[
P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}
\]

with \(uv \neq 0, \alpha_1 \leq \cdots \leq \alpha_k\). If \(\ell\) is the smallest index s.t.

\[
\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2},
\]

then \((Y - uX - v)\) divides \(P\) iff it divides both \(Q\) and \(R\).
Observation

\[(Y - uX - v) \text{ divides } P(X, Y) \iff P(X, uX + v) \equiv 0\]

Gap Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j} \quad \text{and} \quad Q = \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\]

\[R = \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\]

with \(uv \neq 0\), \(\alpha_1 \leq \cdots \leq \alpha_k\). If \(\ell\) is the smallest index s.t.

\[\alpha_{\ell+1} > \alpha_1 + \binom{\ell}{2},\]

then every linear factor of \(P\) divides both \(Q\) and \(R\) if \(uv \neq 0\).
Valuation

\(K \): any field of characteristic 0
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X] \]

▶ \[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

- \[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[\text{val}(P) \leq \max_{1 \leq j \leq \ell} \left(\alpha_j + \left(\frac{\ell + 1 - j}{2} \right) \right). \]
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in \mathbb{K}[X] \]

\[\text{val}(X^3 + 2X^5 - X^{17}) = 3 \]

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j}(uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_{\ell} \).

Then

\[\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}. \]

\[X^{\alpha_j}(uX+v)^{\beta_j} \text{ linearly independent} \]
Bound on the valuation

Definition

\[\text{val}(P) = \text{degree of the lowest degree monomial of } P \in K[X] \]

- \(\text{val}(X^3 + 2X^5 - X^{17}) = 3 \)

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}. \]

- \(X^{\alpha_j} (uX + v)^{\beta_j} \) linearly independent

- Hajós’ Lemma: if \(\alpha_1 = \cdots = \alpha_\ell \), \(\text{val}(P) \leq \alpha_1 + (\ell - 1) \)
The Wronskian

Definition

Let $f_1, \ldots, f_\ell \in \mathbb{K}[X]$. Then

$$\text{wr}(f_1, \ldots, f_\ell) = \det \begin{bmatrix}
 f_1 & f_2 & \ldots & f_\ell \\
 f'_1 & f'_2 & \ldots & f'_\ell \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(\ell-1)}_1 & f^{(\ell-1)}_2 & \ldots & f^{(\ell-1)}_\ell
\end{bmatrix}.$$
The Wronskian

Definition

Let $f_1, \ldots, f_\ell \in \mathbb{K}[X]$. Then

$$\text{wr}(f_1, \ldots, f_\ell) = \det \begin{bmatrix} f_1 & f_2 & \ldots & f_\ell \\ f'_1 & f'_2 & \ldots & f'_\ell \\ \vdots & \vdots & \ddots & \vdots \\ f_{(\ell-1)} & f_{(\ell-1)} & \ldots & f_{(\ell-1)} \end{bmatrix}.$$

Proposition (Bôcher, 1900)

$\text{wr}(f_1, \ldots, f_\ell) \neq 0 \iff$ the f_j’s are linearly independent.
Lemma

\[\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^{\ell} \text{val}(f_j) - \binom{\ell}{2} \]
Wronskian & valuation

Lemma

\[
\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \sum_{j=1}^{\ell} \text{val}(f_j) - \binom{\ell}{2}
\]

Lemma

Let \(f_j = X^{\alpha_j}(uX + v)^{\beta_j} \), \(uv \neq 0 \), linearly independent, and s.t. \(\alpha_j, \beta_j \geq \ell \). Then

\[
\text{val}(\text{wr}(f_1, \ldots, f_\ell)) \leq \sum_{j=1}^{\ell} \alpha_j = \sum_{j=1}^{\ell} \text{val}(f_j).
\]
Proof of the Theorem

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[
\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}.
\]
Proof of the Theorem

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[
\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}.
\]

Proof. \(wr(P, f_2, \ldots, f_\ell) = a_1 \; wr(f_1, \ldots, f_\ell) \)
Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[
\text{val}(P) \leq \alpha_1 + \binom{\ell}{2}.
\]

Proof. \(\text{wr}(P, f_2, \ldots, f_\ell) = a_1 \text{wr}(f_1, \ldots, f_\ell) \)

\[
\begin{align*}
\sum_{j=1}^{\ell} \alpha_j & \geq \text{val}(\text{wr}(f_1, \ldots, f_\ell)) \\
& \geq \text{val}(P) + \sum_{j=2}^{\ell} \alpha_j - \binom{\ell}{2}
\end{align*}
\]
Proof of the Theorem

Theorem

Let \(P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+v)^{\beta_j} \neq 0 \), with \(uv \neq 0 \) and \(\alpha_1 \leq \cdots \leq \alpha_\ell \).

Then

\[
\text{val}(P) \leq \max_{1 \leq j \leq \ell} \left(\alpha_j + \left(\ell + 1 - j \right) \right).
\]

Proof.

\[
\text{wr}(P, f_2, \ldots, f_\ell) = a_1 \text{wr}(f_1, \ldots, f_\ell)
\]

\[
\sum_{j=1}^{\ell} \alpha_j \geq \text{val}(\text{wr}(f_1, \ldots, f_\ell)) \geq \text{val}(P) + \sum_{j=2}^{\ell} \alpha_j - \binom{\ell}{2}
\]
How far from optimality?

- Hajós’ Lemma: $\text{val} \left(\sum_{j=1}^{\ell} a_j X^\alpha (uX + v)^{\beta_j} \right) \leq \alpha + (\ell - 1)$
How far from optimality?

▶ Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^\alpha (uX + v)^{\beta_j} \right) \leq \alpha + (\ell - 1) \)

▶ Our result: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{\ell}{2} \)
How far from optimality?

- Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha}(uX + v)^{\beta_j} \right) \leq \alpha + (\ell - 1) \)

- Our result: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j}(uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{\ell}{2} \)

- Lemmas: bounds attained, but not simultaneously \(\rightsquigarrow \) trade-off?
How far from optimality?

- Hajós’ Lemma: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha + (\ell - 1) \)

- Our result: \(\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{\ell}{2} \)

- Lemmas: bounds attained, but not simultaneously \(\rightsquigarrow \) trade-off?

- \(\forall \ell \geq 3, \exists P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \) s.t. \(\text{val}(P) = \alpha_1 + (2\ell - 3) \)
Introduction
Valuation
Algorithms
Positive characteristic
Conclusion

How far from optimality?

▶ Hajós’ Lemma: $\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha + (\ell - 1)$

▶ Our result: $\text{val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} \right) \leq \alpha_1 + \binom{\ell}{2}$

▶ Lemmas: bounds attained, but not simultaneously \Leftrightarrow trade-off?

▶ $\forall \ell \geq 3, \exists P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j}$ s.t. $\text{val}(P) = \alpha_1 + (2\ell - 3)$

$X^{2\ell-3} = (1+X)^{2\ell+3} - 1 - \sum_{j=3}^{\ell} \frac{2\ell - 3}{2j - 5} \binom{\ell + j - 5}{2j - 6} X^{2j-5} (1+X)^{\ell-1-j}$
Gap Theorem

Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \]

with \(uv \neq 0 \), \(\alpha_1 \leq \cdots \leq \alpha_k \). If

\[\alpha_{\ell+1} > \max_{1 \leq j \leq \ell} \left(\alpha_j + \frac{(\ell + 1 - j)}{2} \right), \]

then \(P \equiv 0 \) iff both \(Q \equiv 0 \) and \(R \equiv 0 \).
Gap Theorem

Theorem

Let

\[P = \sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j} + \sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \]

with \(uv \neq 0\), \(\alpha_1 \leq \cdots \leq \alpha_k\). If

\[\alpha_{\ell+1} > \max_{1 \leq j \leq \ell} \left(\alpha_j + \left(\frac{\ell + 1 - j}{2} \right) \right) \geq \text{val}(Q), \]

then \(P \equiv 0 \) iff both \(Q \equiv 0 \) and \(R \equiv 0 \).

\[P = \left(c_{\text{val}(Q)} X^{\text{val}(Q)} + \cdots \right) + X^{\alpha_{\ell+1}} \left(a_{\ell+1} (uX + v)^{\beta_{\ell+1}} + \cdots \right) \]
Algorithms

$K = \mathbb{Q}(\alpha)$: algebraic number field
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y) \]
\[\iff P(X, uX + v) \equiv 0\]
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]

\[\iff P(X, uX + v) \equiv 0\]

\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]

\[\iff P(X, uX + v) \equiv 0\]

\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]

\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - \nu) \text{ divides } P(X, Y)\]
\[
\iff P(X, uX + \nu) \equiv 0
\]
\[
\iff P_1(X, uX + \nu) \equiv \cdots \equiv P_s(X, uX + \nu) \equiv 0
\]
\[
\iff (Y - uX - \nu) \text{ divides each } P_t(X, Y)
\]

\[
P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} a_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t + \ell_t - 1} - \alpha_{j_t} \leq \binom{\ell_t}{2}
\]
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[\iff P(X, uX + v) \equiv 0\]
\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]

\[\begin{equation}
P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t+\ell_t-1} - \alpha_{j_t} \leq \binom{\ell_t}{2}
\end{equation}\]

- Independent from \(u\) and \(v\)
Finding linear factors

Observation + Gap Theorem (recursively)

\[(Y - uX - v) \text{ divides } P(X, Y)\]
\[\iff P(X, uX + v) \equiv 0\]
\[\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0\]
\[\iff (Y - uX - v) \text{ divides each } P_t(X, Y)\]

\[
P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j} \quad \text{with } \alpha_{j_t+\ell_t-1} - \alpha_{j_t} \leq \binom{\ell_t}{2}\]

- Independent from \(u\) and \(v\)
- \(X\) does not play a special role
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^{9}Y^3 \]
\[+ X^{9}Y^2 - X^{5}Y^6 + X^{3}Y^8 - 2X^{3}Y^7 + X^{3}Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]

\[-X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^{9}Y^3 \]

\[+ X^{9}Y^2 - X^{5}Y^6 + X^{3}Y^8 - 2X^{3}Y^7 + X^{3}Y^6 \]

\[P_1 = X^{3}Y^6(-X^2 + Y^2 - 2Y + 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[\quad - X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[\quad + X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]
Example

\[P = X^{31} Y^6 - 2X^{30} Y^7 + X^{29} Y^8 - X^{29} Y^6 + X^{18} Y^{13} \]
\[\hspace{1cm} - X^{16} Y^{15} + X^{17} Y^{13} + X^{16} Y^{14} + X^{10} Y^2 - X^9 Y^3 \]
\[\hspace{1cm} + X^9 Y^2 - X^5 Y^6 + X^3 Y^8 - 2X^3 Y^7 + X^3 Y^6 \]

\[P_1 = X^3 Y^6 (X - Y + 1) (1 - X - Y) \]
\[P_2 = X^9 Y^2 (X - Y + 1) \]
\[P_3 = X^{16} Y^{13} (X + Y) (X - Y + 1) \]
\[P_4 = X^{29} Y^6 (X + Y - 1) (X - Y + 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^{9}Y^3 \]
\[+ X^{9}Y^2 - X^{5}Y^6 + X^{3}Y^8 - 2X^{3}Y^7 + X^{3}Y^6 \]

\[P_1 = X^{3}Y^6(X - Y + 1)(1 - X - Y) \]
\[P_2 = X^{9}Y^2(X - Y + 1) \]
\[P_3 = X^{16}Y^{13}(X + Y)(X - Y + 1) \]
\[P_4 = X^{29}Y^6(X + Y - 1)(X - Y + 1) \]

\[\implies \text{linear factors of } P: (X - Y + 1, 1) \]
Example

\[P = X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \]
\[- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \]
\[+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \]

\[P_1 = X^3Y^6(X - Y + 1)(1 - X - Y) \]
\[P_2 = X^9Y^2(X - Y + 1) \]
\[P_3 = X^{16}Y^{13}(X + Y)(X - Y + 1) \]
\[P_4 = X^{29}Y^6(X + Y - 1)(X - Y + 1) \]

\[\Rightarrow \text{linear factors of } P: (X - Y + 1, 1), (X, 3), (Y, 2) \]
Complete algorithm

Find linear factors \((Y - uX - v)\) of
\[
P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}
\]
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\)
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^\alpha_j Y^\beta_j\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^\beta_j\)
 [H. Lenstra’99]
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) \([H. \text{Lenstra’99}]\)
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\)
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\)
 \[\text{[H. Lenstra'99]}\]

2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\)
 \[\text{[H. Lenstra'99]}\]
Complete algorithm

Find linear factors \((Y - uX - v)\) of

\[
P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}
\]

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [H. Lenstra’99]
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) [H. Lenstra’99]
3. If \(u, v \neq 0\):
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) [H. Lenstra’99]
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) [H. Lenstra’99]
3. If \(u, v \neq 0\):
 3.1 Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j}\)

 with \(\alpha_{j_t + \ell_t - 1} \leq \alpha_{j_t} + \binom{\ell_t}{2}\) and \(\beta_{j_t + \ell_t - 1} \leq \beta_{j_t} + \binom{\ell_t}{2}\)
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) \([H. \ Lenstra'99]\)
2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) \([H. \ Lenstra'99]\)
3. If \(u, v \neq 0\):
 3.1 Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_{j=j_t}^{j_t+\ell_t-1} a_j X^{\alpha_j} Y^{\beta_j}\)
 with \(\alpha_{j_t+\ell_t-1} \leq \alpha_{j_t} + {\ell_t \choose 2}\) and \(\beta_{j_t+\ell_t-1} \leq \beta_{j_t} + {\ell_t \choose 2}\)
 3.2 Write \(P_t = X^{\alpha_{j_t}} Y^{\beta_{j_t}} Q_t\) with \(\deg(Q_t) \leq \ell_t(\ell_t - 1)\)
Complete algorithm

Find linear factors \((Y - uX - v)\) of \(P(X, Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}\)

1. If \(u = 0\): Factors of polynomials \(\sum_j a_j Y^{\beta_j}\) \([H. Lenstra'99]\)

2. If \(v = 0\): \(P(X, uX) = \sum_j a_j u^{\beta_j} X^{\alpha_j + \beta_j}\) \([H. Lenstra'99]\)

3. If \(u, v \neq 0\):
 3.1 Compute \(P = P_1 + \cdots + P_s\) where \(P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} a_j X^{\alpha_j} Y^{\beta_j}\) with \(\alpha_{j_t + \ell_t - 1} \leq \alpha_{j_t} + (\ell_t^2)\) and \(\beta_{j_t + \ell_t - 1} \leq \beta_{j_t} + (\ell_t^2)\)
 3.2 Write \(P_t = X^{\alpha_{j_t}} Y^{\beta_{j_t}} Q_t\) with \(\text{deg}(Q_t) \leq \ell_t (\ell_t - 1)\)
 3.3 Apply some dense factorization algorithm to each \(Q_t\) or \(\gcd(Q_1, \ldots, Q_s)\) \([Kaltofen'82, \ldots, Lecerf'07]\)
Main computational task: Factorization of dense polynomials
Main computational task: Factorization of dense polynomials

⇒ Complexity in terms of gap(P)
Main computational task: Factorization of dense polynomials

\[\implies \text{Complexity in terms of } \text{gap}(P) \]

- \[[\text{Kaltofen-Koiran’05}]: \text{gap}(P) = \Theta(k \log k + k \log h_P) \]
Comments

Main computational task: Factorization of dense polynomials

⇒ Complexity in terms of \(\text{gap}(P) \)

- [Kaltofen-Koiran’05]: \(\text{gap}(P) = \Theta(k \log k + k \log h_P) \)

\(h_P = \max_j |a_j| \) if \(P \in \mathbb{Z}[X, Y] \)
Main computational task: Factorization of dense polynomials

\[\text{Complexity in terms of } \text{gap}(P) \]

- \([\text{Kaltofen-Koiran'05}]: \text{gap}(P) = \Theta(k \log k + k \log h_P)\]
 \[h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X, Y] \]
- Here: \(\text{gap}(P) = \Theta(k^2)\)
Main computational task: Factorization of dense polynomials

\implies Complexity in terms of $\text{gap}(P)$

- [Kaltofen-Koiran'05]: $\text{gap}(P) = \Theta(k \log k + k \log h_P)$

 $h_P = \max_j |a_j|$ if $P \in \mathbb{Z}[X,Y]$

- Here: $\text{gap}(P) = \Theta(k^2)$

- Algebraic number field: only for Lenstra’s algorithm
Positive characteristic

$K = \mathbb{F}_{p^s}$: field with p^s elements
In large characteristics

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]
In large characteristics

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X] \), where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (k+1-j)/2) \), provided \(P \neq 0 \).
In large characteristics

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]

Theorem

Let \(P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p[x], \) where \(p > \max_j (\alpha_j + \beta_j) \).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (k+1-2^{-j})) \), provided \(P \neq 0 \).

Theorem

Let \(P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_p[x, y], \) where \(p > \max_j (\alpha_j + \beta_j) \).

Factors of the form \((uX + vY + w) \) are

- computable in \textit{randomized polynomial time} if \(uvw \neq 0 \);
In large characteristics

\[(1 + X)^{2^n} + (1 + X)^{2^{n+1}} = X^{2^n} (X + 1) \mod 2\]

Theorem

Let \[P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_p[X],\] where \(p > \max_j (\alpha_j + \beta_j)\).

Then \(\text{val}(P) \leq \max_j (\alpha_j + (k+1-j)/2 - j)),\) provided \(P \neq 0\).

Theorem

Let \[P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_p[X, Y],\] where \(p > \max_j (\alpha_j + \beta_j)\).

Factors of the form \((uX + vY + w)\) are

- computable in randomized polynomial time if \(uvw \neq 0\);
- NP-hard to detect under randomized reductions otherwise.
Conclusion
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials

− Still relies on [H. Lenstra’99]

• Reduction to univariate and low-degree cases
• Easy to implement
• Two Gap Theorems: mix both!
• Gap Theorem independent of the height
• Large coefficients
• Valid to some extent for other fields

• Results in large positive characteristic
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials

 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials

 • Reduction to univariate and low-degree cases
 • Easy to implement
 • Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - **Large coefficients**
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - **Large coefficients**
 - Valid to some extent for other fields

B. Grenet — Elementary algorithms for the factorization of bivariate lacunary polynomials
+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!

+ **Gap Theorem independent of the height**
 - *Large coefficients*
 - Valid to some extent for other fields

+ Results in large **positive characteristic**
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!

+ **Gap Theorem** independent of the height
 - **Large coefficients**
 - Valid to some extent for other fields

+ Results in large **positive characteristic**
 - Still relies on [H. Lenstra’99]
Summary

+ **Elementary** proofs & algorithms for *multilinear* factors of lacunary bivariate polynomials
 - Reduction to univariate and low-degree cases
 - Easy to implement
 - Two Gap Theorems: mix both!

+ Gap Theorem independent of the height
 - *Large coefficients*
 - Valid to some extent for other fields

+ Results in large **positive characteristic**
 - Still relies on [H. Lenstra’99]
 - Number fields

B. Grenet — Elementary algorithms for the factorization of bivariate lacunary polynomials
Open questions

- Extensions:
 - low-degree factors
 - multivariate polynomials
 - univariate polynomials in positive characteristic
 - lacunary factors
 - smaller characteristics

Is the correct bound for the valuation quadratic or linear?
Open questions

▶ Extensions:

- low-degree factors
Open questions

Extensions:

- low-degree factors
- multivariate polynomials
Open questions

- Extensions:
 - low-degree factors
 - multivariate polynomials
 - univariate polynomials

⚠️ positive characteristic

Thank you!
Open questions

Extensions:

- low-degree factors
- multivariate polynomials
- univariate polynomials
- lacunary factors

⚠️ positive characteristic
Open questions

Extensions:

- low-degree factors
- multivariate polynomials
- univariate polynomials
- lacunary factors
- smaller characteristics

⚠️ positive characteristic
Open questions

- Extensions:
 - **low-degree** factors
 - **multivariate** polynomials
 - **univariate** polynomials
 - **lacunary** factors
 - **smaller characteristics**

- Is the correct bound for the valuation **quadratic or linear**?
Open questions

▶ Extensions:

- **low-degree** factors
- **multivariate** polynomials
- **univariate** polynomials
- **lacunary** factors
- **smaller characteristics**

⚠ positive characteristic

▶ Is the correct bound for the valuation *quadratic* or *linear*?

Thank you!

arXiv:1206.4224