Symmetric Determinantal Representations of Polynomials

Bruno Grenet*†
Joint work with Erich L. Kaltofen‡, Pascal Koiran*† and Natacha Portier*†

*MC2 – LIP, ÉNS Lyon
†Theory Group – DCS, U. of Toronto
‡Dept. of Mathematics – North Carolina State U.

Montpellier – GT AlGCO – September 30, 2010
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$
Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

\[A_0 + x_1 A_1 + \cdots + x_n A_n \]

- Lax conjecture: express a real zero polynomial f as

\[f = \det A \]

with A LME and $A_0 \succeq 0$.
Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$
 \[A_0 + x_1 A_1 + \cdots + x_n A_n \]

- Lax conjecture: express a real zero polynomial f as
 \[f = \det A \]
 with A LME and $A_0 \succeq 0$. \(\sim\) disproved
Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$
 \[
 A_0 + x_1 A_1 + \cdots + x_n A_n
 \]

- Lax conjecture: express a real zero polynomial f as
 \[
 f = \det A
 \]
 with A LME and $A_0 \succeq 0$. $\sim\sim$ disproved

- Drop condition $A_0 \succeq 0 \sim\sim$ exponential size matrices
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$
 \[
 A_0 + x_1 A_1 + \cdots + x_n A_n
 \]

- **Lax conjecture:** express a *real zero polynomial* f as
 \[
 f = \det A
 \]
 with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0$ \rightsquigarrow exponential size matrices

- What about *polynomial size matrices*?
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

 $$A_0 + x_1 A_1 + \cdots + x_n A_n$$

- **Lax conjecture:** express a *real zero polynomial* f as

 $$f = \det A$$

 with A LME and $A_0 \succeq 0$. $\sim \text{ disproved}$

- **Drop condition** $A_0 \succeq 0 \sim \text{ exponential size matrices}$

- **What about polynomial size matrices?**

- **Applications to Semi-Definite Programming**
Valiant (1979)

- Arithmetic formula \leadsto Determinant

\[
\begin{vmatrix}
0 & x & 1 \\
x & 0 & 1 \\
1 & 0 & 0
\end{vmatrix}
\begin{vmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{vmatrix}
= 2x_1 \cdot (x_2 + y) + z \cdot (x_2 + y)
\]
Valiant (1979)

- Arithmetic formula \Leftrightarrow Determinant

$$\begin{bmatrix}
0 & x_1 & 1 & y & x_2 & 0 & 0 & z & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} = 2x_1 \cdot (x_2 + y) + z \cdot (x_2 + y)$$
Valiant (1979)

- Arithmetic formula \leadsto Determinant

\[
\begin{pmatrix}
0 & x_1 & x_1 & 0 & 0 & z & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_2 & y & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
y & 0 & 0 & 0 & 0 & 1 & x_2 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
Valiant (1979)

- **Arithmetic formula** \leadsto **Determinant**

\[
\begin{pmatrix}
0 & x_1 & x_1 & 0 & 0 & z & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_2 & y & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
y & 0 & 0 & 0 & 0 & 1 & x_2 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
= 2x_1 \cdot (x_2 + y) + z \cdot (x_2 + y)
\]

- Weakly-skew circuit \leadsto Determinant

- Weakly-skew circuit \leadsto Determinant

\[
\begin{bmatrix}
0 & y & x_2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & x_1 & z & 0 & 0 \\
x_1 & 0 & 0 & 0 & -1 & 0 & 2 \\
x & 0 & 0 & 0 & 0 & -1 & 0 \\
\end{bmatrix}
= 2x_1 \cdot (x_2 + y) + z \cdot (x_2 + y)
\]

- Weakly-skew circuit \leadsto Determinant

\[
\begin{pmatrix}
0 & y & x_2 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & x_1 & z & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}
\]

- Weakly-skew circuit \leadsto Determinant

\[
\begin{pmatrix}
0 & y & x_2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & x_1 & z & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 2 \\
1 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}
\]

\[
= 2x_1 \cdot (x_2 + y) + z \cdot (x_2 + y)
\]
Strategy

- Valiant’s, Toda’s and Malod’s contructions \leadsto polynomial size matrices

Remark: valid for any field
Strategy

- Valiant’s, Toda’s and Malod’s constructions \leadsto polynomial size matrices
- But nonsymmetric matrices
Valiant’s, Toda’s and Malod’s contructions \rightsquigarrow polynomial size matrices

- But nonsymmetric matrices
- Is is possible to symmetrize their constructions?
Strategy

- Valiant’s, Toda’s and Malod’s contructions \leadsto polynomial size matrices
- But nonsymmetric matrices
- Is is possible to symmetrize their constructions?
- Remark: valid for any field
(Improved) Valiant’s and Malod’s constructions
(Improved) Valiant’s and Malod’s constructions
Symmetrization for fields of characteristic $\neq 2$
Contents

- (Improved) Valiant’s and Malod’s constructions
- Symmetrization for fields of characteristic $\neq 2$
- Case of characteristic 2
Valiant’s and Malod’s constructions

Symmetric determinantal representations

Characteristic 2
Graph-theoretic interpretation of determinants

Let G be a graph, A its adjacency matrix
Let G be a graph, A its adjacency matrix

$$
\det A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}
$$
Graph-theoretic interpretation of determinants

- Let G be a graph, A its adjacency matrix.

\[
\det A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}
\]

- permutation in $A = \text{cycle cover in } G$
Let G be a graph, A its adjacency matrix

\[
\det A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}
\]

- permutation in $A =$ cycle cover in G
- Up to signs, $\det A =$ sum of the weights of cycle covers in G
Valiant’s construction (1/3)

- Input: a formula representing a polynomial $\varphi \in K[X_1, \ldots, X_n]$ of size e
Valiant’s construction (1/3)

- **Input**: a formula representing a polynomial \(\varphi \in K[X_1, \ldots, X_n] \) of size \(e \)

 Size of a formula: number of computation gates
Valiant’s construction (1/3)

- **Input:** a formula representing a polynomial \(\varphi \in K[X_1, \ldots, X_n] \) of size \(e \)

 Size of a formula: number of computation gates

- **Output:** a matrix \(A \) of dimension \((e + 1)\), with entries in
 \(K \cup \{X_1, \ldots, X_n\} \), s.t. \(\det A = \varphi \)
Valiant’s and Malod’s constructions

Valiant’s construction (1/3)

- Input: a formula representing a polynomial \(\varphi \in K[X_1, \ldots, X_n] \) of size \(e \)

 Size of a formula: number of computation gates

- Output: a matrix \(A \) of dimension \((e + 1)\), with entries in \(K \cup \{X_1, \ldots, X_n\} \), s.t. \(\det A = \varphi \)

- In between: a graph \(G \) of size \((e + 1)\) whose adjacency matrix is \(A \)
Valiant’s construction (2/3)

Invariant \[\phi = \pm \sum_{s-t \text{-paths } P} (-1)^{|P|} w(P) \]
Valiant's and Malod's constructions

Valiant's construction (2/3)

$$\varphi = \pm \sum s-t \text{-paths } P (-1)^{|P| w(P)}$$

Bruno Grenet (LIP – ÉNS Lyon)
Montpellier – 30/09/2010
10 / 36
Valiant's construction (2/3)

\[\phi = \pm \sum_{s \rightarrow t} -1^{|P|} w(P) \]

\[G_1 \]

\[G_2 \]

\[s \]

\[t \]

\[t_1 \]

\[t_2 \]

\[\pm 1 \]
Valiant’s and Malod’s constructions

Valiant’s construction (2/3)

Invariant

\[\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P) \]
Valiant’s construction (3/3)

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P)$, with s, t distinguished.
Valiant’s construction (3/3)

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P)$, with s, t distinguished

$\leadsto G'$: merge s and t + add weight-1 loops on vertices $\neq s$.

Theorem

For a size-e formula, this construction yields a size-$(e+1)$ graph. Let A be the adjacency matrix of G. Then

$$\det(A) = \varphi.$$
Valiant’s construction (3/3)

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P)$, with s, t distinguished

$\leadsto G'$: merge s and t + add weight-1 loops on vertices $\neq s$.

- s-t-paths \leadsto big cycles
Valiant’s construction (3/3)

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P)$, with s, t distinguished

$\leadsto G'$: merge s and t + add weight-1 loops on vertices $\neq s$.

- $s-t$-paths \leadsto big cycles
- Cycle cover in G': One big cycle + loops
Valiant's and Malod’s constructions

Valiant's construction (3/3)

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths } P} (-1)^{|P|} w(P)$, with s, t distinguished

$\leadsto G'$: merge s and t + add weight-1 loops on vertices $\neq s$.

- s-t-paths \leadsto big cycles

- Cycle cover in G': One big cycle + loops

Theorem

For a size-e formula, this construction yields a size-$(e + 1)$ graph. Let A be the adjacency matrix of G. Then $\det(A) = \varphi$.

Bruno Grenet (LIP – ÉNS Lyon)
Malod’s construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
Malod’s construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
Malod’s construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ

$$e = 5 \text{ and } i = 4$$
Malod’s construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e + i + 1)$ s.t. $\det A = \varphi$

\[e = 5 \text{ and } i = 4 \]
Malod’s construction (1/3)

- **Input:** a weakly-skew circuit of size e with i variable inputs representing φ
- **Output:** a matrix A of dimension $(e + i + 1)$ s.t. $\det A = \varphi$
- In between: a graph G...

\[
e = 5 \text{ and } i = 4
\]
Malod’s construction (1/3)

- **Input:** a weakly-skew circuit of size e with i variable inputs representing φ
- **Output:** a matrix A of dimension $(e + i + 1)$ s.t. $\det A = \varphi$
- In between: a graph G...

- φ_α: polynomial computed by gate α

\[e = 5 \text{ and } i = 4 \]
Malod’s construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e + i + 1)$ s.t. $\det A = \varphi$
- In between: a graph G...

- φ_α: polynomial computed by gate α
- Reusable gate: not in a closed subcircuit

$e = 5$ and $i = 4$
Valiant’s and Malod’s constructions

Malod’s construction (2/3)

For each reusable gate α, there exists t_{α} s.t. $w(s \rightarrow t_{\alpha}) = \phi_{\alpha}$.
Valiant’s and Malod’s constructions

Malod’s construction (2/3)

Invariant

For each reusable gate α, there exists t_α s.t. $w(s \rightarrow t_\alpha) = \phi_\alpha$.

Bruno Grenet (LIP – ÉNS Lyon)
Malod’s construction (2/3)

For each reusable gate α, there exists t_α s.t. $w(s \rightarrow t_\alpha) = \phi_\alpha$.

Bruno Grenet (LIP – ÉNS Lyon)
Malod's construction (2/3)

Invariant
For each reusable gate α, there exists t_α s.t.
$w(s \rightarrow t_\alpha) = \varphi_\alpha$.
Malod’s construction (3/3)

- As in Valiant’s, $G \sim G'$: same idea
Malod’s construction (3/3)

- As in Valiant’s, $G \rightsquigarrow G'$: same idea

Theorem

For a ws circuit of size e with i variable inputs representing φ, this construction yields a size-$(e + i + 1)$. The determinant of its adjacency matrix equals φ.
Outline

1. Valiant’s and Malod’s constructions

2. Symmetric determinantal representations

3. Characteristic 2
Introduction

- Symmetric matrices \iff undirected graphs
Symmetric matrices \iff undirected graphs

Difficulty: no DAG anymore!
Introduction

- Symmetric matrices ⇔ undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
Symmetric determinantal representations

Introduction

- Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: $\text{char}(\mathbb{K}) \neq 2$ in this section
Case of formulas

\[\varphi = \sum_{s-t-\text{paths } P} \left| P \right| / 2 + 1 \cdot w(P) \]

Bruno Grenet (LIP – ÉNS Lyon)
Case of formulas

\[\varphi = \sum_{s - t \text{-paths } P} \left| P \right| / 2 + w(P) \]
Case of formulas

\[\phi = \sum_s^{s-t-\text{paths}} P_{-1} |P|/2 + w(P) \]
Case of formulas

\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P) \]

and...

Invariants

Bruno Grenet (LIP – ÉNS Lyon)
Invariants for formula’s construction

\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2 + 1} w(P) \]
\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P) \]

- \(|G| \) is even, every cycle in \(G \) is even, and every \(s-t \)-path is even

```
Bruno Grenet (LIP – ÉNS Lyon)
Montpellier – 30/09/2010
```
Invariants for formula’s construction

\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P) \]

- \(|G|\) is even, every cycle in \(G\) is even, and every \(s-t\)-path is even
- \(G \setminus \{s, t\}\) is either empty or has a unique cycle cover
Invariants for formula’s construction

\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P) \]

- \(|G|\) is even, every cycle in \(G\) is even, and every \(s-t\)-path is even
- \(G \setminus \{s, t\}\) is either empty or has a unique cycle cover

\[\Rightarrow \text{Perfect matching of weight 1} \]
Invariants for formula’s construction

- $\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even
- $G \setminus \{s, t\}$ is either empty or has a unique cycle cover

\Rightarrow Perfect matching of weight 1

- For any $s-t$-path P, $G \setminus P$ is either empty or has a unique cycle cover
\[\varphi = \sum_{s-t\text{-paths } P} (-1)^{|P|/2+1} w(P) \]

- \(|G|\) is even, every cycle in \(G\) is even, and every \(s-t\)-path is even
- \(G \setminus \{s, t\}\) is either empty or has a unique cycle cover

\[\Rightarrow \] Perfect matching of weight 1

- For any \(s-t\)-path \(P\), \(G \setminus P\) is either empty or has a unique cycle cover

\[\Rightarrow \] Perfect matching of weight 1
From G to G'

The determinant of its adjacency matrix equals ϕ.

Theorem
For a formula ϕ of size e, this construction yields a graph of size $2^e + 3$.
From G to G'

- $|G'|$ is odd. An odd cycle in G' has to go through c
From G to G'

- $|G'|$ is odd. An odd cycle in G' has to go through c
- Cycle covers in G' \iff $s \rightarrow t$-paths in G

\[(-1)^{|G'|/2 + 1} \]

\[\frac{1}{2} \]
From G to G'

- $|G'|$ is odd. An odd cycle in G' has to go through c
- Cycle covers in G' \iff $s \to t$-paths in G \iff $t \to s$-paths in G

$$(-1)^{|G'|/2} + 1$$
$|G'|$ is odd. An odd cycle in G' has to go through c

Cycle covers in $G' \iff s \to t$-paths in $G \iff t \to s$-paths in G

$(-1)^{|G/2|+1}$ ensures that the signs are OK.
From G to G'

- $|G'|$ is odd. An odd cycle in G' has to go through c.
- Cycle covers in $G' \iff s \to t$-paths in $G \iff t \to s$-paths in G.
- $(-1)^{|G|/2} + 1$ ensures that the signs are OK.
- $1/2$: to deal with $s \to t$ and $t \to s$-paths, implies char(\mathbb{K}) $\neq 2$.

Theorem

For a formula ϕ of size e, this construction yields a graph of size $2^e + 3$.

The determinant of its adjacency matrix equals ϕ.

From G to G'

- $|G'|$ is odd. An **odd cycle** in G' has to go through c.
- Cycle covers in G' \iff $s \to t$-paths in G \iff $t \to s$-paths in G.
- $(-1)^{|G|/2} + 1$ ensures that the signs are OK.
- $1/2$: to deal with $s \to t$ and $t \to s$-paths, implies $\text{char}(\mathbb{K}) \neq 2$.

Theorem

*For a formula φ of size e, this construction yields a graph of size $2e + 3$. The determinant of its adjacency matrix equals φ.***
Case of weakly-skew circuits

Main difficulty:
Case of weakly-skew circuits

- Main difficulty:

- Definition: an path P is said **acceptable** if $G \setminus P$ admits a cycle cover
Constructions
Constructions

\[
\begin{align*}
\text{Symmetric determinantal representations} \\
\text{Constructions} \\
\end{align*}
\]
Constructions
For each reusable α, there exists t_α s.t.
For each reusable α, there exists t_α s.t.

$$\varphi_\alpha = \sum_{s \text{-t}_\alpha \text{-paths } P} (-1)^{|P|-1} w(P)$$

- Every s-t_α-path is odd
- For a s-t_α-path P, $G \setminus P$ is either empty or has a unique cycle cover \Rightarrow Perfect matching of weight 1
- $|G|$ is odd, every cycle in G is even
- $G\{s\}$ is either empty or has a unique cycle cover \Rightarrow Perfect matching of weight 1
For each reusable α, there exists t_{α} s.t.

\[
\varphi_{\alpha} = \sum_{\text{acceptable}\ s-t_{\alpha}-paths\ P} (-1)^{\frac{|P|-1}{2}} w(P)
\]

- Every $s-t_{\alpha}$-path is odd
For each reusable α, there exists t_α s.t.

$\varphi_\alpha = \sum_{\text{acceptable } s-t_\alpha\text{-paths } P} (-1)^{|P|-1} w(P)$

- Every $s-t_\alpha$-path is odd
- For a $s-t_\alpha$-path P, $G \setminus P$ is either empty or has a unique cycle cover
For each reusable α, there exists t_α s.t.

- $\varphi_\alpha = \sum_{\text{acceptable } s-t_\alpha\text{-paths } P} (-1)^{\frac{|P|-1}{2}} w(P)$

- Every $s-t_\alpha$-path is odd

- For a $s-t_\alpha$-path P, $G \setminus P$ is either empty or has a unique cycle cover

\Rightarrow Perfect matching of weight 1
Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
 - $\phi_{\alpha} = \sum_{\text{acceptable } s-t_{\alpha}-\text{paths } P} (-1)^{|P|-1} w(P)$
 - Every $s-t_{\alpha}$-path is odd
 - For a $s-t_{\alpha}$-path P, $G \setminus P$ is either empty or has a unique cycle cover
- $|G|$ is odd, every cycle in G is even
Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_α s.t.
 - $\varphi_\alpha = \sum_{\text{acceptable} \ s-t_\alpha\text{-paths } P} (-1)^\frac{|P|-1}{2} w(P)$
 - Every $s-t_\alpha$-path is odd
 - For a $s-t_\alpha$-path P, $G \setminus P$ is either empty or has a unique cycle cover
 \Rightarrow Perfect matching of weight 1

- $|G|$ is odd, every cycle in G is even
- $G \setminus \{s\}$ is either empty or has a unique cycle cover
Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_α s.t.
 \[\varphi_\alpha = \sum_{\text{acceptable } s-t_\alpha\text{-paths } P} (-1)^{|P|-1} w(P) \]
 ▶ Every $s-t_\alpha\text{-path}$ is odd
 ▶ For a $s-t_\alpha\text{-path } P$, $G \setminus P$ is either empty or has a unique cycle cover
 ~ Perfect matching of weight 1

- $|G|$ is odd, every cycle in G is even
- $G \setminus \{s\}$ is either empty or has a unique cycle cover
 ~ Perfect matching of weight 1
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \leadsto G'$.
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \leadsto G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G| - 1}{2}} \sim \sim G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \sim G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:

 Cycle covers of G' \iff $s \to t$-paths in G \iff $t \to s$-paths in G.

With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial ϕ, this construction yields a graph G' with $2(e+i)+1$ vertices.

The adjacency matrix of G' has its determinant equal to ϕ.

Bruno Grenet (LIP – ÉNS Lyon)
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \sim G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:
 Cycle covers of G' \iff $s \rightarrow t$-paths in G \iff $t \rightarrow s$-paths in G.
- With some sign considerations, we get:
From G to G'

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \sim G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:
 - Cycle covers of G' \iff $s \rightarrow t$-paths in G \iff $t \rightarrow s$-paths in G.
- With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ, this construction yields a graph G' with $2(e + i) + 1$ vertices. The adjacency matrix of G' has its determinant equal to φ.
Outline

1. Valiant’s and Malod’s constructions
2. Symmetric determinantal representations
3. Characteristic 2
Introduction

- Scalar $1/2$ in the constructions \Rightarrow not valid for characteristic 2
Introduction

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
Introduction

- Scalar $1/2$ in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length ≥ 2 are counted twice \implies permutations restricted to pairs and singleton
Introduction

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length ≥ 2 are counted twice
 \implies permutations restricted to pairs and singleton
 \implies cycle covers replaced by monomer-dimer covers
Introduction

- Scalar $1/2$ in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length ≥ 2 are counted twice
 \implies permutations restricted to pairs and singleton
 \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.

- Use Malod’s construction on P to get a digraph $G = (V, E)$
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.

- Use Malod’s construction on P to get a digraph $G = (V, E)$
- Define an undirected graph G' as follows:
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.

- Use Malod’s construction on P to get a digraph $G = (V, E)$
- Define an undirected graph G' as follows:
 - Duplicate each $v \in V$ as v_s and v_t.
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.

- Use Malod’s construction on P to get a digraph $G = (V, E)$
- Define an undirected graph G' as follows:
 - Duplicate each $v \in V$ as v_s and v_t.
 - Replace an arc (u, v) by an edge $\{u_s, v_t\}$.

A positive result

Theorem

Let \(p \) be a polynomial, represented by a weakly-skew circuit of size \(e \) with \(i \) input variables. Then there exists a symmetric matrix \(A \) of size \(2(e + i) + 2 \) such that \(p^2 = \det A \).

- Use Malod’s construction on \(P \) to get a digraph \(G = (V, E) \)
- Define an undirected graph \(G' \) as follows:
 - Duplicate each \(v \in V \) as \(v_s \) and \(v_t \).
 - Replace an arc \((u, v)\) by an edge \(\{u_s, v_t\} \).
- Denote by \(M \) and \(A \) the respective adjacency matrices of \(G \) and \(G' \)
A positive result

Theorem

Let \(p \) be a polynomial, represented by a weakly-skew circuit of size \(e \) with \(i \) input variables. Then there exists a symmetric matrix \(A \) of size \(2(e + i) + 2 \) such that \(p^2 = \det A \).

- Use Malod’s construction on \(P \) to get a digraph \(G = (V, E) \)
- Define an undirected graph \(G' \) as follows:
 - Duplicate each \(v \in V \) as \(v_s \) and \(v_t \).
 - Replace an arc \((u, v) \) by an edge \(\{u_s, v_t\} \).
- Denote by \(M \) and \(A \) the respective adjacency matrices of \(G \) and \(G' \)
- Cycle Covers in \(G \) \(\iff \) Perfect Matching in \(G' \)
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e + i) + 2$ such that $p^2 = \det A$.

- Use Malod’s construction on P to get a digraph $G = (V, E)$
- Define an undirected graph G' as follows:
 - Duplicate each $v \in V$ as v_s and v_t.
 - Replace an arc (u, v) by an edge $\{u_s, v_t\}$.
- Denote by M and A the respective adjacency matrices of G and G'
- Cycle Covers in $G \iff$ Perfect Matching in G'
- $\det M = \sum_{\mu} w(\mu)$ (μ ranges over the Perfect Matchings)
A positive result

Theorem

Let \(p \) be a polynomial, represented by a weakly-skew circuit of size \(e \) with \(i \) input variables. Then there exists a symmetric matrix \(A \) of size \(2(e + i) + 2 \) such that \(p^2 = \det A \).

- Use Malod’s construction on \(P \) to get a digraph \(G = (V, E) \)
- Define an undirected graph \(G' \) as follows:
 - Duplicate each \(v \in V \) as \(v_s \) and \(v_t \).
 - Replace an arc \((u, v)\) by an edge \(\{u_s, v_t\} \).
- Denote by \(M \) and \(A \) the respective adjacency matrices of \(G \) and \(G' \)
- Cycle Covers in \(G \) ⇐⇒ Perfect Matching in \(G' \)

\[
\det M = \sum_{\mu} w(\mu) \quad (\mu \text{ ranges over the Perfect Matchings})
\]

- As there is no loop in \(G' \), \(\det A = \sum_{\mu} w(\mu)^2 = \left(\sum_{\mu} w(\mu) \right)^2 \)
This result raises the question:
This result raises the question:

If p^2 has a small weakly-skew circuit, what about p?

In technical terms:

If f is a family of polynomials s.t. $f^2 \in \text{VP}$, does f belong to VP?

It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?
Application

- This result raises the question:

If p^2 has a small weakly-skew circuit, what about p?

- In technical terms:
Application

- This result raises the question:

If p^2 has a small weakly-skew circuit, what about p?

- In technical terms:

If f is a family of polynomials s.t. $f^2 \in \text{VP}$, does f belong to VP?
This result raises the question:

If p^2 has a small weakly-skew circuit, what about p?

In technical terms:

If f is a family of polynomials s.t. $f^2 \in \text{VP}$, does f belong to VP?

It appears to be related to an open problem of Bürgisser:
This result raises the question:

If p^2 has a small weakly-skew circuit, what about p?

In technical terms:

If f is a family of polynomials s.t. $f^2 \in \text{VP}$, does f belong to VP?

It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?
Valiant’s classes

- Complexity of a polynomial: size of the smallest circuit computing it.
Valiant’s classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family \((f_n)\) of polynomials is in VP if for all \(n\), the number of variables, the degree, and the complexity of \(f_n\) are polynomially bounded in \(n\).
Valiant’s classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family \((f_n)\) of polynomials is in VP if for all \(n\), the **number of variables**, the **degree**, and the **complexity** of \(f_n\) are polynomially bounded in \(n\).

A family \((f_n)\) of polynomials is in VNP if there exists a family \((g_n(y_1, \ldots, y_{v(n)})) \in VP\) s.t.

\[
f_n(x_1, \ldots, x_{u(n)}) = \sum_{\bar{c} \in \{0,1\}^{v(n)-u(n)}} g_n(x_1, \ldots, x_{u(n)}, \bar{c}).
\]
Valiant’s classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family \((f_n)\) of polynomials is in VP if for all \(n\), the number of variables, the degree, and the complexity of \(f_n\) are polynomially bounded in \(n\).

A family \((f_n)\) of polynomials is in VNP if there exists a family \((g_n(y_1, \ldots, y_{v(n)})) \in VP\) s.t.

\[
 f_n(x_1, \ldots, x_{u(n)}) = \sum_{\bar{c} \in \{0,1\}^{v(n)-u(n)}} g_n(x_1, \ldots, x_{u(n)}, \bar{c}).
\]

- \((\text{DET}_n) \in VP, (\text{PER}_n) \in VNP, \ldots\)
VNP-completeness

Definition

A family (g_n) is a p-projection of a family (f_n) is there exists a polynomial t s.t. for all n, $g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)$, with $a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.
VNP-completeness

Definition

A family \((g_n)\) is a \(p\)-projection of a family \((f_n)\) if there exists a polynomial \(t\) s.t. for all \(n\), \(g_n(\vec{x}) = f_{t(n)}(a_1, \ldots, a_n)\), with \(a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}\).

A family \((f_n) \in \text{VNP}\) is \textit{VNP-complete} if every family in VNP is a \(p\)-projection of \((f_n)\).
VNP-completeness

Definition

A family \((g_n)\) is a \(p\)-projection of a family \((f_n)\) is there exists a polynomial \(t\) s.t. for all \(n\), \(g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)\), with \(a_1, \ldots, a_n \in K \cup \{x_1, \ldots, x_n\}\).

A family \((f_n) \in VNP\) is **VNP-complete** if every family in VNP is a \(p\)-projection of \((f_n)\).

- \((PER_n)\) is VNP-complete in characteristic \(\neq 2\)
VNP-completeness

Definition

A family \((g_n)\) is a \(p\)-projection of a family \((f_n)\) if there exists a polynomial \(t\) s.t. for all \(n\), \(g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)\), with \(a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}\).

A family \((f_n) \in \text{VNP}\) is \textbf{VNP-complete} if every family in \text{VNP} is a \(p\)-projection of \((f_n)\).

- \((\text{PER}_n)\) is VNP-complete in characteristic \(\neq 2\)
- \((\text{HC}_n)\) is VNP-complete (in any characteristic)
Partial Permanent

\[\text{per}^* M = \sum_{\pi} \prod_{i \in \text{def}(\pi)} M_{i, \pi(i)} \]

where \(\pi \) ranges over the injective partial maps from \([n]\) to \([n]\).
Partial Permanent

\[\text{per}^* M = \sum_{\pi} \prod_{i \in \text{def}(\pi)} M_{i,\pi(i)} \]

where \(\pi \) ranges over the injective partial maps from \([n]\) to \([n]\).

Lemma

Let \(G = K_{n,n} \). Let \(A \) and \(B \) be the respective adjacency and biadjacency matrices of \(G \). Then in characteristic 2,

\[\det(A + I_{2n}) = (\text{per}^* B)^2 \]

where \(I_{2n} \) is the identity matrix.
Characteristic 2

Partial Permanent

\[
\text{per}^* M = \sum_{\pi} \prod_{i \in \text{def}(\pi)} M_{i,\pi(i)}
\]

where \(\pi \) ranges over the injective partial maps from \([n]\) to \([n]\).

Lemma

Let \(G = K_{n,n} \). Let \(A \) and \(B \) be the respective adjacency and biadjacency matrices of \(G \). Then in characteristic 2,

\[
\det(A + I_{2n}) = (\text{per}^* B)^2
\]

where \(I_{2n} \) is the identity matrix.

Same kind of ideas as the previous proof.
Partial permanents as family of polynomials

\((\text{PER}_n^*) \): family of polynomials defined as partial permanents of \(n \times n \) matrices of indeterminates.
Partial permanents as family of polynomials

\((\text{PER}^*_n)\): family of polynomials defined as partial permanents of \(n \times n\) matrices of indeterminates.

\(((\text{PER}^*)^2_n)\): family of polynomials defined as square of partial permanents of \(n \times n\) matrices of indeterminates.
Partial permanents as family of polynomials

\((\text{PER}^*_n)\): family of polynomials defined as \textit{partial permanents} of \(n \times n\) matrices of indeterminates.

\(((\text{PER}^*)_n^2)\): family of polynomials defined as \textit{square of partial permanents} of \(n \times n\) matrices of indeterminates.

Theorem

\(((\text{PER}^*)_n^2) \in \text{VP} \text{ in characteristic } 2.\)
Partial permanents as family of polynomials

(PER_n^*): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

$((\text{PER}_n^*)^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem

$((\text{PER}_n^*)^2) \in \text{VP}$ in characteristic 2.

Proof. $((\text{PER}_n^*)^2)$ is a p-projection of (DET_n).
Answer to Bürgisser’s problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Answer to Bürgisser’s problem

Problem
Is the partial permanent VNP-complete in characteristic 2?

Theorem
If it is the case, $\oplus \mathbb{P}/\text{poly} = \text{NC}^2/\text{poly}$, and $\text{PH} = \Sigma_2$.

Proof sketch.
If the case arises, $\text{VNP}^2 \subseteq \text{VP}$. This translates into boolean complexity result via Bürgisser’s boolean parts of Valiant’s classes.
Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, \(\oplus \mathbf{P}/\text{poly} = \mathbf{NC}^2/\text{poly} \), and \(\mathbf{PH} = \Sigma_2 \).

Proof sketch. If the case arises, \(\mathbf{VNP}^2 \subseteq \mathbf{VP} \). This translates into boolean complexity result via Bürgisser’s boolean parts of Valiant’s classes.
A negative result?

Question
Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?
A negative result?

Question
Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

Conjecture
The polynomial $xy + z$ has no such representation

Two-day-old Proof. To do on a board!
We obtained **Symmetric Determinantal Representations** for Formulas and Weakly-Skew Circuits of **linear size**
Conclusion

- We obtained **Symmetric Determinantal Representations** for Formulas and Weakly-Skew Circuits of **linear size**
- Improvement of Valiant’s and Malod’s constructions
Conclusion

- We obtained **Symmetric Determinantal Representations** for Formulas and Weakly-Skew Circuits of **linear size**
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
Conclusion

- We obtained **Symmetric Determinantal Representations** for Formulas and Weakly-Skew Circuits of **linear size**
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. $\det M = \det M'$.

For characteristic 2:

- Answer to Bürgisser’s Open Problem
- Proof (?) of a negative result (to be verified...)

Bruno Grenet (LIP – ÉNS Lyon)
Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. $\det M = \det M'$.
Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

*Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. $\det M = \det M'$.***

- For characteristic 2:
Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. $\det M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser’s Open Problem
Conclusion

- We obtained **Symmetric Determinantal Representations** for Formulas and Weakly-Skew Circuits of **linear size**
- Improvement of Valiant’s and Malod’s constructions
- Actually, we fixed a flaw in Valiant’s 30-year-old proof!
- By-product (in characteristic \(\neq 2 \)):

Theorem

Let \(M \) be an \(n \times n \) matrix. Then there exists a symmetric matrix \(M' \) of size \(O(n^5) \) s.t. \(\det M = \det M' \).

- For characteristic 2:
 - Answer to Bürgisser’s Open Problem
 - Proof (?) of a negative result (to be verified...)

Bruno Grenet (LIP – ÉNS Lyon)
Future work

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.
Future work

- In Convex Geometry: $K = \mathbb{R}$ and polynomials are real zero polynomials.

→ what can be done in that precise case?
Future work

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.

\rightsquigarrow what can be done in that precise case?

- Characterize polynomials with a symmetric determinantal representation in characteristic 2.
Future work

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.

\Rightarrow what can be done in that precise case?

- Characterize polynomials with a symmetric determinantal representation in characteristic 2.

- Symmetric matrices in Valiant’s theory?
Thank you!