Symmetric Determinantal Representations of Weakly-Skew Circuits

Bruno Grenet
ÉNS Lyon
U. of Toronto

Erich L. Kaltofen
North Carolina State University

Pascal Koiran
ÉNS Lyon
U. of Toronto

Natacha Portier
ÉNS Lyon
U. of Toronto

28th International Symposium on Theoretical Aspects of Computer Science
Dortmund, March 11, 2011
Introduction

The problem

\((x + y) + (y \times z) = \det\)

\[
\begin{vmatrix}
0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\
x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & z & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{vmatrix}
\]
Introduction

The problem

\[(x + y) + (y \times z) = \det\]

\[
\begin{vmatrix}
0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\
x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & z & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\end{vmatrix}
\]

- Formal polynomial
(x + y) + (y \times z) = \text{det}

\[
\begin{vmatrix}
0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\
x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & z & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{vmatrix}
\]

- Formal polynomial
- Smallest possible dimension of the matrix
Introduction

Representations of polynomials

Arithmetic circuit:

Size $e = 5$
Inputs $i = 2$
Introduction

Representations of polynomials

Weakly-skew circuit:

Size $e = 5$

Inputs $i = 4$
Representations of polynomials

Formula:

Size $e = 5$
Inputs $i = 6$
Introduction

Motivation

L. G. Valiant, *Completeness classes in algebra*, STOC’79

Theorem (Universality of determinant and permanent)

Let P be a polynomial given by a formula of size e. There exist matrices M and N of size $(e + 2) \times (e + 2)$ such that

$$P = \det M = \text{per} N.$$
Subsequent works

- Improved bounds:
Subsequent works

- Improved bounds:
 - $2e + 2$: J. von zur Gathen [1]

Subsequent works

Improved bounds:

- $2e + 2$: J. von zur Gathen [1]

Subsequent works

- Improved bounds:
 - $2e + 2$: J. von zur Gathen [1]
- Extension to weakly-skew circuits, with bound

Introduction

Subsequent works

- **Improved bounds:**
 - $2e + 2$: J. von zur Gathen [1]

- Extension to *weakly-skew circuits*, with bound
 - $2e + 1$: S. Toda [3]

Subsequent works

- Improved bounds:
 - $2e + 2$: J. von zur Gathen [1]

- Extension to weakly-skew circuits, with bound
 - $2e + 1$: S. Toda [3]
 - $e + i + 1$: G. Malod & N. Portier [4]

Our results

- Extension to *symmetric matrices* (characteristic \(\neq 2 \))
Extension to symmetric matrices (characteristic $\neq 2$)

Char. 2: Partial permanent is (probably) not VNP-complete
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

\[A_0 + x_1 A_1 + \cdots + x_n A_n \]
Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$
 \[A_0 + x_1 A_1 + \cdots + x_n A_n \]

- Lax conjecture: express a **real zero polynomial** f as
 \[f = \det A \]

with A LME and $A_0 \succeq 0$.
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

 $$A_0 + x_1A_1 + \cdots + x_nA_n$$

- **Lax conjecture:** express a real zero polynomial f as

 $$f = \det A$$

 with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

 $$A_0 + x_1 A_1 + \cdots + x_n A_n$$

- **Lax conjecture:** express a real zero polynomial f as

 $$f = \det A$$

 with A LME and $A_0 \succeq 0$. \supseteq disproved

- **Drop condition $A_0 \succeq 0$ \supseteq exponential size matrices**
Motivation from Convex Geometry

- **Linear Matrix Expression (LME):** for A_i symmetric in $\mathbb{R}^{t \times t}$

 $$A_0 + x_1 A_1 + \cdots + x_n A_n$$

- **Lax conjecture:** express a real zero polynomial f as

 $$f = \det A$$

 with A LME and $A_0 \succeq 0$. \leadsto disproved

- Drop condition $A_0 \succeq 0$ \leadsto exponential size matrices

- What about polynomial size matrices?
Main construction

Overview

\[(x + y) + (y \times z)\]

Circuit: Weakly-skew circuit or formula
Main construction

Overview

Circuit: Weakly-skew circuit or formula
Main construction

Overview

Arithmetic Branching Program

Circuit \Rightarrow ABP
Main construction

Overview

\[\text{Circuit} \implies \text{ABP} \]
Main construction

Overview

\[
\begin{align*}
-1 & & -1 & & -1/2 \\
-1 & & -1 & & -1/2 \\
-1 & & -1 & & -1/2 \\
-1 & & -1 & & -1/2 \\
\end{align*}
\]

Circuit \(\Rightarrow\) ABP \(\Rightarrow\) Graph
Main construction

Overview

\[
\begin{vmatrix}
0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\
x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & z & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{vmatrix}
\]

\[= (x + y) + (y \times z)\]

Circuit \[\Rightarrow\] ABP \[\Rightarrow\] Graph \[\Rightarrow\] Matrix
Main construction

Overview

\[
\begin{vmatrix}
0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{-1}{2} \\
x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & z & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\end{vmatrix}
= (x + y) + (y \times z)
\]

Characteristic $\neq 2$

Circuit \implies ABP \implies Graph \implies Matrix
Main construction

Main new difficulty

Symmetric matrices
Main construction

Main new difficulty

Symmetric matrices \implies undirected graphs
Main construction

Main new difficulty

Symmetric matrices
\[\Rightarrow \] undirected graphs
\[\Rightarrow \] “undirected ABPs”
Main construction

Main new difficulty

Symmetric matrices
\[\implies \text{undirected graphs} \]
\[\implies \text{“undirected ABPs”} \]

Definition
A path P is **acceptable** if $G \setminus P$ admits a cycle cover
Main construction

Weakly-Skew Circuit \Rightarrow ABP

Bruno Grenet – Symmetric Determinantal Representations of Weakly-Skew Circuits
Main construction

Weakly-Skew Circuit \Rightarrow ABP

Bruno Grenet – Symmetric Determinantal Representations of Weakly-Skew Circuits
Main construction

Weakly-Skew Circuit \implies ABP
Main construction

Weakly-Skew Circuit \Rightarrow ABP
Main construction

Weakly-Skew Circuit \implies ABP
Main construction

$\text{ABP} \iff \text{Graph}$

Add $s \xleftarrow{(1/2) \cdot (-1)^{\frac{|G|-1}{2}}} t$: new graph G'.

Diagram:

- Graph with nodes s, t, x, y, z with weights -1, -1, -1, $-1/2$.
- Edges with weights -1, -1, -1, -1.
Main construction

ABP \implies Graph

- Add $s \xleftarrow{(1/2) \cdot (-1)^{\frac{|G|-1}{2}}} t$: new graph G'.
- Cycle covers of G'
 \[\iff s \rightarrow t\text{-paths in } G\]
Main construction

ABP \implies Graph

- Add $s \leftarrow \frac{1}{2} \cdot \frac{|G| - 1}{2} \rightarrow t$: new graph G'.
- Cycle covers of G'
 \[\iff s \rightarrow t\text{-paths in } G\]
 \[\iff t \rightarrow s\text{-paths in } G.\]
Main construction

Graph \implies Matrix

\[s \]

\[x, y \]

\[z \]

\[t \]

\[-1 \]

\[-1 \]

\[-1 \]

\[-1/2 \]

\[-1 \]

\[-1 \]

\[-1 \]

\[-1 \]

\[\textbf{Determinant} \]

\[S_n = \text{Permutation group of } \{1, \ldots, n\} \]

\[\det A = \sum_{\sigma \in S_n} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)} \]
Main construction

Graph \implies Matrix

Determinant

$\mathfrak{S}_n = \text{Permutation group of } \{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}$$

- permutation in $A \equiv$ cycle cover in G'
Main construction

Graph \Longrightarrow Matrix

Determinant

$\mathcal{S}_n = \text{Permutation group of } \{1, \ldots, n\}$

$$
\det A = \sum_{\sigma \in \mathcal{S}_n} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}
$$

- permutation in $A \equiv$ cycle cover in G'
- Up to signs, $\det A =$ sum of weights of cycle covers in G'
Main construction

Summary

\[P(x_1, \ldots, x_n) \] Weakly-Skew Circuit

\[\text{Arithmetic Branching Program} = \sum_{\text{cycle cover}} C^{(j)} \cdot \text{sgn}(C) \cdot w(C) \]

\[\text{Graph } G' = \det \text{Adj}(G') \] Symmetric Matrix

Weakly-skew circuit

Non symmetric

\[e + 1 + (e+i) + 1 \]

Symmetric

\[2e + 1 + 2(e+i) + 1 \]
Main construction

Summary

\[P(x_1, \ldots, x_n) = \sum_{s-t \text{ path } P} (-1)^{|P| - 1} \frac{|P| - 1}{2} w(P) \]

Weakly-Skew Circuit

Arithmetic Branching Program
$P(x_1, \ldots, x_n)$

$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$

$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C)$

Weakly-Skew Circuit

Arithmetic Branching Program

Graph G'
Summary

\[P(x_1, \ldots, x_n) = \sum_{s-t \text{ path } P} (-1)^{|P|-1} w(P) \]

Weakly-Skew Circuit

\[= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C) \]

Arithmetic Branching Program

\[= \det \text{Adj}(G') \]

Graph \(G' \)

Symmetric Matrix

Bruno Grenet – Symmetric Determinantal Representations of Weakly-Skew Circuits
Main construction

Summary

\[P(x_1, \ldots, x_n) = \sum_{s-t \text{ path } P} (-1)^{|P| - 1} w(P) \]

Weakly-Skew Circuit

\[= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C) \]

Arithmetic Branching Program

\[= \det \text{Adj}(G') \]

Graph \(G' \)

Symmetric Matrix

<table>
<thead>
<tr>
<th>Formula</th>
<th>Weakly-skew circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non symmetric</td>
<td>(e + 1)</td>
</tr>
<tr>
<td>Symmetric</td>
<td>(2e + 1)</td>
</tr>
</tbody>
</table>

Bruno Grenet – Symmetric Determinantal Representations of Weakly-Skew Circuits
Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?
Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

\[\mathcal{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\} \text{ to itself} \]

\[\text{per}^* M = \sum_{\pi \in \mathcal{P}_n} \prod_{i \in \text{def}(\pi)} M_{i,\pi(i)} \]
Characteristic 2

Problem

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

\[\mathcal{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\} \text{ to itself} \]

\[\text{per}^* M = \sum_{\pi \in \mathcal{P}_n} \prod_{i \in \text{def}(\pi)} M_{i, \pi(i)} \]

- Injective Partial Maps \(\equiv\) Partial Matchings in a Bipartite Graph
Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$\mathcal{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\} \text{ to itself}

\begin{equation*}
\text{per}^\ast M = \sum_{\pi \in \mathcal{P}_n} \prod_{i \in \text{def}(\pi)} M_{i, \pi(i)}
\end{equation*}

- Injective Partial Maps \equiv Partial Matchings in a Bipartite Graph
- VP, VNP, VNP-complete \equiv P, NP, NP-complete for polynomials
Is the partial permanent VNP-complete in characteristic 2?
Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the *Polynomial Hierarchy collapses*.

Bruno Grenet – Symmetric Determinantal Representations of Weakly-Skew Circuits
Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the *Polynomial Hierarchy collapses.*

Main lemma

\[(\text{per}^* M)^2 \in \text{VP}\]
Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. $\det M = \det M'$.
Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. $\det M = \det M'$.

Theorem (G., Monteil, Thomassé)

In characteristic 2, Symmetric Determinantal Representations do not always exist.
Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. $\det M = \det M'$.

Theorem (G., Monteil, Thomassé)

In characteristic 2, Symmetric Determinantal Representations do not always exist.

Theorem (Malod)

In characteristic 2, the partial permanent is in VP.
Conclusion

Summary & Future Work

- Symmetric Determinantal Representations of linear size
Conclusion

Summary & Future Work

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser’s Open Problem
Conclusion

Summary & Future Work

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser’s Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
Summary & Future Work

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser’s Open Problem

- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - what can be done in that precise case?
Summary & Future Work

- Symmetric Determinantal Representations of **linear size**
- Characteristic 2: Partial answer to Bürgisser’s Open Problem

Convex Geometry: $\mathbb{K} = \mathbb{R}$ and **real zero** polynomials

~~ what can be done in that precise case?~~

- Characteristic 2:
Symmetric Determinantal Representations of linear size

Characteristic 2: Partial answer to Bürgisser’s Open Problem

Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials

what can be done in that precise case?

Characteristic 2:

- Characterize polynomials with a Symmetric Determinantal Representation
Summary & Future Work

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser’s Open Problem

Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials

What can be done in that precise case?

- Characteristic 2:
 - Characterize polynomials with a Symmetric Determinantal Representation
 - Explore other graph polynomials
Symmetric Determinantal Representations of \textit{linear size}

Characteristic 2: Partial answer to Bürgisser’s Open Problem

Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials

\implies \text{what can be done in that precise case?}

Characteristic 2:

- Characterize polynomials with a Symmetric Determinantal Representation
- Explore other graph polynomials

Symmetric matrices in Valiant’s theory?
Thank you!
1 Introduction
2 Main construction
3 Characteristic 2
4 Conclusion