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Genomes As Sighed Permutations

1-5 3 4 -2 -6
or

5-1 6 2 -4 -3
etc.




Genomes Evolve by Rearrangements

1 2 3 4 5 6 7 8 9 10

Inversion:
1 2 6 -5-4-3 7 8 9 10

Transposition:
1 2 7 8 3 4 5 6 9 10

Inverted Transposition:
1 2 7 8 -6 -5-4-3 9 10



Our Model: the Generalized
Nadeau-Taylor Model [STOC’01]

Three types of events:
Inversions (INV)
- Transpositions (TRP)
Inverted Transpositions (ITP)
Events of the same type are equiprobable
Probabilities of the three types have fixed ratio

Pr(r e INV):Pr(r € TRP) : Pr(r € ITP)
= (1-a-p8):a:p

We focus on signed circular genomes in this talk.



Edit Distances Between Genomes

e (INV) Inversion distance [Hannenhalli & Pevzner 1995]
- Computable in linear time [Moret et al 2001]

e (BP) Breakpoint distance [Watterson et al. 1982]
- Computable in linear time
- NJ(BP): [Blanchette, Kunisawa, Sankoff, 1999]

A=“1 23 45678 9 10
5="1 2 3|-8-7-6]|4 5|0 10

BP(A,B)=3




Quantifying Error

True Tree D

Inferred Tree

FN: false negative (missing edge)

II‘ 1/3=33.3% error rate



Normalized False Negative Rate (%)
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NJ(BP) and NJ(INV)
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Additive Distance Matrix and
True Evolutionary Distance (T.E.D.)

3 S1 S2 S3H S5

S1| 0 9 15 14 17

S1 . -, s S2 0 14 13 16
5 / S3 0 13 16

3 (1 4 0 13

S5 0

Theorem [Waterman et al. 1977] Given an mxm
additive distance matrix, we can reconstruct a tree
realizing the distance in O(m?) time.



Error Tolerance of Neighbor Joining

Theorem [Atteson 1999]
Let {D;jj } be the true evolutionary distances, and
{d;} be the estimated distances for T.
Let € be the length of the shortest edge in T.
If for all taxa 1,jJ, we have

1
| Djj - dij [< e

then neighbor joining returns T.
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BP and INV
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Estimate True Evolutionary Distances
Using BP

300
\

To use the scatter plot to
estimate the actual number
of events (K):
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Using Breakpoints to Estimate
T.E.D.

= Compute f (k)= E[BP(Gg,G,)]
(i.e. the expected number of breakpoints after
k random events; n is the number of genes)

e Given two genomes G and G
- Compute breakpoint distance d=BP(G,G”)
- Find k so that f, (k) Is closest to d

- Challenge: finding f, (k)
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True Evolutionary Distance (t.e.d.)
Estimators for Gene Order Data

T.E.D. Exact-1EBP | Approx-1EBP EDE
Estimator [WABIO1] [STOCV1] [ISMB11]
Based on the | Breakpoint | Breakpoint Inversion
Expectation of | distance distance distance
(Exact) (Approx.) (Approx.)
Derivation Analytical Analytical Empirical
Model Required Required Inversion-
knowledge only

IEBP: Inverting the Expected BreakPoint distance
EDE: Empirically Derived Estimator




Exact-1EBP [WABI'01]

e Breakpoints are identically distributed: use linearity

12345 => 1-4-3-25

..................................................................................................................

Breakpoint
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State Notation

® The sign and position of gene 2 with respect to gene 1
(atpos1l)is {-n,-(n-1),...,-2,23, ...,n}.

12345 => 1-4-3-25

..................................................................................................................

Breakpoint

16



Markov Chain for a Breakpoint

Let n be the number of genes

Each breakpoint (in particular, bp between genes 1 and 2) is a
Markov process with 2(n-1) states

We have

Mu,'v — (]- — Q- 28) (Mf)u,'v + Q(MT)’U{U + ,B(MV)u,v

— i 5%('&,@) + i'rn('u,, v) + 3({1)
3

(5) (5)

Vn(u,v)

where
® (,(u,v) is the number of inversions,

e 7,(u,v) is the number of transpositions,

e v,(u,v) is the number of inverted transpositions,

that bring gene 2in state u to state v (n is the number
of genes in each genome).
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e The probability trasitional matrix is easily obtained:

tn(u,v)

T‘n(ua U)

vn(u,v)

min{|u| — 1, |v| - 1,n4+1— |u|,n+ 1 — |v]|}
(if wv < 0)
0

(") + (™)

(if u # v, uv > 0)

(if u =)

0
(if wv < 0)
(min{|ul, [v[} —1)(n + 1 — max{|ul, |v]|})
(if u # v, uv > 0)
(") + (M5

(if u = v)
(n — 2)tn(u, v)
(if uwv < 0)
Tn(ua U)
(if u # v,uv > 0)
31n(u, v)

(if u =)
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Exact-1EBP

e There are 2(n-1) states.
e The transitional matrix has dimension 2(n-1) x 2(n-1).

e To compute E[BP(Gy,G,)] for k up to 2n takes O(n®)-
time. (2n matrix-vector multiplications)

20



Reducing the State Space

___________________________________

______________________________________________________________

1-u

____________________________________________________

Breakpoint

Approx-lEBP [STOC’01]:

o 2 States

* Not aMarkov process

o Simple closed-form formula

with provable error bound

21



Lower and Upper Bounds

e Under the GNT model, s Is constant

e U IS not constant, but has good lower and
upper bounds: U,y and Ugin

e Parameter u is small with respect to s

1-s

CIS

1-u

22



Inversion-Only Evolution

Unsigned genome: u,;,=U,,, —— Markov Process [Caprara &
Lancia, 2000]

Signed genome:

n-l 2

S= — 1-s S
%19 n
©; (~
1 Breakpoint
umin = O’ umax = J
ano
g 25 1-u

The two Markov chains (s,u,,,) and (s,u,,,,) give lower and
upper bounds to the expectation of breakpoint distance.
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GNT Model

e S=(1-a-Db)s +tass+tbst
Umin = (1' a - b)ul,min +ta uT,min + buIT,min

Unax = @- @ - b)ul,max taUr pa T buIT,max

° B £Pr(B(GIGy)=DER] where

Kk K
Sl- (1- S- Umax) PH _Sl' (1' S- umin)

L _
il 1- (1= S- Upay) <711 s U

n L H
" A=+ (R *+R’)~ EBPGy .Gyl
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Approx-1EBP
[Wang & Warnow, STOC' 01]

Theorem  Let Gy be the genome obtained after applying k
random rearrangement events to genome Gy according to the
GNT model with parameters o and 5. Let F;. be the estimate
to E[BP(Gy,Gy)] in the Approz-IEBP distance.

For all k > 0,

1
| Fr — E[BP(Gk,Go)]| <1+ T and

mn —
_ Fi
1<«
* < BIBP(Gy.Go)

<o

2 2 — —
where ¢ = 1 + ‘;fg i‘; n~1+0(n?).
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True Evolutionary Distance Estimators
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Variance of True Evolutionary
Distance Estimators

e There are new distance-based
phylogeny reconstruction

methods (though designed for 00—
DNA sequences) _ g4
- Weighbor [Bruno et al. 2000] S
2001 / -~

uses the variance of good

Actual number of events
o
=]
\
\

t.e.d.s, and yield more Aas
accurate trees than NJ. b ™
50l /:.:0/3'
/’./
e Variance estimates for the t.e.d.s oL
0 50 100 150 200 250 300
[Wang WABI ! 02] Exact-IEBP Distance

- Weighbor(1EBP),
Weighbor (EDE) K vs Exact-lEBP (120 genes)



Deriving Var(BP)

Difficulties in deriving Var(BP):
Even E(BP) is only in the form of unsimplified sums
[RECOMB 99, WABI 01].
Breakpoints are not independent.

We will use an approximating model to examine all
breakpoints simultaneously

Idea: once two adjacent genes are separated, it is
hard to bring the two genes back again (especially
when there are many genes).

28



Approximating Model

e Approximating box model: boxes correspond to
breakpoints.

 An approximation (using n boxes) can be obtained in
the following way:

Every inversion chooses two boxes and put a ball in
them if they are empty.

- The BP distance is approximated by the number of
nonempty boxes.

e --- @0
1 2 3 4 5

n-1 n

29



Approximating Model

e Notations:
Let B=1 if box i is not empty, O if it is.
We use inversion-only model to illustrate; let i and j

be the two breakpoints corresponding to the two
endpoints of the inversion being applied.

Let the number of breakpoints be b.
Let n be the number of genes.



Why the Approximation Works

e Case analysis: [Hannenhalli and Pevzner 1995]

Case | ?BP | Condition # inversions
1 +2 | B=B;=0 am- bo
&2 5
2 +1 B;=0, B;=1 or B;=1, B;=0 b(n - b)
3a 0] B,=B=1 Total
3b -1 B,=B,;=1, one/both of abdo
(gi_lv _gj)1 ('gi’ gj) £ b 82_
3c -2 adjacencies are in G, @

e When b is small, probability of case 3 out of cases 1, 2, and
3 is small (when n is large)

e When b is large, probability of 3b/3c out of case 3 is small
e As a result we can ignore cases 3b/3c
-> As a breakpoint is asserted, it does not disappear
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Derivation of the Variance

k
® I ‘Et — T
I IX k. L S (W(m]msz —|— T1Tr3 —|— . —|— Lnpn—1=T ))

2

Each term in the expansion of S is a way of applying k
Inversions
E.g. zizyz3 : box 1 three times, 2 once, 3 twice

The coefficient of the term is the probabilities of such k
Inversions

If transpositions and inverted transpositions are present:

k
§ — (% Z Tix; + % Z :I:L:I:J-:I:g)

2 1<i<j<n 3 1<i{g<Ii<n
- Let S(ai,as,...,a,) be the value of S when we let x;=a, for
all i.
- Let §,=95(1,1,1,...,1,0,...,0)

j s 32



Derivation of Var(BP)

- Let 1; be the sum of coefficients of all terms in the expansion of S in
the tollowing form:

XX % (8, 8y,..., > 0)

Then (I:) U;is the probability of having i nonempty boxes after k events.
< We want to compute

T i

A SYTRU PR ) PATRRRT) 3 (o

; i . 1 — 1
=M i=da

In particular,

2=8 ua“‘“9u = E[b|K] » E[BP(Gy,Gy)]

1=1 ﬂ

22—a i(i - 1)g _u = E[b?- b|k] » E[BP*(G,,G,)- BP(Gy.G,)]
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Lemma Let a be some given integer such that 1 < a < n. Let us be given
fug,us, ... uy} such that



Expectation and Variance [WABI’02]

Let b, be the number of nonempty boxes after k (box
choosing) iterations in the approximation model. Let a

+ = ?. We have
2+ 7. (n—3)(n—2-27)\"
)7871—2: .

n n(n —1)

Sp1=(1—

E?)k = n(l — Sn_l)
Varb, =nS,_1 — “”»2331.—1 +n(n — 1)331.—2

We use the delta method to obtain the variance of IEBP:

d — NSn— 1+(n—1)(8

))

Var f(b;) ~ (—Eby) " *Var by, = (

dk nS,_1(ln(1 — 2£2))2
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Simulation Results

Breakpoint Distance

Variance of BP distance after k events
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Regression Formula for
E(INV) and Var(INV)

e Let n be the number of genes, x be the normalized
number of inversions (k/n), and f(x) be the normalized
expectation of the inversion distance
(f(x) seems to be roughly independent of n)

e We use nonlinear regression to obtain easily computable
formulas for E(INV) and Var(INV):

x> + bx

fOg=min{_7—— % (x=1)

1. f(0)=0 2. f'(0)=1

3. 0£ f(X) £ x

4. f(y) exists for all y:0EYy£E1l

-> pb=0.5956, ¢c=0.4577




EDE
[Moret, Wang, Warnow, & Wyman, |SMB’ 01]
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Formula for Var(INV) and Var(EDE)

e Let n be the number of genes, x be the normalized
number of inversions (k/n), and g,(x) be the standard
deviation of the inversion distance.

e The regression of g,(x): we use the following form
2
urs + v
r) =n?
gn() r? +wx +t
q=-0.6998, u=0.1684, v=0.1573, w=-1.3893, and
t=0.8224.

e Var(EDE) can be obtained using the delta method on
Var(INV).




Regression for Var(INV)

Standard Deviation of Normalized Inversion Distance

Regression: solid lines, Simulation: dots
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Distance-Based Methods

BP

NJ

INV

Weighbor

IEBP
(Exact-, Approx-)

EDE
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Using T.E.D. Helps

oy 120 genes
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IEBP 1s Robust to Model Violations
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Maximum Parsimony Returns
Thousands of Trees

Example:

The complete Caesalpinia dataset:
7095 trees on 82 taxa.

The Astericeae dataset:
34 .560 trees on 288 taxa.

Consensus methods are necessary so we can summarize so
many trees.

Current approaches are limited to the strict consensus and
majority consensus trees, and lose information



Postprocessing:
Traditional Approaches

e Single-tree consensus
Example: strict consensus

(t,, t,, ty Al refinet) A> \/ (F
B

47



How Do We Interpret the Consensus Tree

e Given a nonbinary consensus tree t, every binary tree that
refines t is equally probable to be the true tree:

(15 refinement trees)



Disadvantages of Single-Tree Consensus

e Loses a lot of information
e Sensitive to outlier trees
e Sensitive to small perturbations in the dataset

49



Sometimes A Cluster is Enough
(Campanulaceae)

The Campanulaceae
Gene-Order Dataset

1. 13taxa
(outgroup Tobacco)
2. 216 trees

(Courtesy Nina Amenta and Jeff Klingner)



Complex Structure In the
Inferred Set of Trees

The Caesalpinia
cpDNA Dataset

1. 5] taxa

2. 342 trees

(Courtesy Nina Amenta and Jeff Klingner)

o1



Why We Want to Cluster Trees

Dividing trees into clusters, and use the consensus trees from
each cluster to represent “conflicting hypotheses” for the true

phylogeny.

Merits:
Represent the input set of trees better
Identify outliers
Restrict perturbations to a small number of clusters
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Biological Criteria

Number of clusters

Number of edges of the consensus
Diameter of a cluster

Density of clusters

Etc.



Information Loss:
How We Interpret the Clustering

e We can define distributions for both the original set of trees
and the clustering.

Input set of tree T: Clustering {C4,Cy, ..., Cy}:
All trees are equally All trees refining any of SC(C;)
probable. are equally probable.

S o @ o

\

y




Distributions

Input set of tree T:

11 i
— qf tl T
fr (t) = }_rr
t 0 othewise
e Clustering {C,,C,, .. ,C }: let
B U|—1B(C )
ili if t1 B
fC (t) = | Bl
t 0 otherwise

(Here B(C) is the set of binary trees that refine
the strict consensus of C)



Information Loss (KL)

e The distance between the two distributions is the loss of
information due to clustering.

L, distance
L, distance

L, distance |

LT, =all fr)- fe® lly
t

Kullback-Leibler distance (relative entropy):

KL(T,C)=qQ fT(t)Inf
t

fr ()
c(t)
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Postprocessing of Phylogenetic
Analysis Using Clustering [ISMB’02]

e The first framework using
clustering algorithms in the

postprocessing of phylogenetic 104 o

analyses. a o ¢ 1Clu
Improves upon the C B Phylsland
traditional single-consensus c & —o— Agglom Avg
approach in terms of -% i
information loss =

- ldentifies outliers in the o 2
Caesalpinia dataset = B
0 2 4 6 8 10

Improves the resolution of
the strict consensus by 36%

Only loses 4% of the trees Number of Clusters

S7



Caesalpinia (51 taxa, 450 trees)

Clu No. No. of Trees % Edges lost
1clu 450 22.9%
1 108 10.4%
2 324 12.5%
3 18 10.4%
1+2 432 14.6%

KL (Agg-complete, 3clu) = 1.449269
KL(1clu) =9.790346

|mprovement: (22.9-14.6)/22.9 = 36%
% trees dropped: 18/450=4%
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