
TOWARDS PRACTICAL TOOLS FOR
MINING ABSTRACTIONS IN UML MODELS

M. Dao
France Télécom R&D/MAPS/AMS

38-40 rue du général Leclerc – 92794 Issy Moulineaux Cedex9, France
michel.dao@francetelecom.com

M. Huchard
LIRMM, CNRS et Université Montpellier II, UM 5506

161 rue Ada – 34392 Montpellier cedex 5, France
huchard@lirmm.fr

M. Rouane Hacène, C. Roume, P. Valtchev
DIRO, Université de Montréal

C.P. 6128, Succ. “Centre-Ville” – Montréal, Québec, Canada, H3C 3J7
{rouanehm, roume, valtchev}@iro.umontreal.ca

Keywords: Formal concept analysis, UML class diagram, Galois lattice.

Abstract: We present an experience of applying an extensionof Formal Concept Analysis to UML class model restruc-
turing. The Relational Concept Analysis (RCA) mines potentially useful abstractions from UML classes, at-
tributes, operations and associations and therefore outscores competing restructuring techniques which usually
focus exclusively on classes. Nevertheless, the complexity and the size of the RCA output require interactive
tools to assist the human designers in comprehending the corresponding class model. We discuss the benefits
of using RCA-based techniques in the light of an initial set of tools that were devised to ease the navigation
and the visual analysis of the results of the restructuring process.

1 INTRODUCTION

Current trends in object-oriented software con-
struction, namely MDA1-based approaches (Object
Management Group, 2003; Mellor et al., 2004), pro-
mote designing high-level models concerned with do-
main and application concepts (”Platform Indepen-
dent Models”) which are belatedly mapped to the
target implementation platform (”Platform Specific
Models”). This emphasizes the importance of the
model construction activity and, hence, the design of
tools to support it.

One of the highly desirable properties of a class
model is the right use of relevant abstractions, al-
lowing readability and maximal factorization of the
underlying hierarchical structure, i.e., the optimal
use of inheritance to avoid duplication of specifica-
tions/code. Many automated approaches have been
proposed in the literature for the design of a well fac-
torized hierarchy out of a flat set of classes, for the
restructuring of an existing one in order to improve
its factorization level or for the composition of class

1Model-Driven Architecture.

hierarchies (Moore, 1996; Casais, 1995; Snelting and
Tip, 2002).

Our work is based on Formal Concept Analysis
(FCA) which is a mathematical approach towards
clustering and categorization (Ganter and Wille,
1999). FCA discovers useful abstractions from (indi-
viduals× properties) data expressed as binary tables,
the formal contexts. The abstractions, called (formal)
concepts, are hierarchically organized into a lattice,
the concept lattice of the context2. FCA has been
successfully applied to the refactoring of class hier-
archies, with classes and class members substituted
to individuals and properties, respectively (Godin
and Mili, 1993). Nevertheless, taking full advan-
tage of the expressive power of UML (Rational Soft-
ware Corporation, 1999; Object Management Group,
2004) requires relational information — e.g., associa-
tions that relate two or more classes, attributes whose
type is a class, operations whose parameter and re-
turn types are classes — to be successfully processed.
However, this sort of knowledge about entities is far

2An excellent introduction to lattice theory is provided
in (Davey and Priestley, 2002).

beyond the scope of the classical FCA framework.

Taking into account all the structural knowledge
encoded into a class model was the motivation be-
hind the relational extension of FCA (RCA) as de-
scribed in (Valtchev et al., 2003b; Dao et al., 2004).
RCA relies on a data model comparable to E-R as
it is made of a set of individual types, each intro-
duced by its own context, and a set of inter-context
relations. The underlying algorithmic method, called
ICG, structures the individuals of each type into a
concept lattice where the concepts are described both
by the shared properties of their member individu-
als and by the links to concepts from related con-
texts. The key advantage of RCA is that it allows
the abstraction knowledge to ”flow” among related
contexts: the discovery of a new concept on one con-
text triggers the formation of new concepts on every
related context. In the software engineering transla-
tion of RCA, the individuals are instances of relevant
UML meta model (meta)classes. For the sake of sim-
plicity, the theoretical description is restricted in this
paper to classes and associations: the set of classes
and of associations are assigned a type each while a
collection of relations express the various aspects of
the incidence between a class and an association. The
whole framework, applied in the experience, also con-
siders abstractions of properties and operations.

In this paper we describe an industrial experi-
ence of applying RCA to software engineering tasks.
The experience was carried out within the MACAO
project3 and consisted of the restructuring of a set of
class diagrams of different UML models. The key
challenge here was not that much the processing of
the relevant knowledge and the extraction of abstrac-
tions as the sorting of the newly created elements in
the final diagram to select only relevant and useful
ones. To assist the user in inspecting these elements,
we provided a set of tools that postprocess the results
of RCA on a UML diagram and that allow the de-
signer to browse those results more easily.

Section 2 is a brief introduction to both the clas-
sical FCA and its relational version, RCA. Section 3
presents the way ICG was applied in our experiment
whereas section 4 discusses the issues related to the
analysis of the obtained results.

3A joint project of France Télécom, SOFTEAM and
LIRMM, supported by the french department of research
and industry (RNTL).

2 ICG: A NEW METHOD FOR
MINING ABSTRACTIONS IN
RELATIONAL DATA

The method ICG is rooted on FCA techniques.
Classical FCA aims at mining concepts in a set of
entities described by properties. It has been success-
fully used in several software enginering applications
for class hierarchy analysis (Snelting and Tip, 2000;
Arévalo and Mens, 2002) or construction (Godin and
Mili, 1993; Dicky et al., 1996; Godin et al., 1998;
Huchard et al., 2000).

However, as detailed below, classical FCA is un-
able to process interrelated entity descriptions like
those extracted from a UML class diagram. This was
the key motivation behind the design of RCA and its
main algorithmic method, ICG.

2.1 Classical Formal Concept
Analysis

Entities and their description
cr

 c
re

di
t(

)

ci
 c

al
cu

la
te

In
te

re
st

()

d
de

bi
t(

)

i i
nt

er
es

tR
at

e

b
ba

la
nc

e

nb
 n

um
be

r

MA MortgageAccount

CA CheckAccount

Formal context

E

P

XXXXX

XXXX

calculateInterest()
credit()

interestRate
balance
number

MortgageAccount

debit()
credit()

balance
number

CheckAccount

Figure 1: A formal context describing classes.

In classical FCA, a set of concepts provided with
a specialization order (the concept or Galois lattice)
emphasizes commonalities in descriptions (by prop-
erty sets) of entities. Concepts emerge from a formal
contextK = (E, P, I) whereE is the entity set,P the
property set andI associates an entity with its proper-
ties: (e, p) ∈ I when entitye owns propertyp. Figure
1 provides an example of context, where entities are
classes and properties are their attributes and opera-

tions (in the table representingI, abbreviations are
proposed to be used below).

Any entity setX ⊆ E has an image inP defined by
X ′ = {p ∈ P | ∀e ∈ X, (e, p) ∈ I}. Symmetrically,
any property setY ⊆ P has an image inE defined by
Y ′ = {e ∈ E | ∀p ∈ Y, (e, p) ∈ I}. In the example,
let Y = {nb, b}, we haveY ′ = {CA, MA}, while
for X = {CA, MA}, X ′ = {nb, b, cr}.

A concept is a pair(X, Y) where X ⊆ E,
Y ⊆ P , X ′ = Y and Y ′ = X . In Figure 1,
{{CA, MA}, {nb, b, cr}} is a concept.X (resp.Y)
is usually called the extent (resp. intent) of the con-
cept.

The specialization order between concepts corre-
sponds to extent inclusion (or intent containment). In
Figure 1, the concept{{CA}, {nb, b, cr, d}} special-
izes the concept{{CA, MA}, {nb, b, cr}}. Figure 2
shows the whole concept lattice (top) and an inter-
pretation of concepts as UML classes (bottom). In
this UML interpretation, a newAccount class ap-
pears, which corresponds to the top concept of the
lattice. This can be considered as a learned abstrac-
tion. Class hierarchies constructed using this tech-
nique have several strong properties including max-
imal property factorization and conformity between
inheritance links and property set inclusion.

debit calculateInterest

interestRate

MortgageAccountCheckAccount

credit()

balance
number

Account

{}

{nb,b,i,cr,d,ci}

{CA}
{nb,b,cr,d}

{MA}
{nb,b,i,cr,ci}

extent
intent

{CA,MA}

{nb,b,cr}

UML interpretation

Concept lattice

Figure 2: The concept lattice for account concepts, inter-
pretation in UML.

2.2 Relational Concept Analysis

Although powerful, classical FCA fails taking into
account realistic UML diagrams that contain inter-
related entities. Consider for example the very sim-

ple extension of our first example shown in Figure
3. ClassesCheckAccount andMortgageAccount
are involved in associations, calledowns with similar
role names. Description of classes now also depends
on other entities, namely associations, as classes are
involved in association ends. Similarly, considering
associations as entities, among their properties, we
can find their names, role names, and the classes they
link. Attributes and operations can also be consid-
ered like first-class entities, described by properties
including their name, type, parameter type list, etc.
The types being classes, this description here also de-
pends on entities of another sort.

CheckBookHolder CheckAccount

Mortgager MortgageAccount

....

....

owns

owns

owner

owner

account

account

Figure 3: Extending the account example.

In RCA, this sort of data is introduced as a Re-
lational Context Family (RCF), a family of contexts
(one for each sort of entity) provided with inter-
context relations linking entities of two sorts. In
the case of UML diagrams, a basic RCF includes a
context for classes and another one for associations,
where a set of relational properties model the inci-
dence between classes and associations. For instance,
a relation will link a class to an association if objects
at the end of the association are instances of the class.
ICG is a method for extracting formal concepts out
of a RCF. It performs iterative lattice construction on
all contexts of the RCF doubled by an enrichment of
entity descriptions. Thus, at each step, the contexts
are extended to incorporate the conceptual knowl-
edge learned at the previous step. Figure 4 shows a
RCF for the extended account example which is com-
posed of a class context (top) and an association con-
text (bottom). Relational properties likeoriginOf or
origType have been included in the binary tables (in
italics).

At the first construction step, class context is
processed, producing the newAccount class seen be-
fore (Figure 2 bottom) but no concept (then no class
at interpretation step) for generalizingM andCBH
which have nothing common. Before processing the
association context, the fact that a new class has been
constructed is integrated. In Figure 5 it is shown how
the association context is extended by a new column
destT ype = Account in order to precise that, as in-
stances at the end ofown associations links are (re-
spectively) from classesCA andMA, they are also,
thanks to class specialization, instances of the new
classAccount. Constructing the concept lattice will
produce a concept then interpreted as a new associa-

X

Formal context for associations

ownsCBH−CA

X

X

ownsM−MA

X

or
ig

in
R

ol
e=

ow
ne

r

na
m

e=
ow

nsassoc
P

de
st

R
ol

e=
ac

co
un

t

o
ri
g

T
yp

e
=

C
B

H

o
ri
g

T
yp

e
=

M

d
e

st
T

yp
e

=
C

A

d
e

st
T

yp
e

=
M

A

XX X X

XX

properties
Relational

E
assoc

X

Formal context for classes

properties

classesP

classes

X

X

o
ri
g

in
O

f(
o

w
n

sC
B

H
−

C
A

)

Relational

M Mortgager

CBH CheckBookHolder

X

X

d
e

st
O

f(
o

w
n

sM
−

M
A

)

d
e

st
O

f(
o

w
n

sC
B

H
−

C
A

)

o
ri
g

in
O

f(
o

w
n

sM
−

M
A

)

cr
 c

re
di

t(
)

ci
 c

al
cu

la
te

In
te

re
st

()

d
de

bi
t(

)

i i
nt

er
es

tR
at

e

b
ba

la
nc

e

nb
 n

um
be

r

MA MortgageAccount

CA CheckAccount

E

XXXXX

XXX

Figure 4: A partial relational context family for the ex-
tended account example.

tion, refered afterwards asNEWowns that general-
izesownCBH −CA andownM −MA (see Figure
6).

Returning to the class context, this new association
NEWown will be ”shared” by classesM , CBH ,
MA andCA in two ways. Firstly, instances ofM and
CBH can be origins ofownCBH−CA orownM−
MA links then they can also be origins of links of
an association that represents their disjunction. This
appears in Figure 7 (top) whereM andCBH own
the propertyorigOf(NEWown). This results in a
new class, we call itClient, which generalizesM
and CBH . Secondly, classesMA and CA now
share the newly added propertydestOf(NEWown),
which then will be integrated in the definition of class
Account. The process stops there because no new
generalization appears in next steps.

For a formal definition of RCA and ICG the reader
is referred to (Huchard et al., 2002; Valtchev et al.,
2003b; Dao et al., 2004).

3 APPLYING ICG ALGORITHM
TO REAL WORLD MODELS

The ICG procedure has been implemented in
the Java-based GALICIA platform (Valtchev et al.,
2003a). The implementation has been connected

Enhancement of the association context

ownsCBH−CA

ownsM−MA

na
m

e=
ow

ns

or
ig

in
R

ol
e=

ow
ne

r

de
st

R
ol

e=
ac

co
un

t

o
ri
g

T
yp

e
=

C
B

H

o
ri
g

T
yp

e
=

M

d
e

st
T

yp
e

=
C

A

d
e

st
T

yp
e

=
M

A

X

X

X

X

X

X

X X

X X

Relational

E
assoc

P
assoc

properties

de
st

T
yp

e=
A

cc
ou

nt

X

X

account

account

owner

owner

owns

owns

....

....

MortgageAccountMortgager

CheckAccountCheckBookHolder

....

Account

Evolution of classes

Figure 5: IntegratingAccount class in the association con-
text.

to the UML CASE tool Objecteering4 (part of the
MACAO project) thus enabling the application of
ICG to UML class diagrams designed within Ob-
jecteering. Thus, for a given diagram, derived re-
lational contexts are exported5 in a format which is
readable by GALICIA . ICG within the platform is run
and its results are imported back in Objecteering in or-
der to create a new class diagram which is then stud-
ied and compared to the original one.

We present here some results of the application
of ICG to several medium-sized projects of France
Télécom. The projects pertained to different applica-
tion domains: information systems, intranet software
and user data model for telecommunication services.
Moreover, among the corresponding UML class dia-
grams there were both analysis-level and design-level
models.

Once constructed, the resulting class diagrams
were shown to the designers of the initial models who
gave an appreciation as to the pertinence of the pro-
posed restructuring with respect to underlying domain
semantics. Class hierarchies of those projects consist
of several dozens of classes while the number of new
UML elements created by ICG (attributes, operations,
classes, inheritance links) may vary from a few to sev-
eral hundreds in some cases. Many new factorization
classes or associations proposed by ICG were found
absolutely useful by the class diagram designers.

4http://www.objecteering.com.
5A limited parametrization of the constitution of the re-

lational contexts is possible within Objecteering.

accountowner

owns

{subset}{subset}

....

accountowner

owns

....

....

MortgageAccountMortgager

CheckAccountCheckBookHolder

....

Account

Evolution of associations

{name=owns,originRole=owner,destRole=account,
 destType=Account}

{ownsCBH−CA,ownsM−MA}

{name=owns,originRole=owner,destRole=account,
 originType=CBH,destType=CA,destType=Account}

{ownsCBH−CA}

{name=owns,originRole=owner,destRole=account,
 originType=M,destType=MA,destType=Account}

{ownsM−MA}

Concept lattice of associations (without bottom)

accountowner

owns

Figure 6: A newown association appears.

For instance, the diagram of Figure 8 shows the in-
tial state of a small part of a class hierarchy. The gray
background of the three right-hand-side classes indi-
cates that they are in a different package than those
on the left-hand-side. The ICG algorithm was ap-
plied once exclusively on the package containing the
four target classes and once on both packages. In
the first case (upper part of Figure 9), the associ-
ations have not been taken into account, hence the
merge of the two classesSubscribing client6

andOwning client that declare only the attribute
civil status. ClassPaying client inher-
its from this class and declares the additional at-
tributes that it declared in the initial diagram. In
the second case (lower part of Figure 9), a new
classFact217 has been created by the algorithm
to factorize the attributecivil status of classes
Paying client, Subscribing client and
Owning client. It is noteworthy that the associ-
ations ending on those three classes (has >, sends
>, owns >) ensure that classesSubscribing
client andOwning client remain present in
the new class hierarchy. Indeed,civil status
should be declared in the initial classClient but
the ICG algorithm has no way to detect such a fact:
Client does not appear in the modified diagram as
it does not declare any specific attribute or operation.
This is where the knowledge of the UML diagram de-
signer gets essential.

6In the restructured hierarchy, classes corresponding to
initial classes have the same name prefixed by an@.

owner

owns

X

X

de
st

O
f(

N
E

W
ow

ns
)

X

X

or
ig

in
O

f(
N

E
W

ow
ns

)

properties

classesP

classes

X

X

o
ri
g

in
O

f(
o

w
n

sC
B

H
−

C
A

)

Relational

M Mortgager

CBH CheckBookHolder

X

X

d
e

st
O

f(
o

w
n

sM
−

M
A

)

d
e

st
O

f(
o

w
n

sC
B

H
−

C
A

)

o
ri
g

in
O

f(
o

w
n

sM
−

M
A

)

cr
 c

re
di

t(
)

ci
 c

al
cu

la
te

In
te

re
st

()

d
de

bi
t(

)

i i
nt

er
es

tR
at

e

b
ba

la
nc

e

nb
 n

um
be

r

MA MortgageAccount

CA CheckAccount

E

XXXXX

XXXX

New evolution of class context

Account

....

CheckBookHolder CheckAccount

Mortgager MortgageAccount

....

....

owns

owner account

{subset} {subset}

Client

New evolution of classes

accountowner

owns

account

Figure 7: A newClient class appears.

Though ICG has proved useful for the improve-
ment of the project class diagrams, it also brought
to the spot some problems or shortcomings, most
of which admitted straightforward solutions. First,
the present parameter settings of the ICG algo-
rithm may result in the creation of numerous classes
whose only function is to factorize some very gen-
eral information. For instance, in the whole ICG
framework, including attribute generalization, a class
could be created to factorize the existence of an at-
tribute of type integer (it declares onlynewAttrib:
integer;). The same goes for all types of attributes
used in the class diagram, for operations and for as-
sociations. For the time being, we have chosen to re-
move those “information-less” classes in the CASE
tool, once the final UML hierarchy has been created.
It should also be possible to directly modify the ICG
algorithm but this would also impact other uses of the
GALICIA environment.

FCA and, as a result, RCA approaches rely essen-
tially on the name of the entities and properties on
which they operate. This may lead to the situation
where two attributes (or any model element, for that
matter) of the same name are factorized by the ICG
algorithm into a single one, although they correspond
to two different pieces of data. Therefore, ICG may
provide some support in detecting naming problems.

Last, the amount of new information (new classes,
new inheritance links, moving of properties, etc.)
generated by the algorithm may be difficult to analyze
by the designer of the class diagram. The next section
describes a set of tools that have been developped in

Paying client

civil status : undefined

mail address : undefined

bank account number : undefined

method of payment : undefined

Subscribing client

civil status : undefined

Owning client

civil status : undefined

::Entities::Telecom service::Invoice account

::Entities::Order::Order form

::Entities::Telecom service::Telecom Service

Client

1 *

1 1..*

*1

civil status : undefined

mail address : undefined

bank account number : undefined

method of payment : undefined

civil status : undefined

civil status : undefined

sends >

has >

owns >

Figure 8: Initial class diagram.

order to assist the class diagram designer during the
analysis of the ICG results.

4 HELPING A DESIGNER TO
ANALYZE RESULTS OF THE
ICG ALGORITHM

The previous section has shown the potential ben-
efits of using the ICG algorithm on existing UML
class diagrams in order to suggest improvements in
the structure of the class hierarchy. Nevertheless,
the experiments described have been carried out by
a software engineering practitioner and not by the
model designers themselves. Depending on the initial
class diagram, the resulting diagram may be substan-
tially different from the initial one: many factoriza-
tion classes (classes defining properties that are inher-
ited by other classes) may be created, an initial class
may be split into several new classes, etc. Thus, it
is not always straightforward for a class designer us-
ing the tool to retrieve the information present in the
initial class diagram.

The main goal of this part of our work was there-
fore to develop a set of interactive tools that would
help a designer to browse and to analyze both the ini-
tial and the modified class diagram. The ultimate goal
is a tool that can be used by UML model designers on
their own. We have so far implemented the following
functions:

• mapping elements of the initial diagram (class, at-
tribute, operation, association) on the modified di-
agram;

• mapping classes of the modified diagram to the cor-
responding classes of the initial diagram;

• finding in the initial diagram all the attributes or
operations of a class from the modified diagram;

@Subscribing client_@Owning client

civil status : undefined

@Paying client

method of payment : undefined

bank account number : undefined

mail address : undefined

civil status : undefined

method of payment : undefined

bank account number : undefined

mail address : undefined

@Paying client

mail address : undefined

method of payment : undefined

bank account number : undefined

@Subscribing client

@Holding client
@Telecom service

@Order form

@Invoice account

Fact217

civil status : undefined

mail address : undefined

owns >

sends >

has >

civil status : undefined

method of payment : undefined

bank account number : undefined

1

1

1

*

*

1..*

Figure 9: Different results of ICG.

• finding in the modified diagram all the attributes or
operations of a class from the initial diagram.

In the following sections we first briefly describe
the implementation and the interface of some of the
above functions and then expand on the use of two of
them. We also explain the benefit that a designer may
get from them.

4.1 Implementation and interface of
some functions

Given a class of the initial diagram, its matching class
from the modified diagram is the class that has ex-
actly the same properties. At the end of the ICG al-
gorithm the mapping between initial classes and the
matching class is known. In order to easily retrieve
the matching class, the initial class contains a tagged
value which is initialized with the name of the match-
ing class. Thus, the underlying mapping function sim-
ply consists in the output, in a new window, of the
matching class.

The declaration of an attribute or an operation that
was in a given class of the initial diagram may have
been moved to another class in the modified diagram:
this is what ICG is expected to do. A function has
been implemented in the CASE tool which gathers
all the classes that contribute to the definition of the

attribute or the operation in the modified diagram.

4.2 Analyzing the Factorization of
Attributes and Operations

We have implemented a function that allows to show
how all the attributes and operations of a class of
the initial diagram have been dispatched in the mod-
ified diagram. Thus, the function displays a sub-
graph of the modified class diagram containing the
classes where the properties of the initial class are
declared. Figure 10 shows an example of such a re-
sult. The left-hand-side of the figure shows the ini-
tial classRLink with all its attributes and opera-
tions. The right-hand-side shows the result retrieved
by the CASE tool function. For instance, the class
Fact375 has been created to factorize the attribute
comment and the access operationsgetComment
andsetComment. The class allows the informa-
tion embedded incomment to be shared with other
classes having these properties. Likewise the class
Fact378 factorizes the operationgetNetwork
and the classFact380 factorizes both the operation
getTopology and a more general definition of the
operationgetSupport that remains declared in the
modified classRLink.

RLink

getSupport()

getEdges()

toCopy : string

getDestination()

toDelete : string

initPF()

comment : string

createEdges()

getExtremities()

toDisplay()

getOrigin()

getComment()

setComment()

getTopology()

removeEdges()

getNetwork()

@RLink

initPF()

toCopy : string

getSupport()

getDestination()

toDelete : string

removeEdges()

createEdges()

getOrigin()

getEdges()

toDisplay()

getExtremities()

initPF()

Fact369

toCopy : string

Fact380

getSupport()

getTopology()

getSupport()

toCopy : string

getTopology()

Fact375

comment : string

setComment()

getComment()

Fact370

toDelete : string

Fact374

initPF()

Fact365

initPF()initPF()

initPF()
toDelete : string

comment : string

setComment()

getComment()

Fact382

initPF()

Fact378

getNetwork()toCopy : string

getSupport()

getDestination()

toDelete : string
initPF()

removeEdges()

createEdges()

getOrigin()

getEdges()

getNetwork()

toDisplay()

getExtremities()

Figure 10: Example of display of all properties of an initial
class.

4.3 Analyzing the Factorization of
Associations

As for the classes and the properties (attributes and
operations), a function allows an association of the

initial diagram to be highlighted in the modified di-
agram. Figure 11 (upper part) shows an example of
the use of this function: the association between the
initial classesRMacroLink andRUniLink repre-
sents the fact that aRMacroLink contains several
RUniLink and, conversely, that aRUniLink may
belong to severalRMacroLink. The association has
been factorized to another one, connecting the new
classesFact393 andFact394.

The existence of the factorization classes points out
that some other classes must share the factorized as-
sociation between them. Another function allows to
shows from a factorized association all the initial as-
sociations that it has factorized. This is depicted in
Figure 11 (lower part) where three initial associa-
tions (inclusive the one betweenRMacroLink and
RUniLink) are shown. This allows the designer to
analyze and to question the factorization.

Fact393 Fact394

@RMacroLink @RUniLink

elementssets

**

 RUniLinkRMacroLink

RUniNodeRMacroNode

RTNode RTZone

sets elements

* *

sets elements

* *

sets ensembles

* *

Figure 11: A factorized association and the corresponding
initial associations

5 CONCLUSION

We have presented here the first results of the appli-
cation of an extension of FCA to “real world” UML
class diagrams. This extension allows us to take into
account richer set of elements from the UML meta-
model (e.g., associations, properties, operations and
classes as types of model elements) thus improving
the proposed factorization of the inspected class dia-
grams. Class diagram designers have found a large
number of relevant factorization propositions among
those suggested by the ICG algorithm. Even factor-
izations that were not immediately recognized as use-
ful highlighted some modeling problems that the de-
signers were not aware of. In order to help designers
cope with the potential complexity of the class dia-
grams produced by the algorithm, we developed a few

interactive tools for browsing class sets efficiently and
visually analyze them.

Future research should focus both on the ICG
method itself and on the tool support for the explo-
ration of the automated analysis results. First, it
would be interesting to provide a more precise and
thorough tuning of the ICG algorithm. In particu-
lar, the possiblity of ignoring part of the model ele-
ments (for instance, some attributes) in the abstrac-
tion process should be granted to the ICG user. This
would allow the designer to enforce multiple decla-
rations. As shown in the paper, the ICG algorithm
may produce numerous so-called “information-less”
model elements. It is desirable for the designer to be
able to tune the generation of such elements. More-
over, a run-time interaction with the designer would
allow the evolution of the algorithm to be influenced
in a purposeful manner. Finally, the problems we met
with naming conflict resolution within this work sug-
gest that the use of natural language techniques could
be helpful for terminology clarification purposes.

This work has shown both that the use of advanced
techniques such as RCA may benefit to UML class
diagram designers but that it requires high-level inter-
active tools to assist them in the analysis and even in
the possible mining of the results.

REFERENCES

Arévalo, G. and Mens, T. (2002). Analysing Object-
Oriented Application Frameworks Using Concept
Analysis. In Bruel, J.-M. and Bellahsène, Z., editors,
Advances in Object-Oriented Information Systems -
OOIS 2002 Workshops, number 2426 in LNCS, pages
53–63. Springer.

Casais, E. (1995). Managing Class Evolution in Object-
Oriented Systems. In O.Nierstrasz and D.Tsichritzis,
editors,Object-Oriented Software Composition, pages
201–244. Prentice Hall.

Dao, M., Huchard, M., Rouane Hacène, M., Roume, C., and
Valtchev, P. (2004). Improving Generalization Level
in UML Models: Iterative Cross Generalizat ion in
Practice. In Pfeiffer, H. and Wolff, K. E., editors,Pro-
ceedings of the 12th Intl. Conference on Conceptual
Structures (ICCS’04), volume 3127 ofLecture Notes
in Computer Science, pages 346–360. Springer Ver-
lag.

Davey, B. A. and Priestley, H. A. (2002).Introduction to
Lattices and Order. Cambridge University Press, 2nd
edition.

Dicky, H., Dony, C., Huchard, M., and Libourel, T. (1996).
On Automatic Class Insertion with Overloading. In
Special issue of Sigplan Notice - Proceedings of ACM
OOPSLA’96, pages 251–267.

Ganter, B. and Wille, R. (1999).Formal Concept Analysis,
Mathematical Foundations. Springer, Berlin.

Godin, R. and Mili, H. (1993). Building and Maintaining
Analysis-Level Class Hierarchies Using Galois Lat-
tices. In Proceedings of OOPSLA’93, Washington
(DC), USA, pages 394–410.

Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., and
Chau, T. (1998). Design of Class Hierarchies Based
on Concept (Galois) Lattices.Theory and Practice of
Object Systems, 4(2).

Huchard, M., Dicky, H., and Leblanc, H. (2000). Galois
Lattice as a Framework to Specify Algorithms Build-
ing Class Hierarchies.Theoretical Informatics and
Applications, 34:521–548.

Huchard, M., Roume, C., and Valtchev, P. (2002). When
Concepts Point at other Concepts: the Case of UML
Diagram Reconstruction. InProceedings of the 2nd
Workshop on Advances in Formal Concept Analysis
for Knowledge Discovery in Databases (FCAKDD),
pages 32–43.

Mellor, S. J., Scott, K., Uhl, A., and Weise, D. (2004).MDA
Distilled – Principles of Model-Driven Architecture.
Addison Wesley Professional.

Moore, I. (1996). Automatic Inheritance Hierarchy Re-
structuring and Method Refactoring. InProceedings
of OOPSLA’96, San Jose (CA), USA, pages 235–250.

Object Management Group (2003).MDA-Guide, V1.0.1,
omg/03-06-01.

Object Management Group (2004).UML 2.0 Superstruc-
ture Specification. ptc/04-10-02.

Rational Software Corporation (1999).UML v 1.3, Seman-
tics, version 1.3 edition.

Snelting, G. and Tip, F. (2000). Understanding Class Hier-
archies Using Concept Analysis.ACM Transactions
on Programming Languages and Systems, 22(3):540–
582.

Snelting, G. and Tip, F. (2002). Semantics-Based Compo-
sition of Class Hierarchies. In Magnusson, B., editor,
ECOOP 2002 - 16th European Conference on Object-
Oriented Programming,, volume 2374 ofLNCS, pages
562–584. Springer.

Valtchev, P., Grosser, D., Roume, C., and Rouane Hacène,
M. (2003a). GALICIA : an Open Platform for Lat-
tices. In B. Ganter, A. d. M., editor,Using Concep-
tual Structures: Contributions to 11th Intl. Confer-
ence on Conceptual Structures (ICCS’03), pages 241–
254, Aachen (DE). Shaker Verlag.

Valtchev, P., Rouane Hacène, M., Huchard, M., and Roume,
C. (2003b). Extracting Formal Concepts out of Re-
lational Data. In SanJuan, E., Berry, A., Sigayret,
A., and Napoli, A., editors,Proceedings of the 4th
Intl. Conference Journées de l’Informatique Messine
(JIM’03): Knowledge Discovery and Discrete Math-
ematics, Metz (FR), 3-6 September, pages 37–49. IN-
RIA.

