
Modular Number Systems:
Beyond the Mersenne Family

Jean-Claude Bajard1, Laurent Imbert1,2, and Thomas Plantard1

1 LIRMM, CNRS UMR 5506,
161 rue Ada, 34392 Montpellier cedex 5, France

2 ATIPS, CISaC, University of Calgary,
2500 University drive N.W, Calgary, T2N 1C2, Canada
{bajard, plantard, Laurent.Imbert}@lirmm.fr

Abstract. In SAC 2003, J. Chung and A. Hasan introduced a new class
of specific moduli for cryptography, called the more generalized Mersenne
numbers, in reference to J. Solinas’ generalized Mersenne numbers pro-
posed in 1999. This paper pursues the quest. The main idea is a new
representation, called Modular Number System (MNS), which allows ef-
ficient implementation of the modular arithmetic operations required in
cryptography. We propose a modular multiplication which only requires
n2 multiplications and 3(2n2 − n + 1) additions, where n is the size (in
words) of the operands. Our solution is thus more efficient than Mont-
gomery for a very large class of numbers that do not belong to the large
Mersenne family.

Keywords: Generalized Mersenne numbers, Montgomery multiplica-
tion, Elliptic curve cryptography

1 Introduction

Efficient implementation of modular arithmetic is an important prerequisite in
today’s public-key cryptography [6]. In the case of elliptic curves defined over
prime fields, operations are performed modulo prime numbers whose size range
from 160 to 500 bits [4].

For moduli p that are not of special form, Montgomery [7] or Barrett [1]
algorithms are widely used. However, modular multiplication and reduction can
be accelerated considerably when the modulus p has a special form. Mersenne
numbers of the form 2m − 1 are well known examples, but they are not useful
for cryptography because there are only a few primes (the first Mersenne primes
are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, etc). Pseudo-Mersenne of the
form 2m − c, introduced by R. Crandall in [3], allow for very efficient modular
reduction if c is a small integer. In 1999, J. Solinas [8] introduced the family of
generalized Mersenne numbers. They are expressed as p = f(t), where f is a
well chosen monic integral polynomial and t is a power of 2, and lead to very
fast modular reduction using only a few number of additions and subtractions.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 159–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 J.-C. Bajard, L. Imbert, and T. Plantard

For example, the five NIST primes listed below, recommended in the FIPS 186-2
standard for defining elliptic curves over primes fields, belong to this class1.

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1

In 2003, J. Chung and A. Hasan, in a paper entitled “more generalized Mersenne
numbers” [2], extended J. Solinas’ concept, by allowing any integer for t.

In this paper we further extend the idea of defining new classes of numbers
(possibly prime), suitable for cryptography. However, the resemblance with the
previous works ends here. Instead of considering moduli of special form, we rep-
resent the integers modulo p in the so-called Modular Number System (MNS).
By a careful choice of the parameters which define our MNS, we introduce the
concept of Adapted Modular Number System (AMNS). We propose a modular
multiplication which is more efficient than Montgomery’s algorithm, and we ex-
plain how to define suitable prime moduli for cryptography. We provide examples
of such numbers at the end of the paper.

2 Modular Number Systems

In positional number systems, we represent any nonnegative integer X in base
β as

X =
k−1∑

i=0

di βi, (1)

where the digits dis belong to the set {0, . . . , β − 1}. If dk−1 �= 0, we call X a
k-digit base-β number.

In cryptographic applications, computations have to be done over finite rings
or fields. In these cases, we manipulate representatives of equivalence classes
modulo P (for simplicity we use the set of positive integers {0, 1, 2, . . . , P − 1}),
and the operations are performed modulo P .

In the next definition, we extend the notion of positional number system to
represent the integers modulo P .

Definition 1 (MNS). A Modular Number System (MNS) B is defined accord-
ing to four parameters (γ, ρ, n, P), such that all positive integers 0 ≤ X < P can
be written as

X =
n−1∑

i=0

xi γi mod P, (2)

1 Note that p521 is also a Mersenne prime.

Modular Number Systems: Beyond the Mersenne Family 161

with 1 < γ < P , and xi ∈ {0, . . . , ρ − 1}. The vector (x0, x1, . . . , xn−1)B denotes
the representation of X in B.

In the sequel of the paper, we shall omit the subscript (.)B when it is clear from
the context, and we shall consider X either as a vector or as a polynomial (in
γ). In the later, the xis correspond to the coefficients of the polynomial (note
that we use a left-to-right notation; x0 is the constant term).

Example 1. Let us consider the MNS defined with γ = 7, ρ = 3, n = 3, P = 17.
Over this system, we represent the elements of Z17 as polynomials in γ of degree
at most 3 with coefficients in {0, 1, 2} (cf. Table 1).

Table 1. The elements of Z17 in B = MNS(7, 3, 3, 17)

0 1 2 3 4 5
0 1 2 γ + 2γ2 1 + γ + 2γ2 γ + γ2

6 7 8 9 10 11
1 + γ + γ2 γ 1 + γ 2 + γ 2γ + 2γ2 1 + 2γ + 2γ2

12 13 14 15 16
2γ + γ2 1 + 2γ + γ2 2γ 1 + 2γ 2 + 2γ

We remark that this system is redundant. For example, we can write 5 = 2+γ3 =
γ + γ2, or 14 = 1 + 2γ2 = 2γ. However, we do not take any advantage of this
property in this paper.

Definition 2 (AMNS). A modular number system B = MNS(γ, ρ, n, P) is
called Adapted Modular Number System (AMNS) if γn mod P = c is a small
integer. In this case we shall denote B = AMNS(γ, ρ, n, P, c).

Although c is given by γn mod P , we introduce it in the AMNS definition to
simplify the notations.

Note that it is not obvious (see Section 5) to prove that a given set of param-
eters (γ, ρ, n, P) is an MNS. Algorithm 3, presented in the next section, gives
sufficient conditions to prove that this is an AMNS.

In the rest of the paper, we shall consider B = AMNS(γ, ρ, n, P, c), unless
otherwise specified.

3 Modular Multiplication

As in [2], modular multiplication is performed in three steps presented in Algo-
rithm 1.

In order to evaluate the computational complexity of Algorithm 1, let us get
into more details. In the first step we evaluate

U(X) =
2n−2∑

i=0

ui Xi, where ui =
i∑

j=0

ai bi−j , (3)

162 J.-C. Bajard, L. Imbert, and T. Plantard

Algorithm 1 – Modular Multiplication
Input : An AMNS B = (γ, ρ, n, P, c), and A = (a0, ..., an−1), B = (b0, ..., bn−1)
Output : S = (s0, ..., sn−1) such that S = A B mod P
1: Polynomial multiplication in Z[X]: U(X)← A(X) B(X)
2: Polynomial reduction: V (X)← U(X) mod (Xn − c)
3: Coefficient reduction: S ← CR(V), gives S ≡ V (γ) (mod P)

where at = bt = 0 for t > n−1. We have u0 = a0b0 < ρ2, u1 = a0b1+a1b0 < 2ρ2,
etc. Clearly, the largest coefficient is un−1 < nρ2. Then, for the coefficients of
degree greater than n − 1, we have un < (n − 1)ρ2, . . . , u2n−2 < ρ2.

The cost of the first step clearly depends on the size of ρ and n. It requires
n2 products of size log2(ρ), and (n − 1)2 additions of size at most log2(nρ2).

In step 2, we compute

V (X) =
n−1∑

i=0

vi Xi, where vi = ui + c ui+n. (4)

This yields
vi < cnρ2, for i = 0 . . . n − 1. (5)

The cost of step 2 is (n−1) products between the constant c and numbers of size
log2(nρ2), and (n − 1) additions of size log2(cnρ2). When c is a small constant,
for example a power of 2, the (n − 1) products can be implemented with only
(n − 1) shifts and additions.

In order to get a valid AMNS representation we must reduce the coefficients
such that all the vis are less than ρ. This is the purpose of the coefficient reduc-
tion.

3.1 Coefficient Reduction

For simplicity, we define ρ = 2k+1. We reduce the elements of the vector V,
obtained after step 2 of Algorithm 1, by iteratively applying Algorithm 2, pre-
sented below, which reduces numbers of size � 3k

2 � bits to numbers of size k + 1,
i.e. less than ρ.

So, let us first consider a vector V with elements of size at most � 3k
2 � bits.

Our goal is to find a representation of V where the elements are less than ρ, i.e.
of size at most k + 1 bits.

If V = (v0, . . . , vn−1), we define two vectors V and V such that

V = V + V · 2kI, (6)

where the elements of V are less than 2k and those of V are less than 2�k/2�. In
equation (6), I denotes the n × n identity matrix explicitly given by Iij = δij

for i, j = 0, . . . , n − 1 and δij is the Kronecker delta.
If we can express V ·2kI as a vector with elements less than 2k, then the sum

of the two vectors in (6) is less than 2k+1, and gives a valid AMNS representation
of V . The idea is to find a matrix M with small coefficients which satisfies

Modular Number Systems: Beyond the Mersenne Family 163

M · (1, γ, . . . , γn−1)T ≡ 2kI · (1, γ, . . . , γn−1)T (mod P). (7)

Roughly speaking, the matrix M can be seen as a representation of 2kI in the
AMNS.

If 2k = (ξ0, . . . , ξn−1)B, is a representation of 2k in the AMNS, then by
definition 1 we have

2k ≡ ξ0 + ξ1γ + · · · + ξn−1γ
n−1 (mod P). (8)

Similarly the following congruences hold:

γ 2k ≡ cξn−1 + ξ0γ + · · · + ξn−2γ
n−1 (mod P) (9)

γ2 2k ≡ cξn−2 + cξn−1γ + ξ0γ
2 + · · · + ξn−3γ

n−1 (mod P) (10)
...

γn−1 2k ≡ cξ1 + cξ2γ + · · · + cξn−1γ
n−2 + ξ0γ

n−1 (mod P). (11)

Equations (8) to (11) allow us to define the matrix

M =

⎛

⎜⎜⎜⎝

ξ0 ξ1 · · · ξn−1
cξn−1 ξ0 · · · ξn−2

...
cξ1 cξ2 · · · cξn−1 ξ0

⎞

⎟⎟⎟⎠ (12)

which satisfies equation (7). Thus V · 2kI ≡ V · M (mod P), and equation (6)
becomes

V = V + V · M. (13)

If we impose c
∑n−1

i=0 ξi < 2�k/2�, then the elements of the vector V · M are less
than 2k. Algorithm 2 implements equation (13) to reduce the elements of V to
a valid AMNS representation, i.e. with vi < ρ = 2k+1 for i = 0 . . . n − 1.

Algorithm 2 – Red(V, B): reduction from � 3k
2 � to k + 1 bits

Input : B = (γ, ρ, n, P, c) an AMNS with ρ = 2k+1; 2k = (ξ0, ..., ξn−1) with
c
∑n−1

i=0 ξi < 2�k/2�; a matrix M as defined in (12); a vector V = (v0, . . . , vn−1)
with vi < 2�3k/2� for i = 0 . . . n− 1.

Output : S = (s0, ..., sn−1) with si < ρ for all i = 0 . . . n− 1.
1: Define vectors V and V such that V = V + V · 2kI
2: Compute S ← V + V ·M

The cost of Algorithm 2 is n2 multiplications of size k
2 and n additions of

size k. However, since the Mij in (12) are small constants, the n2 products can
be efficiently computed with only a small number of additions and shifts. For

164 J.-C. Bajard, L. Imbert, and T. Plantard

example, if c and the ξis are small powers of 2, then we can evaluate V ·M with
n(n − 1) additions. In this case the total cost for Red is n2 additions of size k.

In order to reduce polynomials with coefficients larger than 3k
2 bits, we itera-

tively apply the previous algorithm until all the coefficients are less than ρ. The
following theorem holds.

Theorem 1. Let us define B = AMNS(γ, ρ, n, P, c), with ρ = 2k+1. We denote
(ξ0, . . . , ξn−1) a representation of 2k in B, and we assume V = (v0, . . . , vn−1)
with vi < cnρ2.

If c
∑n−1

i=0 ξi < 2�k/2� then there exists an algorithm which reduces V into a
valid AMNS representation, in k+2+�log2(cn)�

�k/2�−1 calls to Red (algorithm 2).

Proof. After step 2 of Algorithm 1, and under the condition ρ = 2k+1, the
elements of V satisfy vi < 22k+2cn. Thus |vi| < 2k + 3 + �log2(cn)�, where
|vi| denotes the size of vi. Since each step of Red eliminates �k

2 � − 1 bits of
vi, the number of iteration is given by the value t which satisfy the equation
2k + 3 + �log2(cn)� − t

(�k
2 � − 1

)
= k + 1, i.e. t = k+2+�log2(cn)�

�k/2�−1 . This gives

t = 2 + 8+2�log2(cn)�
k−2 is k is even, and t = 2 + 6+2�log2(cn)�

k−1 if k is odd. �

Note that in practice, the number of iterations is very small. In the examples of
section 5, the coefficient reduction step only requires 3 or 4 calls to algorithm
Red. Algorithm 3 implements theorem 1.

Algorithm 3 – CR(V, B), Coefficient reduction
Input : B = (γ, ρ, n, P, c) an AMNS with ρ = 2k+1; 2k = (ξ0, ..., ξn−1) with

c
∑n−1

i=0 ξi < 2�k/2�; a vector V = (v0, ..., vn−1).
Output : S = (s0, ..., sn−1) with si < ρ for all i = 0 . . . n− 1.
1: l← max(�log2(vi)�+ 1)
2: U ← V
3: while l > 3k

2 do
4: Define U and U s.t. U = U + 2l−3k/2 · U
5: U ← Red(U,B)
6: U ← U + 2l−3k/2 · U
7: l← max(�log2(Ui)�+ 1)
8: end while
9: S ← Red(U,B)

4 Complexity Comparisons

In this section, we evaluate the number of elementary operations (word-length
multiplications and additions) of our modular multiplication algorithm. Since
the complexity of our algorithms clearly depends on many parameters we try to
consider different interesting options. For simplicity, we assume cn < ρ as this
is the case in the examples presented in the next section.

Modular Number Systems: Beyond the Mersenne Family 165

For a large part, the moduli (possibly primes) we are able to generate do
not belong neither to Solinas’ [8] or Chung and Hasan’s generalized Mersenne
family [2]. Thus, we only compare our algorithm with Montgomery since it was
the best known algorithm available for those numbers.

As explained in section 3, our modular multiplication requires three steps:
polynomial multiplication, polynomial reduction, and coefficient reduction.

The polynomial multiplication only depends on n and ρ. If ρ = 2k+1 (k + 1
is the word-size), the cost of the first step is n2 Tm, where Tm is the delay of one
word-length multiplication, and (n−1)2 additions involving two-word operands,
i.e. of cost less than 3(n − 1)2 Ta, where Ta is the delay of one word-length
addition. Thus, the cost of step 1 is

n2 Tm + 3(n − 1)2 Ta.

The polynomial reduction depends on n, ρ, and c. In the general case, it
requires (n − 1) multiplications of size log2(nρ2). However, if c = 1, 2, 4 (resp.
c = 3, 5, 6) it can be implemented in n shift-and-add of three-word numbers
(resp. 2n shift-and-add). This yields a cost of 3n Ta (resp. 6n Ta). Thus, for the
second step, a careful choice of c can lead to

3n Ta.

The coefficient reduction depends on all the parameters. The cost of algorithm
Red, for ξi = 0, 1, 2 and c = 1, 2, 4 is n2 Ta (it becomes n2 + (n−1)2

2 Ta if c =
3, 5, 6). From theorem 1, algorithm CR requires 3 calls to Red if cn < 2(k−10)/2 (4
calls if cn < 2k−10). Finally, step 3 requires 3n2 Ta if cn < 2(k−10)/2, ξi = 0, 1, 2,
and c = 1, 2, 4 (we have 8n2 Ta if cn < 2k−10, ξi = 0, 1, 2, c = 3, 5, 6). As for the
previous step, a good choice of c and the ξis gives a complexity of

3n2 Ta.

The important point here is that we can perform the coefficient reduction with-
out multiplications.

To summarize, our algorithm performs the modular multiplication, where
the moduli do not belong to the generalized Mersenne families – introduced by
Solinas, and Chung and Hasan – in

n2 Tm + 3
(
2n2 − n + 1

)
Ta.

This is better than Montgomery which requires 2n2 Tm (cf. [7], [5]).
In the next section we explain how we define such modulus and we give

examples that reach this complexity.

5 Construction of Suitable Moduli

In this section we explain how to find γ and P which allow fast modular arith-
metic.

166 J.-C. Bajard, L. Imbert, and T. Plantard

Let us first fix some of the parameters. Since we represent numbers as polyno-
mials of coefficients less than ρ = 2k+1, it is advantageous to define ρ according
to the word-size of the targeted architecture, i.e. by taking k = 15, 31, 63 for 16-
bit, 32-bit, and 64-bit architectures respectively. We define n such that (k + 1)n
roughly corresponds to the desired dynamic range. To get a very efficient reduc-
tion of the coefficients, we impose restrictions on the ξis, for example by only
allowing values in {0, 1, 2}, and we choose very small values for c. Based on the
previous choices, we now try to find suitable P and γ.

From equation (7), we deduce V · (2kI − M) ≡ 0 (mod P), for all V =
(v0, . . . , vn−1)B. Thus, it is clear that the determinant

d =
∣∣2kI − M

∣∣ ≡ 0 (mod P). (14)

All the divisors of d, including d itself, can be chosen for P . If we need P to be
prime, we can either try to find a prime factor of the determinant which is large
enough (this is easier than factorization since it suffices to eliminate the small
prime factors up to an arbitrary bound), or consider only the cases where the
determinant is already a prime.

We remark that γ is a root, modulo P , of both γn − c and 2k − ∑n−1
i=0 ξi γi.

Thus γ is also a root of gcd(γn − c, 2k − ∑n−1
i=0 ξi γi) mod P .

5.1 Generating Primes for Cryptographic Applications

For elliptic curve defined over prime fields, P must be a prime of size at least
160 bits.

Let us assume a 16-bit architecture. We fix ρ = 216, and we see if we can
generate good primes P with n = 11. Note that nk = 176 does not guaranty 176-
bit primes for P . In practice, the candidates we obtain are slightly smaller. We
impose strong restrictions on the other parameters, by allowing only ξi ∈ {0, 1},
and 2 ≤ c ≤ 6.

As an example, we consider c = 3, and 2k = (1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)B, which
correspond to the polynomial 1 + x5 + x8 + x9 + x10. Using (14), we compute

d = 46752355065074474485602713457356337710161910767327,

which has

P = 792412797713126686196656160294175215426473063853

as a prime factor of size 160 bits.
Then, we compute a root of gcd(x11 −3, 215 −1−x5 −x8 −x9 −x10) modulo

P , and we obtain

γ = 474796736496801627149092588633773724051936841406.

We have investigated different set of parameters and applied the same tech-
nique to define suitable prime moduli. In Table 2, we give the number of such
primes and the corresponding parameters.

Modular Number Systems: Beyond the Mersenne Family 167

Table 2. Number of primes P greater than 2160 for use in elliptic curve cryptography,
and the corresponding AMNS parameters

k + 1 n c ξi Number of primes of size ≥ 160 bits

16 11 {2, 3} {0, 1} 132
16 11 {2, 3, 4, 5, 6} {0, 1} 306
16 11 2 {0, 1, 2} 3106
16 11 {2, 3, 4, 5, 6} {0, 1, 2} ≥ 7416 (a)
32 6 {2, 3, 4, 5, 6} {0, 1} ≥ 12 (b)
32 6 {2, 3, 4, 5, 6} {0, 1, 2} ≥ 87 (b)
64 16 {2, 3, 4, 5, 6} {0, 1} ≥ 1053 (b)

(a): the determinant d was already a prime in 7416 cases. We did not try to factorize
it in the other cases.
(b): computation interrupted.

6 Others Operations in an AMNS

In this section we briefly describe the other basic operations in AMNS in order
to provide a fully functional system for cryptographic applications. We present
methods for converting numbers between binary and AMNS, as well as solutions
for addition and subtraction. In the context of elliptic curve cryptography, it is
important to notice that, except for the inversion which can be performed only
once at the very end of the computations if we use projective coordinates, all
the operations can be computed within the AMNS. Thus conversions are only
required at the beginning and at the end of the process.

6.1 Conversion from Binary to AMNS

Theorem 2. If X is an integer such that 0 ≤ X < P , given in classical binary
representation, then a representation of X in the AMNS B is obtained with at
most 2(n − 1) + 6(n−1)

k−2 calls to Red.

Proof. We simply remark that P < 2n(k+1) and that the size of the largest
coefficient of X is reduced by �k

2 � − 1 bits after each call to Red. Thus the
reduction of 0 ≤ X < P requires at least (n−1)(k+1)

� k
2 �−1

iterations, or more precisely

2(n − 1) + 6(n−1)
k−2 is k is even, and 2(n − 1) + 4(n−1)

k−1 if k is odd. �

We use theorem 2 by applying the coefficient reduction CR (Algorithm 3) to the
vector (X, 0, . . . , 0).

6.2 Conversion from AMNS to Binary

Given X = (x0, . . . , xn−1)B, we have to evaluate X =
∑n−1

i=0 xiγ
i mod P . The

binary representation of X can be obtained with Horner’s scheme

X = x0 + γ (x1 + γ (x2 + · · · + γ (xn−2 + γ xn−1) · · ·)) mod P.

168 J.-C. Bajard, L. Imbert, and T. Plantard

Since γ is of the same order of magnitude as P , the successive modular
multiplications must be evaluated with Barrett or Montgomery algorithms. The
cost of the conversion is thus at most 3n3 Tm.

6.3 Addition, Subtraction

Given X = (x0, . . . , xn−1)B and Y = (y0, . . . , yn−1)B, the addition is simply
given by S = (x0 + y0, . . . , xn−1 + yn−1)B+ , where B+ denotes an extension
of the AMNS B where the elements are not necessarily less than ρ. Since the
input vectors of our modular multiplication algorithm do not need to have their
elements less than ρ, this is a valid representation. However, if the reduction to
B is required, it can be done thanks to algorithm CR.

Subtraction X − Y is performed by adding X and the negative of Y . We
use Z = (z0, . . . , zn−1)B+ as a representation of 0 in B+, i.e. with zi > ρ for
i = 0 . . . n − 1. From (12) and (13) we have

Z =
n−1∑

i=0

ziγ
i ≡ 0 mod P,

with zi = 3
[
2k −

(∑i
j=0 ξj + c

∑n−1
j=i+1 ξj

)]
.

The negative of Y is thus given in B+ by the vector (z0 − y0, . . . , zn−1 −
yn−1)B+. For the reduction in B, the same remark as for the addition applies.

7 Conclusions

In this paper we defined a new family of moduli suitable for cryptography. In
that sense, this research can be seen as an extension of the works by J. Solinas,
and J. Chung and A. Hasan. We introduced a new system of representation for
the integers modulo P , called Adapted Modular Number System (AMNS), and
we proposed a modular multiplication in AMNS which is more efficient than
Montgomery. We explained how to construct an AMNS which lead to moduli
suitable for fast modular arithmetic, and we explicitly provided examples of
primes for cryptographic sizes. Future researches on this subject will be dedicated
to the problem of defining an AMNS for a given number p, and to the exploration
of the potential advantages of the redundancy of this representation.

Acknowledgments

This work was done during L. Imbert leave of absence at the university of Cal-
gary, with the ATIPS2 and CISaC3 laboratories. It was also partly supported
by the French ministry of education and research under the ACI 2002, “OpAC,
Opérateurs arithmétiques pour la Cryptographie”, grant number C03-02.

2 Advanced Technology Information Processing Systems, www.atips.ca
3 Centre for Information Security and Cryptography, cisac.math.ucalgary.ca

Modular Number Systems: Beyond the Mersenne Family 169

References

1. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In A. M. Odlyzko, editor, Advances
in Cryptology - Crypto ’86, volume 263 of LNCS, pages 311–326. Springer-Verlag,
1986.

2. J. Chung and A. Hasan. More generalized mersenne numbers. In M. Matsui and
R. Zuccherato, editors, Selected Areas in Cryptography – SAC 2003, volume 3006 of
LNCS, Ottawa, Canada, August 2003. Springer-Verlag. (to appear).

3. R. Crandall. Method and apparatus for public key exchange in a cryptographic
system. U.S. Patent number 5159632, 1992.

4. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

5. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

6. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

7. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

8. J. Solinas. Generalized mersenne numbers. Research Report CORR-99-39, Cen-
ter for Applied Cryptographic Research, University of Waterloo, Waterloo, ON,
Canada, 1999.

	Introduction
	Modular Number Systems
	Modular Multiplication
	Coefficient Reduction

	Complexity Comparisons
	Construction of Suitable Moduli
	Generating Primes for Cryptographic Applications

	Others Operations in an AMNS
	Conversion from Binary to AMNS
	Conversion from AMNS to Binary
	Addition, Subtraction

	Conclusions

