
Arithmetic Operations in Finite Fields of
Medium Prime Characteristic Using

the Lagrange Representation
Jean-Claude Bajard, Member, IEEE, Laurent Imbert, Member, IEEE, and Christophe Nègre

Abstract—In this paper, we propose a complete set of algorithms for the arithmetic operations in finite fields of prime medium

characteristic. The elements of the fields IFpk are represented using the newly defined Lagrange representation, where polynomials are

expressed using their values at sufficiently many points. Our multiplication algorithm, which uses a Montgomery approach, can be

implemented in OðkÞ multiplications and Oðk2 log kÞ additions in the base field IFp. For the inversion, we propose a variant of the

extended Euclidean GCD algorithm, where the inputs are given in the Lagrange representation. The Lagrange representation scheme

and the arithmetic algorithms presented in the present work represent an interesting alternative for elliptic curve cryptography.

Index Terms—Finite field arithmetic, optimal extension fields, Newton interpolation, Euclidean algorithm, elliptic curve cryptography.
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1 INTRODUCTION

FINITE field arithmetic is an important prerequisite for
many scientific applications. The main motivation of

this work is in the context of elliptic curve cryptography
(ECC), which was proposed independently by Koblitz [1]
and Miller [2] in 1985 as an alternative to the existing group-
based algorithms [3]. Since then, an immense amount of
research has been dedicated to securing and accelerating its
implementations. ECC has quickly received a lot of
attention because of smaller key-length and increased
theoretical robustness (there is no known subexponential
algorithm to solve the ECDLP problem, which is the
foundation of ECC). The relatively small key-size (the
security provided by a 160-bit key is equivalent to an 80-bit
symmetric-key for block ciphers or a 1,024-bit RSA
modulus) is a major advantage for devices with limited
hardware resources such as smartcards, cell phones, or
PDAs. As a result, ECC has kept receiving commercial
acceptance and has been included in numerous standards
such as IEEE 1363 [4] and NIST FIPS 186.2 [5]. These
standards recommend carefully chosen elliptic curves,
allowing for secure and efficient implementations over
either (large) prime or binary fields. With most of the
research following the standard recommendations, alter-
native solutions and obvious areas of interest have received
very little attention.

The most studied alternatives to the recommended
prime and binary fields are the optimal extension fields
(OEF) IFpk , proposed by Bailey and Paar in [6], [7], where p
is a prime of the form 2n � c, with jcj � n=2, and there exists
an irreducible polynomial over IFp of the form Xk � !, with
! 2 IFp. If c ¼ �1, then the OEF is said to be of Type I and, if
! ¼ 2, then the OEF is said to be of Type II. (See [8] for more
details and examples of optimal extension fields of Types I
and II.)

Elliptic curves defined over fields of characteristic three
have recently been considered by Smart and Westwood [9].
Their conclusion is that such curves “could offer greater
performance than currently perceived by the community.”
Already, in 1999, Smart proposed a generalization of
Solinas’ work [10] on anomalous binary curves (best known
as Koblitz curves [11]) and explained how to use a
Frobenius expansion method to speed up the scalar multi-
plication over fields of odd characteristic.

In this paper, we propose a complete set of arithmetic
operations in finite extension fields of medium prime
characteristic. We consider the fields IFpk ’ IFp½X�=ðNÞ,
where N is a monic irreducible polynomial of degree k,
called the reduction polynomial. In other words, this
isomorphism tells us that the elements of IFpk can be
expressed as the set of all polynomials of degree at most
k� 1, with coefficients in IFp. The arithmetic operations
(addition, multiplication) are carried out using polynomial
arithmetic modulo N .

Compared to the previous works, the novelty comes from
the fact that the operands are represented in the so-called
Lagrange representation (LR), which means that our polyno-
mials are not represented by their coefficients, but, rather, by
using their values at sufficiently many points. We define the
Lagrange representation and present the basic operations in
LR in Section 2. After recalling Montgomery and the OEF
algorithms for multiplication over a finite field IFpk in
Section 3, we propose a modified Montgomery algorithm
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for the multiplication modulo N in Section 4. We propose
several variants and optimization strategies which can lead to
very efficient implementations. For example, under certain
conditions, it only requires a linear number of multiplications
in IFp. In Section 5, we propose a Lehmer-based GCD
algorithm [12] for computing the inverse of an element A 2
IFpk modulo N . We discuss the advantages of the Lagrange
representation in the context of ECC in Section 6.

2 LAGRANGE REPRESENTATION

In this section, we define the Lagrange representation
(LR) and we briefly present the basic operations in LR,
namely, addition/subtraction, multiplication,1 and the
conversions between the coefficient-based and the La-
grange representations.

The Lagrange representation scheme can be defined by
considering a special case of the Chinese Remainder Theorem
(CRT). Let us consider the polynomial �ðXÞ ¼

Qk
i¼1ðX � eiÞ,

where ei 2 IFp for 1 � i � k and ei 6¼ ej for i 6¼ j. (Note
that this clearly implies k < p; we mean precisely that
since we shall also need �0ðXÞ ¼

Qk
i¼1ðX � e0iÞ such that

gcdð�;�0Þ ¼ 1 for our multiplication algorithm, the con-
dition will become 2k < p.) For any arbitrary U 2 IFp½X�,
we have U mod ðX � eiÞ ¼ UðeiÞ. By extension, the ring
isomorphism given by the Chinese Remainder Theorem,

IFp½X�=ð�Þ�!IFp½X�=ðX � e1Þ � . . .� IFp½X�=ðX � ekÞ
U 7�! U mod ðX � e1Þ; . . . ; U mod ðX � ekÞð Þ;

ð1Þ

is the evaluation map of the polynomial U at all points
e1; . . . ; ek: U 7! Uðe1Þ; . . . ; UðekÞð Þ. Moreover, if degU < k,
then the polynomial

UðXÞ ¼
Xk
i¼1

ui liðXÞ ð2Þ

is the (unique) Lagrange interpolation polynomial satisfy-
ing ui ¼ UðeiÞ for 1 � i � k, where the lis are the Lagrange
interpolants such that, for all 1 � i � k,

liðXÞ ¼
Yk

j¼1;j 6¼i

X � ej
ei � ej

: ð3Þ

In this case, the CRT is equivalent to the Lagrange
interpolation theorem. In fact, it is useful to think of the
CRT as a generalization of interpolation. What both the CRT
and Lagrange interpolation theorem tell us is that the
interpolation polynomial is unique modulo � ¼

Qk
i¼1ðX �

eiÞ so that there is exactly one polynomial U 2 IFp½X� of
degree less than deg � ¼ k, which satisfies UðeiÞ ¼ ui for
i ¼ 1; . . . ; k. In the following, we use this property in order
to represent the elements of IFpk .

Definition 1 (Lagrange representation). Let U 2 IFp½X� with
degU < k and � ¼

Qk
i¼1ðX � eiÞ, where ei 2 IFp for 1 � i �

k and ei 6¼ ej for i 6¼ j. If ui ¼ UðeiÞ for 1 � i � k, we define
the so-called Lagrange representation (LR) of U modulo � as

LR�ðUÞ ¼ ðu1; . . . ; ukÞ: ð4Þ

One recognized advantage of the CRT is the fact that the
costly arithmetic modulo � can be split into several
independent arithmetic units, each performing its arith-
metic modulo a very simple polynomial (in our case, a
binomial of degree one), thus leading to straightforward
parallel implementations. For example, additions, subtrac-
tion, and multiplications in the ring IFp½X�=ð�Þ (i.e., modulo
�) can be performed independently for each modulus.
Indeed, if LR�ðUÞ ¼ ðu1; . . . ; ukÞ and LR�ðV Þ ¼ ðv1; . . . ; vkÞ,
then we have

LR�ðU � V Þ ¼ u1 � v1; . . . ; uk � vkð Þ; ð5Þ

where � belongs to fþ;�;�g and ui � vi is performed over
IFp, i.e., modulo p. Note that the CRT also provides a
natural, implicit way to perform the arithmetic modulo �,
which we shall exploit in our field multiplication algorithm
presented in Section 4.

Since deg � ¼ degN ¼ k, field additions and subtractions
are equivalent to their ring counterparts and can be easily
computed using (5). The conversion from the coefficient-
based representation into LR is the evaluation map of a
polynomial at many points, with all the operations
performed in IFp. The conversion back from LR to the
coefficient-based representation is an interpolation step that
can be computed using (2) and (3). Fast multipoint
evaluation and fast interpolation methods are covered in
detail in [13, chapter 10]. Note that, since all the arithmetic
operations can be performed in LR, the conversions steps
are only required at the very beginning and the very end of
the algorithms and do not affect the global computational
cost. In some cases, it is even possible to avoid these
conversion steps by performing all the computations in the
Lagrange representation (see Section 6).

3 BACKGROUND

In this section, we briefly recall the Montgomery modular
multiplication algorithm for integers and its straightfor-
ward extension to finite extension fields. Then, we present a
modified Montgomery multiplication algorithm, where the
elements of the finite field IFpk are represented in the
Lagrange Representation (LR).

3.1 Montgomery Multiplication in IFpk

Montgomery modular multiplication for integers [14]
—which, given a, b, n, and r such that gcdðr; nÞ ¼ 1,
computes abr�1 mod n without performing any division—
has been generalized to binary fields IF2k by Koç and Acar
[15]. Their solution is a direct adaptation of the original
Montgomery algorithm, where the polynomial Xk plays the
role of the Montgomery factor r. Given A;B 2 IF2k , it
computes ABX�k modN , where N is the monic irreducible
polynomial of degree k in IF2½X� which defines the field.

We first remark that Koç and Acar’s algorithm easily
extends to any extension field IFpk . In the polynomial basis
representation, the elements of IFpk can be modeled as the
polynomials in IFp½X� of degree at most k� 1. Let N be a
monic irreducible polynomial of degree k chosen as the
reduction polynomial. We define � ¼ Xk such that
gcdð�; NÞ ¼ 1. Then, given A;B 2 IFp½X�=ðNÞ, Algorithm 1
can be used to compute AB��1 modN .
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Algorithm 1 Montgomery Multiplication over IFpk

Input: A;B 2 IFp½X�, with degA; degB � k� 1; a monic

irreducible polynomial N 2 IFp½X�, with degN ¼ k;

� ¼ Xk

Output: AB��1 modN

1: Q ¼ �A�B�N�1 mod �

2: R ¼ A�BþQ�Nð Þ=�
In this case, choosing � ¼ Xk seems to be a perfect choice

since the reduction modulo Xk (in Step 1) and the division
by Xk (in Step 2) are easily implemented. Indeed, given two
polynomials U; V 2 IFp½X�, with degU; degV < k, we com-
pute ðU � V ÞmodXk by ignoring the coefficients of U � V
of order larger than k� 1. Similarly, ðU � V Þ=Xk is given by
the coefficients of ðU � V Þ of order greater than or equal to
k. These computations are easily expressed in terms of
matrix operations.

Let us define

N ¼ n0 þ n1X þ . . .þ nk�1X
k�1 þXk;

and N 0, the inverse of N modulo Xk, as

N 0 ¼ N�1 modXk ¼ n00 þ n01X þ . . .þ n0k�1X
k�1:

In Step 1 of Algorithm 1, we computeQ ¼ �ABN�1 mod � as

Q ¼ �

n00 0 . . . 0

n01 n00 . . . 0

..

. . .
.

n0k�1 n0k�2 . . . n00

0
BBBB@

1
CCCCA

a0 0 . . . 0

a1 a0 . . . 0

..

. . .
.

ak�1 ak�2 . . . a0

0
BBBB@

1
CCCCA

b0

b1

..

.

bk�1

0
BBBB@

1
CCCCA:

ð6Þ

Similarly, we evaluate R ¼ ðABþQNÞ=� as

R ¼

0 ak�1 . . . a2 a1

0 0 . .
.

a2

..

. . .
.

0 0 . . . 0 ak�1

0 0 . . . 0 0

0
BBBBBBB@

1
CCCCCCCA

b0

b1

..

.

bk�2

bk�1

0
BBBBBBB@

1
CCCCCCCA
þ

1 nk�1 . . . n2 n1

0 1 . .
.

n2

..

. . .
. . .

.

0 0 . . . 1 nk�1

0 0 . . . 0 1

0
BBBBBBB@

1
CCCCCCCA

q0

q1

..

.

qk�2

qk�1

0
BBBBBBB@

1
CCCCCCCA
:

ð7Þ

Note that, because N is a monic polynomial of degree k, the
diagonal of the second matrix in (7) is composed of ones.

The number of arithmetic operations over IFp is easily
determined. The computation of Q in (6) requires kðkþ 1Þ
multiplications and kðk� 1Þ additions, whereas R in (7) is
computed in kðk� 1Þ multiplications and ðk�1Þðk�2Þ

2 þ kðk�1Þ
2 þ

ðk� 1Þ additions. If M and A denote the costs of one

multiplication and one addition in IFp, respectively, the total

cost of Algorithm 1 is

2k2 M þ ð2k2 � 2kÞA: ð8Þ

For most applications (including ECC), the finite field is

fixed and we can reasonably assume that the reduction

polynomial N and its inverse modulo Xk are known in

advance. In this case, the multiplications by the nis and n0is

in (6) and (7) can be simplified, using optimized algorithms

for multiplication by a constant and by constant vectors

[16]. The global cost of Algorithm 1 becomes

k2 M þ k2 CM þ ð2k2 � 2kÞA; ð9Þ

where CM denotes the cost of one multiplication by a

constant in IFp.

3.2 Optimal Extension Fields

Optimal extension fields (OEFs) have been introduced by

Bailey and Paar in [6], [7]. The main idea is to select the

(prime) characteristic p of the field to closely match the

underlying hardware characteristics and to simplify the

arithmetic modulo p (for example, the Mersenne prime p ¼
231 � 1 is a good choice for 32-bit architectures). Following

the same idea, the reduction polynomial N of degree k is

chosen to simplify the reduction modulo N as much as

possible. The following definition is taken from [8]:

Definition 2 (OEF). An optimal extension field (OEF) is a

finite field IFpk such that:

1. p ¼ 2n � c for some integers n and c with log2 jcj �
n=2 and

2. there exists an irreducible polynomial fðXÞ ¼ Xm � !
in IFp½X�.

If c 2 f�1g, then the OEF is said to be of Type I (p is a

Mersenne prime if c ¼ 1); if ! ¼ 2, the OEF is said to be of

Type II.

Examples of OEFs and discussions on how to find

irreducible polynomials of the required form are given in

[8]. The multiplication of A and B can be performed by an

ordinary polynomial multiplication in ZZ½X�, along with

coefficient reductions in IFp, followed by a reduction by the

polynomial f . The number of reductions modulo p can be

reduced by accumulation strategies on the coefficients of

C ¼ AB. As pointed out in [8], “the arithmetic resembles

that commonly used in prime-field implementations, and

multiplication cost in IFpk is expected to be comparable to

that in a prime field IFq where q ’ pk and which admits fast

reduction (e.g., the NIST-recommended primes).” This

means that the multiplication in IFpk can be performed in

Oðk2Þ multiplications in IFp. When k is small (as in the case

of finite fields used for ECC), fast multiplication algorithms,

like Karatsuba-Ofman methods, are not likely to give faster

implementations.
In the next section, we propose a modified Montgomery

algorithm in IFpk which, under certain conditions, only

requires OðkÞ multiplications in IFp.
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4 MODIFIED MONTGOMERY MULTIPLICATION IN

LAGRANGE REPRESENTATION

In this section, we first modify Algorithm 1 by allowing the
polynomial � to be any polynomial of degree k satisfying
gcdð�; NÞ ¼ 1 and by replacing the division by � in Step 2
by a multiplication by ��1 modulo another given poly-
nomial �0. Note that this operation is possible only if
gcdð�;�0Þ ¼ 1. Then, we analyze a special case, where �;�0

are the products of first-degree polynomials. Algorithm 2
computes AB��1 modN for any relatively prime polyno-
mials � and �0 of degree k satisfying gcdð�; NÞ ¼ 1 and
gcdð�;�0Þ ¼ 1.

Algorithm 2 Modified Montgomery Multiplication over IFpk

Input: A;B 2 IFp½X�, with degA; degB � k� 1; a monic

irreducible polynomial N 2 IFp½X�, with degN ¼ k; �;�0,

with deg � ¼ deg �0 ¼ k, and gcdð�;�0Þ ¼ gcdð�; NÞ ¼ 1

Output: AB��1 modN

1: T  A�Bmod ð���0Þ
2: Q T � ð�N�1Þmod �

3: R T þQ�Nð Þ ���1 mod �0

Remarks. In Step 1, the notation A�Bmod ð���0Þ simply

means that we compute both ABmod � and ABmod �0.

Also, assume thatN�1
� denotes the polynomialN�1 mod �

of degree � k� 1. We remark that Q computed in Step 2

is a polynomial of degree � k� 1, whereas the poly-

nomial �ABN�1
� is of degree � 3k� 3. Since the

computations performed in Step 3 have to be carried

out modulo �0, we have to compute Qmod �0 from the

knowledge of Q only. We note that it is impossible to

compute �ABN�1
� mod �0 exactly, but only the poly-

nomial ð�ABN�1
� mod �Þmod �0, denoted ~Q here. Since

Q and ~Q differ by a multiple of �, both the values ðT þ
QNÞ and ðT þ ~QNÞ are multiples of � and the multi-

plication by ��1 modulo �0 gives the correct result (see

Lemma 1). With this in mind, we shall abusively use Q in

the following. Furthermore, if the result R computed in

Step 3 has to be reused for another modular multi-

plication, as in the performance of an exponentiation, we

must also compute Rmod � from Rmod �0. We address

the problem of converting polynomials between different

Lagrange representations in Sections 4.1 and 4.2.

Lemma 1. Algorithm 2 is correct; it returns AB��1 modN .

Proof. In Steps 1 and 2, we compute Q such that
ðABþQNÞ is a multiple of �. Indeed, we have
ðABþQNÞ � ðAB�ABN�1NÞ � 0 ðmod �Þ. This im-
plies that there exists a polynomial f such that
ðABþQNÞ ¼ f�, with deg f � k� 1. Now, in Step 3,
we compute R modulo �0. We have

ðABþQNÞ��1 � ðf�Þ��1 � f ðmod �0Þ:

Since deg �0 ¼ k > deg f , we have

ðABþQNÞ��1 mod �0 ¼ f:

Since degN 	 k, we have R ¼ f ¼ AB��1 modN , which
concludes the proof. tu

Of course, Algorithm 2 is advantageous only if one can
define polynomials �;�0 such that the arithmetic operations
modulo � and �0 are easy to implement. The proposed
solution takes advantage of the Lagrange representation
(see Section 2).

Let E ¼ fe1; . . . ; ekg and E0 ¼ fe01; . . . ; e0kg be such that

E \ E0 ¼ ; and ei; e
0
i 2 IFp, for 1 � i � k (in other words, the

eis and e0is are all distinct). We define � ¼
Qk

i¼1ðX � eiÞ and

�0 ¼
Qk

i¼1ðX � e0iÞ, two polynomials of degree k such that

gcdð�;�0Þ ¼ gcdð�; NÞ ¼ 1. We assume that the inputs A;B

are given (or converted) into both LR� and LR�0 . We

further suppose that the precomputed values are also

known in Lagrange representation (modulo � and/or �0),

more precisely, we need LR�ð�N�1Þ ¼ ð~n1; . . . ; ~nkÞ,
LR�0 ðNÞ ¼ ðn01; . . . ; n0kÞ, and LR�0 ð��1Þ ¼ ð�1; . . . ; �kÞ.

As mentioned earlier, the arithmetic modulo � (respec-

tively, �0) is automatically and implicitly carried out in

Lagrange representation by computing modulo the ðX � eiÞ
for 1 � i � k (respectively, modulo the ðX � e0iÞ for

1 � i � k). In the next two sections, we address the problem

of converting a polynomial from LR� to LR�0 (the reverse

conversion is identical). We consider both Lagrange and

Newton’s interpolation formulae and we propose some

implementation strategies that can be used to speed up the

implementation in both cases.

4.1 Lagrange Interpolation

Assume that E, E0, �, and �0 are defined as above. If
LR�ðUÞ ¼ ðu1; . . . ; ukÞ, then LR�0 ðUÞ ¼ ðu01; . . . ; u0kÞ is given
by the Lagrange interpolation theorem (or the CRT) by
computing

u0i ¼
Xk
j¼1

uj
Yk

t¼1;t 6¼j

e0i � et
ej � et

 !
; for 1 � i � k: ð10Þ

The computations can be easily expressed as a matrix-
vector product. By defining the k� k constant matrix �

with elements

!i;j ¼
Yk

t¼1;t 6¼j

e0i � et
ej � et

; for 1 � i; j � k; ð11Þ

we have LR�0 ðUÞ ¼ �� LR�ðUÞ or, equivalently,

u01
u02
..
.

u0k

0
BBB@

1
CCCA ¼

!1;1 !1;2 . . . !1;k

!2;1 !2;2 . . . !2;k

..

. . .
.

!k;1 !k;2 . . . !k;k

0
BBB@

1
CCCA

u1

u2

..

.

uk

0
BBB@

1
CCCA: ð12Þ

Similarly, for the reverse conversion from LR�0 to LR�, we
define the k� k constant matrix �0 with elements

!0i;j ¼
Yk

t¼1;t 6¼j

ei � e0t
e0j � e0t

; for 1 � i; j � k; ð13Þ

and we compute LR�ðUÞ ¼ �0 � LR�0 ðUÞ.
The complexity of Lagrange interpolation is equal to

k2 CM þ kðk� 1ÞA: ð14Þ
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Hence, in this case, the total cost of Algorithm 2 is

2kM þ ð2k2 þ 3kÞCM þ ð2k2 � kÞA: ð15Þ

If one uses a general multiplier for the constant multi-
plications, then we must assume that CM ¼M and a
sequential implementation of our algorithm does not
compare favorably either against the Montgomery ap-
proach (see Algorithm 1) or an OEF implementation.
However, because the number of real multiplications is
reduced from k2 to 2k, hardware implementations can take
advantage of Lefèvre’s multiplication by integer constants
[16] and of Boullis and Tisserand’s approach for hardware
multiplication by constant matrices [17]. These methods,
based on number recoding and dedicated common sub-
expression factorization algorithms, have been implemen-
ted on FPGA for several applications. Based on their results,
it is not unreasonable to expect savings of 20-to-40 percent
in both area and time for the present application as well,
but, of course, a precise analysis has to be done to support
this claim.2

The operation count given by (15) does not take into
account the fact that some optimization strategies are
applicable. A first optimization we want to point out,
which does not come from the Lagrange representation,
concerns the base field arithmetic—i.e., the arithmetic
modulo p—and the fact that complete reduction modulo p
is not always necessary. Actually, it is only needed at the
very end of the computational task. For all intermediate
computations, several approaches are possible: partial
reduction to maintain the values congruent to p and less
than 2p (especially easy when p is a Mersenne prime),
accumulation into two registers (of machine word size)
assuming p fits into one register, or three registers can be
employed, exactly as mentioned in [8, Example 2.56, p. 66]
for OEFs. In the following, we will only refer to reduction,
or partial reduction modulo p, but, for practical implemen-
tations, the best options have to be considered.

As for the OEFs, the cost of Algorithm 2 can be significantly
reduced by looking for suitable sets of parameters. With
OEFs, c and ! are the only parameters that can be adjusted
(see Section 3.2). Our algorithm gives us more freedom; it
allows for 2k values (the elements ofE andE0) to be adjusted.
However, this higher degree of freedom makes the optimiza-
tion process more difficult. Next, we present various
optimization strategies that can be applied to reduce the cost
of Algorithm 2 in time and/or space.

By noting that the reduction polynomial N does not
directly influence the complexity of our algorithm, it is
possible to define the points of E0 such that N ¼ �0 þ 1 is
irreducible.3 It is very easy to find such polynomials.
Indeed, for given prime p and k > 0, the number of
irreducible polynomials of the form

Qk
i¼1ðX � eiÞ þ 1 is

equal to p
k

� �
. When pk is not too small, the probability for a

monic uniformly random monic polynomial of degree k in
IFp½X� being irreducible is close to 1=k. If we assume that
our specific polynomials satisfy this estimate, the number of

irreducible polynomials of this form is close to p
k

� �
=k. Using

an exhaustive search, we have been able to verify this
estimate for small fields (for example, the exact number of
irreducible polynomial of degree 3 in IF101½X� of this form is
equal to 56; 661, whereas 101

3

� �
=3 ¼ 55; 550). For larger

extensions, however, we do not know whether it is still
valid. In the context of ECC, the degree k of the extension is
usually small (see Table 3) and we believe that the estimate
is correct.

If the points of this of E0 are chosen such that N ¼ �0 þ 1
is irreducible, we have LR�0 ðNÞ ¼ ð1; . . . ; 1Þ and Step 3 of
Algorithm 2 can be rewritten R T þQð Þ ���1 mod �0. It
saves kCM and, more importantly, it makes it possible to
evaluate ri ¼ ðti þ q0iÞ�i mod p with only one reduction (or
partial reduction) instead of two, by allowing the partial
result ðti þ q0iÞ�i to be stored into two registers or without
any reduction if one considers three registers.

Using the same idea, it is possible to define E such that

LR�ð�N�1Þ ¼ ð~n1; . . . ; ~nkÞ is composed of small integers.

Hence, the multiplications by ~ni can be replaced by a small

number of shifts and additions and the reduction is greatly

simplified as ti � ~ni fits into a single register plus a few bits.

Using a greedy algorithm, we have been able to find such

polynomials and the corresponding sets of points. For

example, for p ¼ 8; 191 and k ¼ 13, the polynomial

N ¼ XðX � 1Þ . . . ðX � 10ÞðX � 2;089ÞðX � 8;189Þ þ 1

is the first irreducible polynomial (given by our greedy
algorithm) such that there exists k ¼ 13 points which satisfy
~nij j � 3; these points are given by

E ¼ f1;259; 1;872; 1;989; 3;215; 3;667; 3;791; 3;798;

4;197; 4;408; 4;589; 4;615; 4;900; 6;461g:

The first irreducible polynomial such that ~nij j � 4 for 1 �
i � 13 was obtained even faster:

N ¼ XðX � 1Þ . . . ðX � 11ÞðX � 1558Þ þ 1;

E ¼ f140; 286; 950; 1;315; 1;928; 2;293; 2;936;

3;086; 3;619; 5;187; 5;828; 7;374; 7;417g:

Another possible optimization is to look for ~nis which are
small powers of two. For example, with

N ¼ XðX � 1Þ . . . ðX � 10ÞðX � 1879ÞðX � 8189Þ þ 1;

E ¼ f269; 1;036; 1;086; 1;205; 1;484; 2;093; 2;672;

3;151; 3;517; 3;839; 4;111; 6;944; 7;651g;

we have ~nij j 2 f1; 2; 4g for 1 � i � k.
Although it seems to be a difficult task, the freedom in

the selection of the points of E and E0 can be further
exploited by trying to optimize the interpolation matrices �
and �0. For example, one can try to construct matrices with
as many small values (possibly 1 or small powers of 2 in
absolute value) as possible. The only partial results we have
at the moment, based on an exhaustive search for small
fields, seem difficult to generalize to larger extension fields.
However, other matrix optimizations are still possible. In
[18], we have detected symmetries between the elements of
� and �0 that can contribute to simplified, smaller
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 þ n0.



architectures. The following lemma holds (see [18] for a

proof):

Lemma 2. Assume ei ¼ 2i and e0i ¼ 2iþ 1. Then, from (11) and

(13), we have

!i;j ¼
Yk

t¼1;t 6¼j

2iþ 1� 2t

2j� 2t
; and

!0i;j ¼
Yk

t¼1;t 6¼j

2i� ð2tþ 1Þ
2jþ 1� ð2tþ 1Þ :

Hence, for every 1 � i; j � k, we have

!i;j ¼ !0kþ1�i;kþ1�j: ð16Þ

Lemma 2 te l l s us that the operat ion

LR�ðRÞ ¼ �0 � LR�0 ðRÞ, which has to be performed after

Step 3 of Algorithm 2, can be replaced by LR�ðRÞ ¼
�� LR�0 ðRÞ (with the matrix � instead of �0), where U

denotes the vector composed of the elements of U in reverse

order: U ¼ ðuk; . . . ; u1Þ. In other words, we compute:

r0k
r0k�1

..

.

r01

0
BBB@

1
CCCA ¼

!1;1 !1;2 . . . !1;k

!2;1 !2;2 . . . !2;k

..

. . .
.

!k;1 !k;2 . . . !k;k

0
BBB@

1
CCCA

rk
rk�1

..

.

r1

0
BBB@

1
CCCA:

Let us consider a small example. We define p ¼ 89,

k ¼ 5, and we consider the sets E ¼ f2; 4; 6; 8; 10g and

E0 ¼ f1; 3; 5; 7; 9g. We compute the constant interpolation

matrix � that we are going to use for the two interpolation

steps:

� ¼

56 44 85 57 26
26 15 37 3 9
9 70 16 36 48
48 36 16 70 9
9 3 37 15 26

0
BBBB@

1
CCCCA:

Let N ¼ X5 þ 2X þ 1 be the irreducible polynomial defin-

ing the field IF895 . We need the following predefined

constant vectors:

LR�0 ðNÞ ¼ ð4; 72; 21; 1; 61Þ
LR�ðN�1Þ ¼ ð77; 61; 60; 27; 83Þ
LR�0 ð��1Þ ¼ ð55; 39; 87; 2; 50Þ:

Now, assume the inputs A ¼ 17X4 þ 6X þ 35 and B ¼
59X2 þ 42X þ 11 are given in LR representation. We have

LR�ðAÞ ¼ ð52; 50; 31; 28; 16Þ;LR�0 ðAÞ ¼ ð58; 6; 10; 43; 20Þ;
LR�ðBÞ ¼ ð64; 55; 73; 29; 12Þ;LR�0 ðBÞ ¼ ð23; 45; 5; 81; 6Þ:

In Step 1, we compute T ¼ A�Bmod ���0:

LR�ðT Þ ¼ ð35; 80; 38; 11; 14Þ;LR�0 ðT Þ ¼ ð88; 3; 50; 12; 31Þ:

Then, in Step 2, we compute

LR�ðQÞ ¼ ð64; 15; 34; 59; 84Þ;

which we interpolate modulo �0 by computing LR�0 ðQÞ ¼
�� LR�ðQÞ to get

LR�0 ðQÞ ¼ ð43; 75; 49; 53; 53Þ:

Next, we evaluate R ¼ ðT þQ�NÞ ���1 mod �0:

LR�0 ðRÞ ¼ ð60; 54; 67; 41; 63Þ

and we convert it back modulo � using the same matrix �
by computing LR�ðRÞ ¼ �� LR�0 ðRÞ:

LR�ðRÞ ¼ ð21; 13; 77; 5; 1Þ:

One can easily check that the result is equal to
AB��1 modN ¼ 2X4 þ 15X3 þ 74X2 þ 49X þ 9 in the La-
grange representation.

4.2 Newton Interpolation

Assume that E, E0, �, and �0 are defined as above and
LR�ðQÞ ¼ ðq1; . . . ; qkÞ. In order to compute LR�0 ðQÞ ¼
ðq01; . . . ; q0kÞ using Newton’s interpolation, we can precom-
pute k� 1 constants

Cj ¼ ððej � e1Þðej � e2Þ . . . ðej � ej�1ÞÞ�1 mod p;

for 2 � j � k, and we can evaluate ðq̂1; . . . ; q̂kÞ by setting

q̂1 ¼ q1 mod p;
q̂2 ¼ ðq2 � q̂1ÞC2 mod p;
q̂3 ¼ ðq3 � ðq̂1 þ ðe3 � e1Þq̂2ÞÞC3 mod p;

..

.

q̂k ¼ ðqk � ðq̂1 þ ðek � e1Þðq̂2 þ . . .
þðek � ek�2Þq̂k�1Þ . . .ÞÞCk mod p:

8>>>>>>><
>>>>>>>:

ð17Þ

As we shall see further, computing the q̂is under this
form allows for very interesting optimizations and can lead
to very efficient implementation, with only a linear number
of field multiplications. For parallel implementation, how-
ever, it is also possible to compute

q̂i ¼
�

. . . ððqi � q̂1Þðei � e1Þ�1 � q̂2Þðei � e2Þ�1 � 
 
 

� q̂i�1

�
ðei � ei�1Þ�1 mod p;

ð18Þ

for 2 � i � k. For more details, see the discussion about the
mixed-radix representation in [19, pp. 290-293] and exercise 5.11
in [13, page 125].

Once the q̂is have been computed using (17) or (18), the
polynomial

Q ¼ q̂1 þ q̂2 1 þ q̂3 1 2 þ . . .þ q̂k 1 . . . k�1 ð19Þ

satisfies the conditions

degQ � k� 1; QðeiÞ � qi ðmod pÞ for 1 � i � k: ð20Þ

We then evaluate LR�0 ðQÞ ¼ ðq01; . . . ; q0kÞ using Horner’s
rule. For 1 � i � k, we compute q0i ¼ Qmod ðX � e0iÞ ¼ Qðe0iÞ.
From (19), we have

q0i ¼
�
ð. . . ðq̂kðe0i � ek�1Þ þ q̂k�1Þðe0i � ek�2Þ þ 
 
 


þ q̂2Þðe0i � e1Þ þ q̂1

�
mod p:

ð21Þ

If the Cj are precomputed and if we do not take into
account the cost of computing the values ðei � ejÞ, the
complexity of (17) is equal to kðk� 1Þ=2CM þ kðk� 1Þ=2A.
Under the same assumptions, the computations in (21),
performed for 1 � i � k, require kðk� 1ÞCM þ kðk� 1ÞA.
The total cost of Newton interpolation is thus
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3kðk� 1Þ=2CM þ 3kðk� 1Þ=2A, which, at first, seems very

inefficient. However, as for Lagrange interpolation, this

general complexity estimate can be significantly reduced by

carefully choosing the points of interpolation.
Let us consider the first 2k integers: We define E ¼

f0; . . . ; k� 1g and E0 ¼ fk; . . . ; 2k� 1g. In this case, (17)

rewrites

q̂1 ¼ q1 mod p;
q̂2 ¼ ðq2 � q̂1ÞC2 mod p;
q̂3 ¼ ðq3 � ðq̂1 þ 2q̂2ÞÞC3 mod p;

..

.

q̂k ¼ ðqk � ðq̂1 þ ðk� 1Þðq̂2 þ ðk� 2Þðq̂3 þ . . .
þ2q̂k�1Þ . . .ÞÞÞCk mod p:

8>>>>>>><
>>>>>>>:

ð22Þ

By taking a closer look at (22), we notice that it requires

k� 3 multiplications by 2, k� 2 multiplications by 3, . . . ,

two multiplications by k� 2, and one multiplication by

k� 1. Since the largest constant is equal to k� 1 and k is

usually small (see Table 3), all these operations can be

readily computed with only a few number of shifts and

additions. Thus, only k� 1 constant multiplications by the

Cis are actually needed.
The same applies for (21): The kðk� 1Þ constant multi-

plications by numbers of the form ðe0i � ejÞ can be

performed with a small number of additions and shifts.

More precisely, we have to compute

q01 ¼ ðð. . . ðq̂k � 2þ q̂k�1Þ
�3þ 
 
 
 þ q̂2Þ � kþ q̂1Þmod p;

q02 ¼ ðð. . . ðq̂k � 3þ q̂k�1Þ
�4þ . . .þ q̂2Þ � ðkþ 1Þ þ q̂1Þmod p;

..

.

q0k ¼ ðð. . . ðq̂k � ðkþ 1Þ þ q̂k�1Þ
�ðkþ 2Þ þ . . .þ q̂2Þ � ð2k� 1Þ þ q̂1Þmod p;

8>>>>>>>>><
>>>>>>>>>:

ð23Þ

which requires one multiplication by 2, two multiplications

by 3, . . . , k� 1 multiplications by k, k� 1 multiplications by

kþ 1, . . . , two multiplications by 2k� 2, and one multi-

plication by 2k� 1. As before, since the largest constant is

equal to 2k� 1 and k is small, these operations can be

evaluated with only a few shifts and additions. For 2 � k �
23 (see Table 3), the numbers of additions required in the

multiplications by the constants c ¼ 1; 2; . . . ; 2k� 1 are

given in Table 1. We remark that 43 is the first number in

the range which requires three additions. We also note that

the nonadjacent form (NAF) does not always give the

optimal number of addition; for example, the multiplication

by 45 ¼ ð1010101Þ2 can be done with three additions if one

considers the NAF or with only two if one considers its

factorization 45 ¼ 9� 5.
Moreover, if we assume that p fits in a single machine

word and the q̂is are also reduced to fit into a single word,

then the q0is can be computed with a single reduction (or

partial reduction) modulo p by allowing the partial result

(before reduction) to be accumulated into two machine

words. Let w denote the size (in bits) of one machine word.

Since q0i ¼ Qðe0iÞ, for 1 � i � k, we remark that the size of the

largest summand in (19) is equal to

wþ log2

Yk�1

j¼1

ðe0i � ejÞ
$ %

þ 1:

Moreover, since k terms need to be added to compute the
q0is and by noticing that the largest value before reduction in
(23) is q0k, we have

q0i
�� �� < wþ

X2k�1

t¼k
log2 tb c þ k� 1;

where jqj denotes the size of q (in bits). Hence, accumulation
into two machine words is possible if the following
condition is satisfied:

X2k�1

t¼k
log2 tb c þ k� 1 � w: ð24Þ

As an example, if we consider 32-bit registers
(w ¼ 32), with p ¼ 231 � 1 and k ¼ 7, then we haveP13

t¼7 log2 tb c þ 7� 1 ¼ 26 � w ¼ 32 and (24) is satisfied.

The asymptotic complexity of the multiplication by a

constant k is an open problem. Although Lefèvre con-

jectured it to be Oððlog kÞ0:85Þ, if we consider the best known

complexity of Oðlog kÞ additions, the cost of Newton

interpolation in the context of Algorithm 2 becomes

k� 1CM þOðk2 log kÞA; ð25Þ

and the total cost of Algorithm 2 is

2kM þ ð4k� 1ÞCM þOðk2 log kÞA: ð26Þ

Even if one uses a general multiplier for the multi-
plications by the large constants, our algorithm shows a
better asymptotic complexity than the multiplication algo-
rithms suggested for the OEFs [7], [8], with only a linear
number of multiplications. Its complexity is

OðkÞM þOðk2 log kÞA: ð27Þ

5 INVERSION

In this section, we present an algorithm for computing the
inverse of an element A in IFpk given in Lagrange
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representation. We use the same notations as before: N is a
monic irreducible polynomial of degree k in IFp½X� and the
elements of IFpk are the polynomials in IFp½X� of degree less
than or equal to k� 1.

5.1 Polynomial GCD and Inverse Computation

Let us start with the more general case of polynomials
defined over a field K. If A;B are two polynomials in K½X�
with B 6¼ 0, then there exists (unique) polynomials Q and R
in K½X� such that

A ¼ QBþR and either R ¼ 0 or degR < degB: ð28Þ

We define the polynomial GCD of A and B, not both
zero, as a polynomial of greatest degree that divides both A
and B. If the polynomial G satisfies this definition, then so
does any polynomial of the form uG, where u is a unit4 in
K½X�. In other words, there is a set of greatest common
divisors of A and B, each one being a unit multiple of the
others. The ambiguity is removed by considering that “the”
greatest common divisor of A and B is the (unique) monic
polynomial of greatest degree which divides both A and B.

As for integers, the Bézout identity holds: For A;B not
both equal to 0, there exist polynomials U and V such that

AU þBV ¼ gcdðA;BÞ: ð29Þ

The polynomials U and V are called the Bézout coefficients
of A and B. It is well known that the extended Euclidean
algorithm can be used to compute the inverse of an
element in K; from (29), we have U � A�1 ðmod BÞ and
V � B�1 ðmod AÞ. Many variants of the extended Euclidean
algorithm for polynomials have been reported in the
literature [19], [20], [21], [22]. A very thorough complexity
analysis can be found in [13, pp. 46-53]. The presented
algorithm is based on the classical Euclidean loop: While
B 6¼ 0, gcdðA;BÞ ¼ gcdðB;RÞ, where R ¼ AmodB is given
by (28). The initial polynomials A;B and the partial
quotients, remainders, and Bézout coefficients are kept
monic to save some operations in the polynomial division.
If degA ¼ n 	 degB ¼ m, then the algorithm requires at
most mþ 2 inversions and 13

2 nmþOðnÞ additions and
multiplications in K. Since we are only interested in one of
the Bézout coefficients for the inversion and because one of
the input polynomials is already monic in the case of finite
field inversion, the complexity can be reduced to 9

2nmþ
OðnÞ additions and multiplications, plus at most mþ 1
inversions.

5.2 Extended Euclidean Algorithm for Polynomials
in LR

In this section, we propose an inversion algorithm, based

on the extended Euclidean algorithm for polynomials

defined over IFpk , where the input polynomials are given

in the Lagrange representation. Given A 2 IFp½X� with

degA � k� 1 and N 2 IFp½X�, a monic irreducible poly-

nomial of degree k, we compute A�1 modN . More

precisely, Algorithm 4 (below) receives LR�ðAÞ and

LR�ðNÞ and returns LR�ðA�1 modNÞ. We first notice that

N , which is a polynomial of degree k, cannot be

represented in Lagrange representation with only k values;

its exact representation would require kþ 1 values.

However, by considering LR�ðNÞ, we have the exact

(unique) representation of N mod �, which is sufficient to

compute LR�ðA�1 modNÞ ¼ ðA�1 modNÞmod �.

The main drawback of the Lagrange representation for

performing a polynomial division is ignorance of the degree

and coefficients of the polynomials we are manipulating. To

bypass this problem, we propose an algorithm which

computes the degree and leading coefficient of a poly-

nomial U given in the Lagrange representation.
Assume U 2 IFp½X� with degU < k is given in LR, i.e.,

LR�ðUÞ ¼ ðu1; . . . ; ukÞ. From (2) and (3), we remark that

UðXÞ ¼
Xk
i¼1

ui
Yk

j¼1;j6¼i

X � ej
ei � ej

¼
Xk
i¼1

uiQk
j¼1;j6¼iðei � ejÞ

Yk
j¼1;j6¼i

ðX � ejÞ

¼
Xk
i¼1

uiQk
j¼1;j6¼iðei � ejÞ

Xk�1 þ 
 
 
 :

ð30Þ

Thus, the coefficient of degree k� 1 of U is given by

‘ðUÞ ¼
Xk
i¼1

ui
Yk

j¼1;j6¼i
ðei � ejÞ

 !�1

mod p: ð31Þ

Thanks to the Lagrange interpolation theorem, we know

that, if degU < k, it is uniquely defined by ðu1; . . . ; ukÞ.
Hence, if degU < k� 1, we clearly get ‘ðUÞ ¼ 0 in (31). A

straightforward solution to finding the degree and leading

coefficient of U in this case is to repeat the process for the

degrees k� 2, k� 3, etc., until one finds a nonnull

coefficient. If (31) tells us that degU 6¼ k� 1, we know that

k� 1 values are sufficient to define U uniquely and we can

consider any subset of E of size k� 1 to compute ‘ðUÞ. In

Algorithm 3, the sum in (31) is evaluated for 1 � i � t,
where t is initially set to mþ 1 and m is the largest possible

degree for U , and decremented by 1 each time the tested

coefficient is equal to 0. At the end, the degree of U is equal

to t� 1.

Algorithm 3 Leading term—LT(U,m)

Precomputed: �i;t ¼ ð
Qt

j¼1;j6¼iðei � ejÞÞ
�1 mod p, for

i � t and t ¼ 1; . . . ; k

Input: A polynomial U of degree at most m � k� 1 given

in Lagrange representation: LR�ðUÞ ¼ ðu1; . . . ; ukÞ
Output: ðd; cÞ, where d ¼ degU and c ¼ ‘ðUÞ such that

U ¼ cXd þ 
 
 

1: if m ¼ 0 then

2: c u1

3: else

4: t mþ 1

5: c 0

6: while c ¼ 0 do

7: for i 1 to t do

8: c cþ ui �i;t mod p

9: if c ¼ 0 then
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10: t t� 1

11: return ðt� 1; cÞ
We assume that the values

�i;t ¼
Yt

j¼1;j6¼i
ðei � ejÞ

 !�1

mod p

for 1 � i � t � k are precomputed. This requires the storage
of kðkþ 1Þ=2 integers less than p. If degU ¼ m � k� 1, the
cost of LT ðU;mÞ (in terms of the number of operations in
IFp) is

ðmþ 1ÞCM þmA: ð32Þ

In Algorithm 4, all the variables Ui; Vi are represented
in the Lagrange representation. The variables dðUÞ; ‘ðUÞ
denote the degree and leading coefficient of U , respec-
tively. We use a polynomial version of Lehmer’s Eu-
clidean GCD algorithm [12], [19], [22], where one step of
each polynomial division is performed, i.e., if degU 	
degV and t ¼ degðUÞ � degðV Þ, then we compute q ¼
‘ðUÞ=‘ðV Þ and R ¼ U � qXtV . The process is repeated until
a zero remainder is encountered.

Algorithm 4 Inversion over IFpk in LR

Precomputed: Xt ¼ LR�ðXtÞ, for 0 � t � k
Input: LR�ðAÞ ¼ ða1; . . . ; akÞ and LR�ðNÞ ¼ ðn1; . . . ; nkÞ

such that gcdðA;NÞ ¼ 1,

Output: LR�ðA�1 modNÞ.
1: ðU1; U3Þ  ðLR�ð1Þ;LR�ðAÞÞ
2: ðV1; V3Þ  ðLR�ð0Þ;LR�ðNÞÞ
3: ðdðV3Þ; ‘ðV3ÞÞ  ðk; 1Þ {N is monic of degree k}
4: ðdðU3Þ; ‘ðU3ÞÞ  LT ðU3; k� 1Þ {degU3 � k� 1}

5: while U3 6¼ 0 do

6: t dðU3Þ � dðV3Þ
7: if t < 0 then

8: ðU1; U3Þ $ ðV1; V3Þ
9: ðdðU3Þ; ‘ðU3ÞÞ $ ðdðV3Þ; ‘ðV3ÞÞ
10: t �t
11: q ‘ðU3Þ ‘ðV3Þ�1 mod p

12: U1  U1 � qXtV1

13: U3  U3 � qXtV3

14: ðdðU3Þ; ‘ðU3ÞÞ  LT ðU3; dðU3Þ � 1Þ
15: return U1

To illustrate our inversion algorithm in LR, we
consider a small example, using the following parameters:
p ¼ 17, k ¼ 3, E ¼ f1; 2; 3g, and N ¼ X3 þ 3X2 þ 1. We
compute the inverse of A ¼ 11X2 þ 6X þ 5 modulo N in

Lagrange representation. We have LR�ðAÞ ¼ ð5; 10; 3Þ and

LR�ðNÞ ¼ ð5; 4; 4Þ. Note that

LR�ðNÞ ¼ LR�ðN mod �Þ ¼ LR�ð9X2 þ 6X þ 7Þ:

The initialization step gives

LR�ðU1Þ ¼ ð1; 1; 1Þ;LR�ðU3Þ ¼ ð5; 10; 3Þ;LR�ðV1Þ ¼ ð0; 0; 0Þ;

and LR�ðV3Þ ¼ ð5; 4; 4Þ. We know that dðV3Þ ¼ dðNÞ ¼ 3 and

‘ðV3Þ ¼ ‘ðNÞ ¼ 1. The iterations of Algorithm 4 are sum-

marized in Table 2. We remark that gcdðA;NÞ ¼ 1 (given in

LR by U3) and that the inverse of A modulo N , given by U1,

is LR�ðA�1 modNÞ ¼ ð4; 9; 7Þ. It is easy to verify that

A�1 modN is equal to 5X2 þ 7X þ 9, which, evaluated at

f1; 2; 3g, gives the same result.
Let us now evaluate the complexity of Algorithm 4. Since

degR < degU , the number of (partial) division steps is at

most degðN mod �Þ þ degA ¼ 2k� 2. If we omit the calls to

LT ðU;mÞ for now, each iteration requires: one inversion plus

one multiplication for the computation of q in Step 10, plus 3k

multiplications and 2k additions for the computations of U1

and U3 in Steps 11 and 12 (we need k multiplications for qXt

and 2k for qXtVj for j ¼ 1; 3). How many calls toLT ðU3;mÞdo

we have? Since degU3; degV3 � k� 1 and bothU3 andV3 have

to be reduced (their values are swapped whenever t < 0) to

polynomials of degree zero, there are exactly two calls to

LT ðU3; iÞ, for 1 � i � k� 1 (we note that the calls to LT ðU; 0Þ
are free). The total complexity is thus 2k� 2 inversions plus

ð2k� 2ÞM þ ð2k� 2Þð3kM þ 2kAÞ þ 2
Pk�1

i¼1 LT ðU3; iÞ

¼ ð6k2 � 4k� 2ÞM þ ð4k2 � 4kÞA

þ 2
Xk�1

i¼1

ðiþ 1ÞCM þ 2
Xk�2

i¼1

i A

¼ ð6k2 � 4k� 2ÞM þ ð5k2 � 5kÞAþ ðk2 þ k� 2ÞCM;

ð33Þ

which can be simplified to 2k� 2 inversions, plus 12k2 �
8k� 4 operations in IFp.

A more careful analysis shows that some operations can

be saved. Since the degree of U3 is decreasing from k� 1

to to 0, it is not necessary to perform the computations in

Step 12 (U3 � qXtV3) for all k values representing

LR�ðU3Þ ¼ ðu1; . . . ; ukÞ. Note that qXt and U1 in Step 11

must always be computed entirely, i.e., for all k values. In

the worst case, the degree of U3 is decremented by one

every two iterations. Thus, we can save 1M þ 1A for the

first two iterations, 2M þ 2A for the next two, and so on,

up to ðk� 1ÞM þ ðk� 1ÞA for the last two iterations. This
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TABLE 2
Iterations of Extended Euclid’s Algorithm 4 in LR, with LR�ðAÞ ¼ ð5; 10; 3Þ and LR�ðNÞ ¼ ð5; 4; 4Þ



represents a savings of ðk2 � kÞM þ ðk2 � kÞA. Eventually,
the total cost of Algorithm 4 is 2k� 2 inversions plus

ð5k2 � 3k� 2ÞM þ ð4k2 � 4kÞAþ ðk2 þ k� 2ÞCM ð34Þ

or, equivalently, 10k2 � 6k� 4 additions and multiplica-
tions in IFp.

Compared to the extended Euclidean algorithm pre-
sented in Section 5.1 whose complexity is k inversions and
9
2 k

2 þOðkÞ operations in IFp, our inversion algorithm
requires roughly twice as many operations. This is mainly
due to the fact that, using the Lehmer approach, we are
performing twice as many Euclidean steps. Unfortunately,
the Lagrange representation does not allow us to perform a
complete polynomial division at each iteration. For hard-
ware implementations, the parallel nature of the Lagrange
representation might compensate for this extra cost if
several processing units are used. In the next section, we
justify the interest of being able to perform an inversion in
the Lagrange representation in the context of elliptic curve
cryptography.

6 DISCUSSIONS

For ECC, we usually prefer p and k to be prime. From a
security point of view, it is not clear yet whether curves
defined over such extension fields render the system less
secure. Except for a family of well-defined weak curves, the
best-known approaches to solving the ECDLP are generic
algorithms, such as Pollard’s Rho method [23]. Some
attempts have recently been made to solve the ECDLP for
curves defined over small extension fields. In [24], Gaudry
proposed a solution which is asymptotically faster than
Pollard’s Rho when the degree of the extension is equal to
zero mod 3 or 4. Explicitly, Gaudry’s attack “can solve an
elliptic curve discrete logarithm problem defined over IFq3

in time Oðq4=3Þ, with a reasonably small constant, and an
elliptic problem over IFq4 or a genus 2 problem over IFq2 in
Oðq3=2Þ with a larger constant.” In our case, we are only
interested in k being a prime. With the light brought by
these last results, it is thus preferable to avoid the case
k ¼ 3. Table 3 gives some good candidates for p and k and
the corresponding key length l ¼ log2ðpkÞ

� �
in bits. For each

prime p, we give the form of p and the smallest and largest
primes k satisfying the condition p > 2k required for our

multiplication. For large p, we only give the extensions

which lead to key sizes smaller than 600 bits. The number of

possible combinations for the primes p and k is huge. It is, of

course, impossible to list all of them. Since the form of the

reduction polynomial does not directly influence the

complexity of our multiplication algorithm, we can select

a prime p even if there is no “good” reduction polynomial

of the desired degree. For example, it is possible to choose

F3 ¼ 257 and F4 ¼ 65537, the fourth and fifth Fermat

primes, as well as all the Mersenne primes starting from

127 ¼ 27 � 1. Note that the only Type II OEF for Mersenne

primes up to 289 � 1 is obtained for p ¼ 213 � 1 (see [8]).
Our inversion algorithm requires twice as many opera-

tions as the classical Euclidean GCD algorithm for poly-

nomials over a finite field. For ECC, this is not a very

serious issue since projective coordinates can be used to

avoid all the inversions except one at the end of the point

multiplication, i.e., the computation of the point kP ¼
P þ . . .þ P (k times), where k is a large integer and P is a

point on the curve. (See [8] or [25] for more details about

elliptic curve arithmetic.) Furthermore, we remark that all

the computations of an ECC protocol (ECDH for example)

could be performed in the Lagrange representation. Once

Alice and Bob have agreed on a set of parameters (finite

field, elliptic curve, and base point P on the curve) and have

converted the coordinates of P in the Lagrange representa-

tion, then all the computations and exchanges of informa-

tion could be done in LR. For ECDH, we further notice that

there would be no need to perform an interpolation at the

end since the results they both get in LR are identical. If k1

and k2 are their secret random scalars, they both end up

with the point k1k2P whose coordinates, given in LR, can be

considered as several5 sets of k integers (elements of IFp) as

in the coefficient-based representation. In this context, we

believe that it is advantageous to be able to perform an

inversion in the Lagrange representation using, for exam-

ple, the extended GCD algorithm presented in Section 5.
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5. The number of coordinates depends on the type of projective
coordinate.

TABLE 3
Good Candidates for p and k Suitable for Elliptic Curve Cryptography and the Corresponding Key Lengths



7 CONCLUSIONS

In this paper, we have presented a complete set of

arithmetic operations for finite fields of the form IFpk . The

elements of the field are modeled as polynomials of degree

less than k by their values as sufficiently many points

(instead of their coefficients). This representation scheme is

called the Lagrange representation. Our multiplication,

which is a modified Montgomery algorithm, works for p >

2k and can be implemented with only a linear number of

multiplication in IFp. The inversion is performed using a

variant of the extended Euclidean algorithm, where the

degree and leading term of the coefficients of the

polynomials manipulated in LR have to be computed at

each iteration. The Lagrange representation is particularly

attractive for ECC algorithms (with projective coordinates

to reduce the number of inversions) since all the computa-

tions and exchange of information can possibly be

performed within this system.
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the Université de Provence, Marseille, France.
He joined the Université Montpellier 2, Mon-
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