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STRICTLY CHAINED (p, q)-ARY PARTITIONS

LAURENT IMBERT AND FABRICE PHILIPPE

Abstract. We consider a special type of integer partitions in which
the parts of the form paqb, for some relatively prime integers p and q,
are restricted by divisibility conditions. We investigate the problems of
generating and encoding those partitions and give some estimates for
several partition functions.

1. Introduction

A partition of an integer n is a non-increasing sequence of positive integers,
called parts, summing up to n, possibly subject to one or more constraints.
For instance, one may want the parts to be distinct, odd, prime, powers
of some integer, etc. The most famous reference for integer partitions is
doubtlessly the textbook by Andrews [1].

Strictly chained partitions are finite sequences of integers that decrease
for the divisibility order. In other words, partitions of the form n = a1+a2+
· · · + ak into distinct positive integers a1, . . . , ak such that ak|ak−1| · · · |a1.
Binary and more generally m-ary partitions with distinct parts are obviously
special instances of this type of partitions. In general, an integer admits
several such partitions; for example

873 = 512 + 256 + 64 + 32 + 8 + 1,
873 = 720 + 120 + 24 + 6 + 2 + 1,
873 = 696 + 174 + 3.

These unconventional partitions have been considered by Erdös and Loxton
in [6]. If p(n) denotes the number of strictly chained partitions of n and
p1(n) the number of partitions of this type whose smallest part is 1, they
show that p(n) ≥ log2 n for n ≥ 6 and p1(n) ≥ 1

2 log2 n for n ≥ 27 except
when n − 1 is prime, in which case p1(n) = 1. For x sufficiently large,
they also prove that the sum function P (x) =

∑
1≤n≤x p(n) behaves like

cxρ, where c is an unknown constant and ρ ≈ 1.72865 is the unique root of
ζ(ρ) = 2, where ζ is the Riemann zeta function.
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In this paper, we investigate a special case of the type of partitions defined
above. We consider strictly chained (p, q)-ary partitions, i.e., partitions with
distinct parts of the form paqb, with the further constraint that each part
is a multiple of the following one. For sake of simplicity, we further assume
that p and q are relatively prime integers greater than 1.

This work arose from recent developments on so-called double-base chains,
in particular their use in speeding-up exponentiation and elliptic curve scalar
multiplication [3]. The first aim of this paper is to provide some theoretical
results as a basis of further algorithmic studies. We investigate several prob-
lems including those of generating, encoding and counting those partitions.
We also give some results on the length (the number of parts) of the short-
est partitions of that type. The special case min(p, q) = 2 will be given a
special attention, in particular the case (p, q) = (2, 3). In addition, many of
our results generalize almost immediately to any number of relatively prime
integers instead of (p, q) only.

In the following, the set of all strictly chained (p, q)-ary partitions whose
parts sum up to U is denoted by Ω(U), and its subset of partitions of U
with no part 1 by Ω∗(U). Cardinalities of these sets are denoted by W and
W ∗ respectively.

2. Generating partitions in Ω(U)

2.1. Complete generation. We define three mappings from subsets Ω of
Ω(U) to the set P of all (general) partitions; i.e., the non-increasing se-
quences of positive integers whose sum is finite. Let $ ∈ Ω. The first map
consists in multiplying each part of $ by p, and the second one does the
same with q instead of p. The resulting sets of partitions are denoted pΩ
and qΩ respectively.

Definition of the third mapping depends on (p, q). If min(p, q) = 2, we
define the binary amount of a partition as the sum of all its binary parts or
0 if none. The third mapping is then defined as follows:{

If min(p, q) = 2, increase by 1 the binary amount of $,
If min(p, q) > 2, add a part one to $.

In both cases, the resulting set of partitions is denoted by 1Ω. Each of these
three mapping is clearly injective. Moreover, pΩ(U) ⊂ Ω(pU) and qΩ(U) ⊂
Ω(qU). However, 1Ω(U) 6⊂ Ω(U +1) in general. Indeed, if min(p, q) > 2, the
part 1 may appear twice in 1Ω(U) (remember that our mappings take their
values in P ), and even in the binary case the divisibility condition may be
lost. For example, the strictly chained (2, 3)-ary partition (6, 2, 1) is turned
into (6, 4) which is not in Ω(10).

If U is a positive integer the set Ω(U) is possibly not empty (of course,
if min(p, q) = 2 it contains at least the binary partition of U), whereas it
is always empty if U 6∈ N. We shall consider that Ω(0) contains the empty
sequence (). This convention is consistent with the simple but essential
identities given in Lemma 1 below. The first one is readily obtained by
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considering partitions without or with part 1, and the second one by noticing
that, in a partition with no part 1, either p or q (or both) must divide the
smallest part, and then all parts. Disjoint union of sets is denoted additively.

Lemma 1. For any integer U ,

Ω(U) = Ω∗(U) + 1Ω∗(U − 1), Ω∗(U) = pΩ(U/p) ∪ qΩ(U/q)

Using Lemma 1, ground value Ω(1) = {(1)} and convention Ω(0) = {()},
partitions in Ω(U) can be generated recursively.

Corollary 1. Let k0 = p−1 mod q and `0 = q−1 mod p. Then, for all
U ∈ N,

Ω(pqU) = pΩ(qU) + q
(
Ω(pU) \ pΩ(U)

)
,(2.1)

Ω(pqU + 1) = 1pΩ(qU) + 1q
(
Ω(pU) \ pΩ(U)

)
,(2.2)

and if 1 < r < pq
(2.3)

Ω(pqU+r) =



pΩ(qU + k0) + 1qΩ(pU + p− `0) if r = k0p,
qΩ(pU + `0) + 1pΩ(qU + q − k0) if r = `0q,
pΩ(qU + k) if r = kp, k 6= k0,
1pΩ(qU + k) if r = kp+ 1, k 6= q − k0,
qΩ(pU + `) if r = `q, ` 6= `0,
1qΩ(pU + `) if r = `q + 1, ` 6= p− `0,
∅ otherwise.

Proof. Relations (2.1) and (2.2) are immediate. Since p∧q = 1, for 1 ≤ k < q
and 1 ≤ ` < p we have Ω∗(kp) = pΩ(k) and Ω∗(`q) = qΩ(`). Moreover,
there exist k, ` such that r = kp and r − 1 = `q if and only if k = k0 and
` = p−`0. Indeed, (k0, p−`0) is the unique positive solution of the equation
kp − `q = 1. Thus the first case in (2.3) is proved and the second one is
obtained by symmetry. The other cases follow easily. �

These relations take the simplest form when p = 2, as the last three cases
in (2.3) disappear. Relation (2.1) is the less efficient one in general because
of set difference. It may be improved in this case.

Proposition 1. If p = 2, we have for all U ∈ N

Ω(qU) = qΩ(U) + 1Ω(qU − 1).

Proof. Since q ∧ 2 = 1, 2n 6≡ 0 (mod q). Thus the binary amount of a
partition in Ω(qU − 1) is never of the form 2n − 1, so that adding 1 to
it does not affect the chain condition. Therefore, 1Ω(qU − 1) ⊂ Ω(qU).
Moreover, the binary amount of the result is not 0, thus 1Ω(qU − 1) ⊂
Ω(qU)\qΩ(U). Finally, this inclusion is an equality since the binary amount
of every partition in Ω(qU) \ qΩ(U) is positive. �
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2.2. Encoding with words. When p = 2, relations given in Corollary 1
provide us with a compact representation of Ω(U). An edge-labeled weakly
binary tree with root U and labels in {1, 2, q} can be used to represent the
partitions in Ω(U) by words on the alphabet {1, 2, q}. (The nodes are the
successive arguments of Ω.) Using this representation, the value of U is
easily recovered from its encoding word: we start from the leaves (whose
value equals 1) and go through the root U while performing operations +1,
×2 and×q according to the edge labels. As an example, the tree representing
Ω(19) in the case (p, q) = (2, 3) is given in Figure 1. Note that the language
obtained this way to represent Ω(U) is a hypercode (no word is a sub-word
of another), so that other compact representations are available (the tree in
Figure 1 represents Ω(19) as a prefix code).

19 18

6
5 2 1212

1

2 12
3

3

17 8 4
1

13

2 12
2

212

1

1

Figure 1. Ω(19) = {1112222, 1112213, 1332, 131122} for
(p, q) = (2, 3)

In the general case, relations (2.1) and (2.2) prevent such simple, com-
pact encodings. Nevertheless, a natural graphic representation easily follows
from the definition by noticing that strictly chained (p, q)-ary partitions are
partitions with distinct parts in the set {paqb, (a, b) ∈ N2}, under the con-
straint that couples (a, b) of exponents form a chain in N2 endowed with the
usual product order. These chains can be encoded with words in {0, 1, 2, 3}∗.
Consider a length-maximal increasing path P in N2 containing a given chain
C, beginning at point (0,0) and ending at the maximal point in C. Such
a path is called C-filling. Then, starting from the empty word, iteratively
form a word by using the following rule when progressing on P: At point
(a, b), the added letter is

0 if (a, b) 6∈ C and (a+ 1, b) ∈ P,
2 if (a, b) 6∈ C and (a, b+ 1) ∈ P,
1 if (a, b) ∈ C and (a+ 1, b) ∈ P,
3 if (a, b) ∈ C and (a, b+ 1) ∈ P or (a, b) maximal in C.

Given a chain C in N2, there are generally many C-filling paths. For exam-
ple, the chain C = (0, 0), (1, 1) admits two C-filling paths, encoded by the
words 123 and 303. In order to get an unambiguous correspondence between
chains and words, we have to select a particular C-filling path. We choose
the one with minimal a-values: for each i, the ith point (ai, i+1−ai) in this
path is such that ai is the minimal abscissa of the ith points of all C-filling
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paths. In other words, we always go North before going East as illustrated
in Figure 2. We denote by wC the associated word. When C runs through
all finite increasing chains in N2, it can be shown that the words wC are
precisely those ending by 3 and with neither 02 nor 12 as factors. Note that
the language representing Ω(U) is clearly an infix code (no word is a factor
of another).

2a

3b

(a) 3203

2a

3b

(b) 3013

2a

3b

(c) 1133

2a

3b

(d) 11003

Figure 2. Ω(19) for (p, q) = (2, 3) and encoding words

2.3. Random generation. The tree-based representation of Ω(U) given in
the previous subsection allows for a straightforward uniform unbiased sam-
pling method, as soon as the weight of each subtree is known. We show how
to efficiently compute these weights in the next section. Accordingly, defin-
ing a Markov chain is seemingly superfluous for uniform random generation.

Nevertheless, availability of a symmetric, connected transition graph on
Ω(U) may be useful for algorithmic purposes, in particular when search-
ing to minimize the number of parts through recoding or while performing
addition. We construct such a graph in the special case (p, q) = (2, 3).
Transitions are based upon elementary identities which are represented in
Figure 3 below. The second identity is a generalization of 4 = 3 + 1.

3b

2a

←→

2a−1

(a) 2 + 1 = 3

( )

2a

3b
←→ ( )

2c

(b) 2(2n − 1 + 2n+1) = 3(2n+1 − 1) + 1

Figure 3. Valid symmetric transitions between partitions
in Ω(U) for (p, q) = (2, 3)

More formally, choose a partition $ in Ω(U). For some fixed value b, con-
sider the part 2a3b in $ with maximal a-value. If the part 2a−13b also exists
in $ (Figure 3(a)), subtracting both parts and adding the part 2a−13b+1

results in an other partition in Ω(U). Indeed, the other parts 2c3d in $
satisfy either c ≥ a, d > b or c ≤ a − 1, d ≤ b, so that the chain constraint
is respected. The bounds for authorized (c, d)-values are represented with
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1333 2133 2213 2223

11013 13003 21003

Figure 4. The transition graph G(27) for (p, q) = (2, 3)

bold lines in the lower-left and upper-right corners in Figure 3. If the part
2a−13b does not exist in $, let C be the maximal set of contiguous parts
of the form 2a−i3b, with i running from 2 to an eventual maximal value n
(Figure 3(b)). Next consider the value 2c3b with c = a− 2 if C is empty or
c = a− n− 1 otherwise. This value is not a part by definition. If c ≥ 0 and
if there is no part in $ of the form 2c+13d with d < b, we obtain another
partition in Ω(U) by multiplying every part in C by 3, subtracting 2a3b

from $, and adding the two parts 2c3b, 2c3b+1. It is easy to see that the two
families of transitions defined above are reversible, and the proof is omitted.

Let G(U) be the symmetric graph on Ω(U) corresponding to the above
transitions. The transition graph on Ω(27) = {11013, 13003, 1333, 21003,
2133, 2213, 2223} is given as an example in Figure 4.

Theorem 1. For (p, q) = (2, 3), the graph G(U) is connected, and its di-

ameter is at most
log2 U

log 2 log 3
.

Proof. It suffices to show that there is a path between any partition in
Ω(U) and the binary partition of U . Let $ be a partition in Ω(U) different
from the binary one, let b be the largest power of 3 amongst all parts in
$, and let a be such that 2a3b is the smallest part amongst those; i.e.
a = min{i ; 2i3b a part in $}. Since there is no part in $ of the form 2i3d

with d > b (b is maximal), both downwards transitions are allowed. If 2a3b−1

is not in $, we apply transition 3 = 1 + 2 as illustrated below.

3b

2a

−→

2a

Otherwise, transition 1 + 3 = 4 (or its generalization) is allowed, as shown
on the following figures.
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3b

2a

( )

−→

2a

( )

In both cases, the number of parts with power of 3 equal to b is reduced by
at least one unit. Iterating the process a finite number of times results in
a partition in Ω(U) where the largest power of 3 is less than b, and further
iterations eventually drop this exponent to 0; meaning that we have reached
the binary partition.

Regarding the diameter of the graph, it suffices to note that the exponents
a, b ≥ 0 of the parts of any partition in Ω(U) are located below the line
a log 2 + b log 3 = logU , so that the number of transitions between $ and
the binary partition in the above algorithm cannot exceed the number of
possible (a, b)-values (with a, b ≥ 0), that is, log2 U/(2 log 2 log 3). �

3. Shortest partitions

Finding a partition with a small number of parts, in a reasonable amount
of time, is of major importance for the applications mentioned in the in-
troduction. For example, in the domain of elliptic curve cryptography, the
complexity of a scalar multiplication algorithm (the elliptic curve equivalent
of an exponentiation) based on double-base chains [3] heavily depends on
the number of parts in a (2, 3)-ary partition of the exponent.

If |$| denote the number of parts of a partition $, we define σ(U) =
min$∈Ω(U) |$|, the length of the shortest partitions in Ω(U). For example,
from figure 2 it is easy to see that σ(19) = 2. The values of σ can be easily
computed using Corollary 1 by noticing that

σ(pqU) = min(σ(qU), σ(pU)), σ(pqU + 1) = 1 + σ(pqU).

The relations in (2.3) can be adapted as well for numbers of the form pqU+r
for 1 < r < pq. For (p, q) = (2, 3) the following Maple code can be used to
compute the first 500000 values of σ in approximately 1 second.
s := proc(U)
option remember; local r;
if U <= 2 then 1 else

r := irem(U,6);
if r=0 then min(s(U/3), s(U/2))
elif r=1 then 1 + s(U-1)
elif r=2 then s(U/2)
elif r=3 then min(s(U/3), 1+s((U-1)/2))
elif r=4 then min(s(U/2), 1+s((U-1)/3))
elif r=5 then 1 + s((U-1)/2)
fi

fi
end:
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As we shall see in Section 5.2, if (p, q) = (2, 3) there is only one partition
for numbers of the form 2a3 − 1, so that σ(2a3 − 1) = a + 1, whereas
σ(2a3) = 1. Our numerical experiments suggest that σ(U) ≈ (log2 U)/4 on
average, which empirically confirms an intuition that σ(U) is unfortunately
not in o(logU), even in a loose sense.

It is perhaps possible to significantly reduce the minimum number of parts
by considering signed strictly chained partitions. For instance, if one allows
the largest part in any $ ∈ Ω(U) to be less than or equal to U + 1, while
allowing the other parts to be either added or subtracted, what is the length
of the shortest such partition(s) of U? Studying similar relaxed definitions
of chained partitions for the same purpose shall be the object of further
research.

4. Computing W (U)

In this section we provide different formulas to compute W (U), the car-
dinality of Ω(U), with a special attention given to the case p = 2.

4.1. Simple identities. From Lemma 1 it follows immediately that, for all
U ∈ N, we have

W (U) = W ∗(U) +W ∗(U − 1),(4.1)

W ∗(U) = W (U/p) +W (U/q)−W (U/pq).(4.2)

Corollary 1 and Proposition 1 are easily translated in the same way. Simply
note that the sets involved in the first two cases of (2.3) are disjoint. Let
k0 = p−1 mod q and `0 = q−1 mod p. Then, for all U ∈ N, we have

(4.3) W (pqU) = W (pqU + 1) = W (pU) +W (qU)−W (U),

and, for 1 < r < pq,
(4.4)

W (pqU+r) =



W (qU + k0) +W (pU + p− `0) if r = k0p,

W (pU + `0) +W (qU + q − k0) if r = `0q,

W (qU + k) if r = kp, k 6= k0,

or r = kp+ 1, k 6= q − k0,

W (pU + `) if r = `q, ` 6= `0,

or r = `q + 1, ` 6= p− `0,

0 otherwise.

The case p = 2 allows for further simplifications.
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Proposition 2. If p = 2, then for all U ∈ N we have

W (qU) = W (U) +W (qU − 1),(4.5)

W (qU + 1) =


W (U) +W

(
qU

2
− 1
)

for even U,

W (U) +W

(
qU + 1

2

)
for odd U,

(4.6)

W (qU + r) = W

(⌊
qU + r

2

⌋)
if 2 ≤ r ≤ q − 1.(4.7)

Proof. Relation (4.5) follows from Proposition 1 at once. Now, since p = 2
we have `0 = 1 and k0 = q+1

2 . Then, for 1 < r < 2q, relations given in (4.4)
read

W (2qU + r) =


W (qU + q+1

2 ) +W (2U + 1) if r = q + 1,

W (2U + 1) +W (qU + q−1
2 ) if r = q,

W (qU + k) if r = 2k, k 6= q+1
2 ,

or r = 2k + 1, k 6= q−1
2 .

(4.8)

The last relation is summarized in (4.7) by considering odd and even U . The
second one is a particular case of (4.5), and the first one is identical to (4.6)
for odd U . Indeed, according to (4.8) we have W (qU+ q−1

2 ) = W (2qU+q−1)
and W (qU + q+1

2 ) = W (2qU + q + 2). Finally, (4.6) for even U follows
from (4.3) and (4.5). �

Note that if (p, q) = (2, 3) relations (4.6) may be summarized as

(4.9) W (3U + 1) = W (U) +W

(
3
⌊
U + 1

2

⌋
− 1
)
.

4.2. A general relation. Let Wp(U) be the number of partitions of U
with distinct parts taken in {pn, n ∈ N}. Clearly Wp(U) ∈ {0, 1}, depending
whether or not U can be written in base p with digits in {0, 1} only. As an
example, Erdös and Graham conjectured [4] that the only powers of 2 such
that W3(2n) = 1 are 1, 4 and 256. (This has been verified by Vardi [7] up
to 2 × 320.) Of course, since the binary expansion of U is unique, we have
W2(U) = 1 for all U > 0. It is easy to see that Wp(kp + 1) = Wp(kp) =
Wp(k) and Wp(kp + r) = 0 if r mod p 6∈ {0, 1}. Together with the initial
condition Wp(0) = 1, these relations define Wp recursively. Those quantities
are involved in the following theorem.
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Theorem 2. If U 6∈ N, then W (U) = 0. Otherwise, for U ≥ 1, we have

W (U) = Wp(U) +W

(
U

q

)
+

j
logp( U

q+1
)
k∑

c=0

δp,q(c, U)W
(⌊

U

pcq

⌋)
,(4.10)

where

δp,q(c, U) =


1 if bU/pcc ≡ 1 (mod q) and

Wp(U mod pc) = 1,

0 otherwise.

(4.11)

Proof. Let us sort the partitions in Ω(U) with respect to their p-ary amount,
that is, the sum of all parts of the form pa. There are W (U/q) such partitions
with p-ary amount equal to 0. This occurs either when there is none or when
q divides all parts. Next, note that a partition $ in Ω(U) with p-ary amount
n ≥ 1, assuming it exists, is perfectly described by its non p-ary parts, i.e.,
parts of the form paqb with b > 0. Indeed, if cn =

⌊
logp(n)

⌋
denotes the

largest power of p among the p-ary parts of $, each of the non p-ary parts of
$ is clearly a multiple of pcnq, so that dividing each of them by pcnq yields
a characterizing partition of (U − n)/(pcnq). Since this correspondence is
clearly one-to-one and onto Ω ((U − n)/(pcnq)), the number of partitions in
Ω(U) with p-ary amount equal to n is exactly W ((U − n)/(pcnq)). Finally,
n is a p-ary amount if and only if Wp(n) = 1. Accordingly,

W (U) = W (U/q) +
U∑
n=1

Wp(n)W
(
U − n
pcnq

)
.

Splitting the interval [1, U ] into sub-intervals of the form [pc, pc+1) for c ≥ 0,
yields

(4.12) W (U) = W (U/q) +
∑
c≥0

pc+1−1∑
n=pc

Wp(n)W
(
U − n
pcq

)
.

If pc ≤ n < pc+1 then we have U − n ≥ pcq only if U ≥ (q + 1)pc, so that c-
summands vanish for c > logp(U/(q+1)) except for the term Wp(U)W (0) =
Wp(U).

Finally, let c ≤ logp(U/(q + 1)). We have n ∈ [pc, pc+1) and Wp(n) = 1 if
and only if n = pc + r with 0 ≤ r < pc and Wp(r) = 1. Thus

pc+1−1∑
n=pc

Wp(n)W
(
U − n
pcq

)
=

pc−1∑
r=0

Wp(r)W
(
U − pc − r

pcq

)
.

Moreover, pcq divides U −pc−r with 0 ≤ r < pc only if U mod pcq = pc+r.



STRICTLY CHAINED (p, q)-ARY PARTITIONS 129

Therefore,
pc−1∑
r=0

Wp(r)W
(
U − pc − r

pcq

)
= δp,q(c, U)W

(⌊
U

pcq

⌋)
,

where δp,q(c, U) is equal to 1 if r = (U mod pcq) − pc satisfies 0 ≤ r < pc

and Wp(r) = 1, otherwise it vanishes. Writing U = kpcq + pc + r, it is not
difficult to show that this definition of δp,q(c, U) is equivalent to the one
given in (4.11). �

It is worthwhile to point out that if Wp(U mod pc) = 0 holds for a given
c it also holds for all c′ ≥ c. In other words, it means that the number of c-
summands in the right-hand side of (4.10) is at most equal to the the weight
of the first digit (starting from the unit) greater than 1 in the expansion of
U in base p. Of course, the latter remark is useless if p = 2. Nevertheless,
even in this case many summands do vanish, as shown next.

Proposition 3. Assume p < q and let N = blogp(q−
q−1
p )c. For all U and

c in N, if δp,q(c, U) = 1 then δp,q(c + k, U) = 0 for all integers k such that
k ≥ −c and 0 < |k| ≤ N .

Proof. Let us write

U = (un, . . . , uc, uc−1, uc−2, . . . , u1, u0)p = bU/pccpc + U mod pc.

If δp,q(c, U) = 1, Theorem 2 ensures that there exists ` such that bU/pcc =
`q + 1. We thus have, for each 1 ≤ k ≤ c,⌊

U

pc−k

⌋
= pk(`q + 1) +

k∑
i=1

pk−iuc−i.

Moreover, each ui with i < c is either equal to 0 or to 1 since Wp(U mod pc)
= 1. Accordingly, pk+

∑k
i=1 p

k−iuc−i is an integer in
[
pk, p

k+1−1
p−1

]
. Therefore,

if we moreover assume k ≤ N , then it is easy to see that bU/pc−kc cannot
be equal to 1 modulo q, so that δp,q(c − k, U) = 0. Finally, suppose there
exists k ∈ [1, N ] such that δp,q(c + k, U) = 1. Then, according to the
above discussion, δp,q(c, U) should then be equal to 0, which contradicts our
hypothesis. �

As an example, consider (p, q) = (2, 3). Here N = 1 thus at most one of
two consecutive summands is non-zero. An extremal case is U = 4a, because
δ2,3(c, 4a) = 1 if, and only if, c is even.

5. The sequence W

5.1. Generalities. For any given pair p, q, the sequence W behaves rather
irregularly, as one is easily convinced by computing its first values (see Fig-
ure 5).
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Figure 5. The first 400 values of W (U) for (p, q) = (2, 3)

On the one hand, if min(p, q) > 2, then W takes infinitely often the value
0 according to (4.4). In addition, it takes infinitely often the value 1 if p = 2.
Indeed, iterating (4.7) shows that, for all integers U and a,

(5.1) W (2aq(2U + 1)− 1) = W

(
qU +

q − 1
2

)
.

Therefore, for p = 2, the sequence W takes infinitely many times each value
of the form W (qU + q−1

2 ), and in particular the value 1 = W ( q−1
2 ) since the

binary partition is obviously the only (2, q)-ary partition for numbers less
than q.

On the other hand, we also have the following result.

Lemma 2. The sequence W is either {0, 1}-valued or unbounded.

Proof. Assume there exists U such that W (U) > 1. Choose two chained
partitions of U , with respective greatest parts paqb and pa

′
qb
′
, and let c =

max(a, a′) and d = max(b, b′). Next construct a sequence (Un) as follows:
U1 = U , and Un+1 = (1 + pncqnd)Un for positive n. Remembering the
lattice representation of chained partitions, see Figure 2, it is easy to show
by induction that W (Un) ≥ 2n. �

For the time being, we are not aware of any pair (p, q) for which W is
{0, 1}-valued. This cannot of course happen if q writes in base p with digits
∈ {0, 1} only, in particular if p = 2. More generally, W is unbounded as
soon as there exists U that writes in both bases p and q with digits ∈ {0, 1}
only. But whether such an U always exists or not is a seemingly difficult
problem, and only a positive answer would also solve ours.



STRICTLY CHAINED (p, q)-ARY PARTITIONS 131

Let us next give a coarse majoration of W (U).

Proposition 4. Let β ∈ (0, 1) be the unique solution of 1/pβ + 1/qβ = 1.
Then W (U) ≤ Uβ for U ≥ 1.

Proof. Let us assume p < q and show that, for all n ∈ N∗, W (U) ≤ Uβ for
1 ≤ U ≤ np. This is true for n = 1 since for 1 ≤ U ≤ p, W (U) ∈ {0, 1}
and Uβ ≥ 1. Suppose this is also true for 1 ≤ n ≤ m and consider U ∈
[mp + 1,mp + p]. Next write U = pqV + r with 0 ≤ r ≤ pq. If r = 1 then
by (4.3) W (U) = W (U − 1) thus W (U) ≤ (U − 1)β < Uβ since U − 1 = mp.
In the same way, if r 6= 1, first notice that the arguments of W in the right-
hand side of (4.3) and (4.4) are either non-integers or lie in [1, U/p], thus in
[1,mp] since p ≥ 2 and m ≥ 1. It suffices then to consider the upper bounds
for the terms in the right-hand side of (4.3) and (4.4) and to check that it
also holds for the left-hand side term by definition of β. For example, if
r = 0, we get from (4.3) that

W (U) ≤W (U/p) +W (U/q) ≤ (1/pβ + 1/qβ)Uβ = Uβ.

The other cases follow easily. �

A direct consequence of the above is that for the particular case (p, q) =
(2, 3) we have W (U) ≤ U0.79. Note that our numerical computations suggest
an exponent close to 0.535 for the best upper bound, whereas refining the
above method by taking into account (4.7) only gives approximately 0.66.

We further analyze and discuss the case p = 2 in the next section.

5.2. The case p = 2. Although W behaves quite irregularly on the large
scale, its local variations obey some rules, with a main pattern of length q
when p = 2.

Theorem 3. For all U ∈ N, we have if p = 2

(5.2) W (qU) ≥W (qU + 1) ≥W (qU − 1).

Moreover, for 0 ≤ r < q − 1,

(5.3) W (qU + r) ≥W (qU + r + 1).

Proof. For 1 ≤ i ≤ q− 1, the binary amount of any partition in Ω(qU + i) is
clearly not 0. It may thus be decreased by 1. This transformation provides
us with an injective mapping from Ω(qU + i) to Ω(qU + i− 1), so that (5.3)
and the first inequality in (5.2) hold.

Next consider a partition$ ∈ Ω(qU−1) with a binary amount β satisfying
β < 2N . As already noticed, β cannot be of the form 2n−1 with n ∈ N. If it
is neither of the form 2n − 2, it may be increased by 2 to obtain a partition
in Ω(qU + 1) because β + 2 is still less than 2N . Note that the resulting
partition has at least two binary parts. Finally assume that β = 2n−2 with
n ≥ 2. Since $ ∈ Ω(qU − 1), we have β ≡ −1 (mod q), and thus n must
satisfy 2n ≡ 1 (mod q). So, let k = (2n − 1)/q. Since k < 2N−1, $ may
be turned into a partition in Ω(qU + 1) by writing k in base 2 then using



132 LAURENT IMBERT AND FABRICE PHILIPPE

the identity 2n = qk + 1. Note that the resulting partition has exactly one
binary part (the part 1). Therefore, these two operations provide us with an
injective mapping from Ω(qU − 1) to Ω(qU + 1), which completes the proof
of the second inequality in (5.2). �

Accordingly, jumps of the function maxW : x 7→ maxU≤xW (U) occur
for certain x ∈ qN. We conjecture that such jumps only occur for values
x ∈ q(2N + 1). For example, if (p, q) = (2, 3) the first values of maxW are:
2, 4, 5, 7, 10, 13, 17, 19, 21, 22, 25. They occur at U = 3, 9, 21, 27, 57, 81,
165, 171, 243, 333, 345; all of the form 6k + 3.

Nevertheless, the best we are able to prove is that, if exceptions do exist,
they are of the form x = 2q2U . Indeed, first note that values x ∈ 2qN are
all of the form 2q(qU + r) = 2q2U + 2qr for some 0 ≤ r ≤ q − 1. Then,
by (4.3) and (4.4) we have

W (2q2U + 2qr) = W (2qU + 2r) +W (q2U + qr − 1),(5.4)

W (2q2U + 2qr − q) = W (2qU + 2r − 1) +W

(
q2U + qr − q + 1

2

)
.(5.5)

Using Theorem 3, we know that W (q2U + qr− 1) ≤W (q2U + qr− q+1
2 ) for

all r, and also W (2qU + 2r) ≤ W (2qU + 2r − 1) for 1 ≤ r ≤ q − 1 since
q is odd. Therefore, 2q2U + 2qr cannot be a jump point of maxW for the
latter values of r. Hence, the only possible exception may only occur for
r = 0, i.e., for numbers of the form 2q2U . We have computed the values of
maxW (U) for U ≤ 106 and q = 3, 5, 7, 9, 11, 13, 15 and have not found any
such exception.

We have seen that W (U) takes infinitely often the value 1 when p = 2.
In fact, we can be a little more precise, using a simple method illustrated
below in the case q = 3.

Proposition 5. Let (p, q) = (2, 3). We have W (U) = 1 if and only if,
either U ∈ {0, 1} or U = 2a3− 1 for some a ∈ N. Also, we have W (U) = 2
if and only if, either U ∈ {3, 4, 6, 7} or U = 2a9 − 1 or U = 2a15 − 1 for
some a ∈ N.

Proof. According to (4.5) and (4.6), if U 6≡ −1 (mod 3) then W (U) ≥ 2
unless U is either 0 or 1. If U ≡ −1 (mod 3) then by (5.1), we have
W (U) = W (2a3(2V + 1) − 1) = W (3V + 1) = 1 if and only if V = 0. The
same reasoning shows that solving W (U) = n for U only requires solving it
for U ≡ 0, 1 (mod 3). For n = 2, then from (4.5) and since W (0) = 1 we
have W (3U) = 2 if and only if W (U) = W (3U−1) = 1, that is, either U = 1
or U and 3U − 1 are both of the form 2a3− 1. The latter condition implies
U = 2, so that 3U ∈ {3, 6}. Next, from (4.6), we have W (3U + 1) = 2 if
and only if W (U) = W (3bU+1

2 c− 1) = 1, that is, either U ∈ {1, 2} or U and
3bU+1

2 c − 1 are both of the form 2a3 − 1 with a > 0. The latter condition
is impossible, thus 3U + 1 ∈ {4, 7}. Finally, replacing U ∈ {1, 2} in (5.1),
leads to the numbers of the form 2a9− 1 and 2a15− 1. �
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Our numerical experiments suggest that, more generally, all values in N
are taken infinitely many times by W , but here again we did not succeed in
either proving or disproving this.

6. Asymptotics

As noticed previously, it seems rather difficult to give an estimate for the
asymptotical behavior of maxW . Nevertheless, it is possible to precisely
describe the asymptotical behavior of the average of W . In this regard, our
results are similar to those of [6], except the fact that we obtain a more
explicit constant in Theorem 4 below.

Lemma 3. Let S(x) =
∑

1≤U≤bxcW (U). Then, for all x ∈ R+, we have

S(x) = 2
(
S

(
x

p

)
+ S

(
x

q

)
− S

(
x

pq

))
+ 1−W ∗ (bxc) .

Proof. The relation holds for x < 1 since both members are 0, with the
usual conventions that W ∗(0) = 1 and that a sum vanishes if the lower
index exceeds the upper one. Next assume x ≥ 1. We have by Lemma 1

(6.1)

bxc∑
U=1

W (U) =
bxc∑
U=1

(W ∗(U) +W ∗(U − 1))

= W ∗(0)−W ∗(bxc) + 2
bxc∑
U=1

W ∗(U)

and

(6.2)
bxc∑
U=1

W ∗(U) =
bxc∑
U=1

(W (U/p) +W (U/q)−W (U/pq)) ,

from which the relation immediately follows as bbxc/nc = bx/nc if n ∈ N.
�

Accordingly, if there exists α such that S(x) = O(xα) then α must satisfy

1/pα + 1/qα − 1/(pq)α = 1/2.(6.3)

It is not difficult to check that (6.3) has a unique positive solution, which
moreover satisfies

(6.4)


α > 1 if min(p, q) = 2,
α = 1 if (p, q) = (3, 4),
α < 1 otherwise.

As a first consequence of Theorem 4 below and (6.4), the average value of
W goes to infinity if p = 2, whereas it goes to 0 if min(p, q) > 2 except for
(3,4) where it goes to a constant in the order of 1.
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Besides, α is greater than β defined in Proposition 4. Indeed, (pq)−β <
1/4 since p−β + q−β = 1, thus

1/pβ + 1/qβ − 1/(pq)β > 3/4.

Equation (6.3) also reads

(1− p−α)−1(1− q−α)−1 = 2,

which is reminiscent of the equation ζ(ρ) = 2 mentioned in the introduction.
Nevertheless, we do not try to adapt the arguments used in the quoted paper.
In order to cope with the recursive expression in Lemma 3, we rather exploit
a method introduced ten years after by Erdös et al. [5]. Although the latter
recursion does not fit the required form because of its negative coefficient,
it may be rectified in our special case.

Theorem 4. Let α be the positive solution of equation (6.3). We have, for
large x,

S(x) = Cp,qx
α(1 + o(1)),

where Cp,q is a computable positive constant satisfying

Cp,q < 2
(

ln pα

pα − 1
+

ln qα

qα − 1

)−1

.

Proof. Let f(x) = x−αS(x) for positive x. By Lemma 3, we have for x > 0
and i ∈ N

(6.5)
1
pαi

f

(
x

pi

)
=

2
pα(i+1)

f

(
x

pi+1

)
+

2
pαiqα

(
f

(
x

piq

)
− 1
pα
f

(
x

pi+1q

))
+

1
xα

(
1−W ∗

(⌊
x

pi

⌋))
.

Since all terms vanish as soon as pi > x, summing both sides for i results,
for all x > 0, in

(6.6) f(x) =
2
qα
f

(
x

q

)
+
∑
i≥1

1
pαi

f

(
x

pi

)
+

1
xα

blogp xc∑
i=0

(
1−W ∗

(⌊
x

pi

⌋))
.

Now, let µ be the discrete measure with masses 2 q−α at point c = logp q,
and p−αi at point i for each i ∈ N∗. Using (6.3), it is easy to check that µ
is a probability measure, with expectation

(6.7) E(µ) =
2
qα
c+

pα

(pα − 1)2
.
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Let g(x) = f(px). Since f vanishes on (0, 1), g(x) vanishes for x < 0.
Therefore, and according to (6.6), g satisfies on R+ the renewal equation

g(x) =
2
qα
g(x− c) +

∑
i≥1

1
pαi

g(x− i) +
bxc∑
i=0

1
pαx

(
1−W ∗

(⌊
px−i

⌋))
(6.8)

=
∫ x

0
g(x− t)µ(dt) + h(x),(6.9)

where

h(x) =
1
pαx

∑
i≤x

(
1−W ∗

(⌊
px−i

⌋))
.

In order to use the Key Renewal Theorem, we now check that h is
directly Riemann-integrable (d.R.i.), that is, both h+ = max(h, 0) and
h− = max(−h, 0) are d.R.i. (see, e.g., [2, p. 154]). First notice that x 7→∑

i≤xW
∗(bpx−ic) is a constant on each interval [logp n, logp(n+1)), n ∈ N∗.

Thus h , and h+ and h− as well since p−αx decreases with x, are continu-
ous a.e. with respect to Lebesgue measure. Next, since W ∗(U) ≤ Uβ with
α > β > 0,

(6.10) h−(x) ≤
∑
i≤x

W ∗
(⌊
px−i

⌋)
pαx

≤
∑
i≤x

pβ(x−i)

pαx
=
pβx

pαx

|x|∑
i=0

p−βi ≤ p(β−α)x

1− p−β
.

Since x 7→ p(β−α)x(1 − p−β)−1 is Lebesgue integrable and decreasing, it is
d.R.i., thus h− is d.R.i. too. Finally, h+ is also d.R.i. since it is dominated
by x 7→ (|x| + 1)p−αx, which is itself d.R.i. since it is Lebesgue integrable
and decreases for x > ln pα − 1.

According to the Key Renewal Theorem, we thus have

lim
x→∞

f(x) = lim
x→∞

g(x) =
1

E(µ)

∫
R+

h(x)dx = Cp,q.

Let us next evaluate the latter Riemann-integral.

(6.11)

∫
R+

h(x)dx ≤
∫

R+

(bxc+ 1)
dx

pαx

=
∑
n≥0

(n+ 1)
∫ n+1

n

dx

pαx
=

1
(1− p−α) ln pα

.

Accordingly, and making use of (6.3),

(6.12) Cp,q ≤
pα

(pα − 1) ln pα

(
2 logp q
qα

+
pα

(pα − 1)2

)−1

=
1

αd(p, q)
,

where

d(p, q) =
pα − 2
pα

ln q +
1

pα − 1
ln p.
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Notice that, by (6.3) again, d(p, q) − d(q, p) = 0, so that d(p, q) may be
replaced by the half-sum of d(p, q) and d(q, p), which yields the claimed
bound for Cp,q. �
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