
Multiplication by a Constant is Sublinear
Vassil Dimitrov

ATIPS Labs, CISaC
University of Calgary

2500 University drive NW
T2N 1N4, Calgary, AB

Canada

Laurent Imbert
LIRMM, Univ. Montpellier 2, CNRS

Montpellier, France
& ATIPS Labs, CISaC
University of Calgary

Canada

Andrew Zakaluzny
ATIPS Labs

University of Calgary
2500 University drive NW

T2N 1N4, Calgary, AB
Canada

Abstract— This paper explores the use of the double-base num-
ber system (DBNS) for constant integer multiplication. The DBNS
recoding scheme represents integers – in this case constants – in
a multiple-radix way in the hope of minimizing the number of
additions to be performed during constant multiplication. On
the theoretical side, we propose a formal proof which shows that
our recoding technique diminishes the number of additions in a
sublinear way. Therefore, we prove Lefèvre’s conjecture that the
multiplication by an integer constant is achievable in sublinear
time. In a second part, we investigate various strategies and we
provide numerical data showcasing the potential interest of our
approach.

I. INTRODUCTION

Multiplication by an integer constant has many applications;
for example in digital signal processing, image processing,
multiple precision arithmetic, cryptography and in the design
of compilers. In certain applications, like the discrete co-
sine transform (DCT), the implementation of integer constant
multiplications is the bottleneck as it largely determines the
speed of the entire process. Therefore, it is imperative that
multiplications by integer constants in these high throughput
applications are optimized as much as possible.

The problem of optimizing multiplication by constants is
that not all constants behave the same. In other words, a tech-
nique for optimizing the multiplication by the specific constant
c may not optimize the multiplication by another constant c′.
Therefore, finding solutions that optimize multiplication for
most constants over a specified range is an important problem
which has been sought after by many authors.

Given an integer constant c, the goal is to find a program
which computes c × x with as few operations as possible. A
basic complexity model is to count the number of additions
only, assuming that multiplications by powers of 2 are free
(left shifts). The number of additions is highly dependent
upon the number of non-zero digits in the representation of
the constant c. For example, if c is a n-bit constant, then
one needs on average n/2 additions with the double-and-add
method, sometimes referred to as the binary method; and n/3
additions if c is expressed in the Canonic Signed Digit (CSD)
representation: a variant of Booth’s recoding technique [1].
Other classes of algorithms based on cost functions or the
search for patterns in the binary expansion of c are described
in the papers from Bernstein [2], Lefèvre [3], and Boullis
and Tisserand [4]. These algorithms give very good results in

practice at the cost of quite expensive computations. Moreover,
the asymptotic complexities of the generated programs are
difficult to analyze.

In this paper, we propose several variants of an algorithm
based on integer recoding, where the constant c is represented
as a sum of mixed powers of two coprime bases; e.g. 2
and 3 or 2 and 5. This very sparse representation scheme,
called Double-Base Number System (DBNS), has been used in
digital signal processing [5] and cryptographic [6] applications
with great success. By restricting the largest exponent of the
second base to some well chosen bound, we obtain a sublin-
ear constant multiplication algorithm; the resulting program
requires O(log c/ log log c) additions and/or subtractions. Our
numerical experiments confirm the asymptotic sublinear be-
havior, even for relatively small numbers (32 to 64 bits).

This paper is organized as follows: We define the problem
and present some previous works in Section II and III. In
Section IV, we introduces the Double-Base Number System.
We present our new algorithm and the proof of sublinearity in
Section V. In Section VI, we propose different heuristics and
several numerical experiments.

II. PROBLEM DEFINITION

In many applications, multiplication of integers is simply
done with an all purpose multiplier. (On recent general purpose
processors, it is sometimes even faster to use the floating-point
multiplier to perform an integer multiplication.) As mentioned
before, many applications require a high throughput of con-
stant integer multiplications, and would benefit from a cus-
tomized integer multiplier suited to the specific constants used.
In essence, multiplication is a series of shifts and additions, but
in some cases, it might be a good idea to allow subtractions.
The central point of the constant multiplication problem is to
minimize the total number of additions/subtractions required
for each integer multiplication.

In the following, we shall use x � k to denote the value
obtained when the variable x is shifted to the left by k places
(bits); i.e., the value x × 2k. For simplicity, we consider a
complexity model where the cost of shifts is ignored. Note
that this widely assumed assumption might not correspond to
practical reality, especially in the context of multiple preci-
sion arithmetic. For hardware implementations, however, this
assumption seems reasonable. Therefore, in order to simplify

the presentation, we only take into account the number of
additions and/or subtractions. We also assume that addition
and subtraction have the same speed and cost. Hence, we
will sometimes refer to the number of additions, or even to
the number of operations, by which terminology we include
subtractions.

Let us start with a very small example. We want compute
the product of the unknown integer x by the integer constant
c = 151 = 100101112. Using a naive approach, we can shift
each non-zero bits of c to the left to its corresponding position
and sum them all together. If c =

∑n−1
i=0 ci2i, this is equivalent

to

c× x =
n−1∑
i=0

ci2i × x =
n−1∑
i=0

cix2i. (1)

For example, using the � notation, we have

151x = (x� 7) + (x� 4) + (x� 2) + (x� 1) + x.

Such a constant multiplier by c = 151 would require 4
additions. In the general case, the number of additions is equal
to the Hamming weight (i.e., the number of non-zero digits)
of c minus 1. In the next section, we present some more
sophisticated methods to perform a constant multiplication.

III. PREVIOUS WORKS

A widely used approach to reduce the number of non-
zero digits, and therefore the number of additions, is to
consider variants of Booth’s recoding [1] technique, where
long strings of ones are replaced with equivalent strings with
many zeros. An improvement to the multiplication example
presented above can be achieved if we represent our constant
using signed digits. In the so-called Signed Digit (SD) binary
representation, the constant c is expressed in radix 2, with
digits in the set {1 = −1, 0, 1}. This recoding scheme is
clearly redundant. A number is said to be in the Canonical
Signed Digit (CSD) format if there are no consecutive non-
zero digits in its SD representation. In this case, it can be
proved that the number of non-zero digits is minimal among
all SD representations [7]. For a n-bit1 constant, it is bounded
by (n+1)/2 in the worst case, and is roughly equal to n/3 on
average (the exact value is n/3 + 1/9; see [8]). For example,
since 151 = (10010111)2 = (10101001)2, the product c × x
reduces to 3 additions:

151x = (x� 7) + (x� 5)− (x� 3)− x.

Representing the constant in a different format is known as
a direct recoding method. The double-base encoding scheme
we present in Section IV also falls into this type. Several
other constant multiplication methods have been proposed
in the literature. Solutions based on genetic algorithms such
as evolutionary graph generation seem to provide very poor
results. A drawback of typical recoding methods is the impos-
sibility to reuse intermediate values. The first proposed method
which takes advantage of intermediate computations is due to

1In the standard binary representation.

Bernstein [2], which is implemented in the GNU Compiler
Collection (GCC) [9]. Methods based on pattern search in the
binary or SD representation of the constant have also been
widely studied. For example, in 2001, Lefèvre proposed an
algorithm [3] to efficiently multiply a variable integer x by a
given set of integer constants. This algorithm can also be used
to multiply x by a single constant. Using similar techniques,
Boullis and Tisserand [4] recently proposed improvements in
the case of multiplication by constant matrices; a detailed
presentation of all the methods mentioned above can be found
in their respective papers with the corresponding references.
Methods based on cost functions or pattern search generates
optimized results at the expense of large computational time.
In addition, lower bounds on the maximum left shifts must
be considered carefully to minimize overflow – this to the
detriment of the optimization. Another interesting method was
proposed by MacLeod and Dempster [10] in 1999. It relies on
graph generation, and again requires immense computational
time as well as large memory requirements with the benefit of
greatly optimized results.

IV. THE DOUBLE-BASE NUMBER SYSTEM

In this section, we present the main properties of the double-
base number system, along with some numerical results to
provide the reader with some intuitive ideas about this rep-
resentation scheme. We have intentionally omitted the proofs
of previously published results. The reader is encouraged to
check the references for further details.

We will need the following definitions.

Definition 1 (S-integer): Given a set of primes S, an S-
integer is a positive integer whose prime factors all belong to
S.

Definition 2 (Double-Base Number System): Given p, q,
two distinct prime integers, the double-base number system
(DBNS) is a representation scheme into which every positive
integer n is represented as the sum or difference of distinct
{p, q}-integers, i.e., numbers of the form paqb.

n =
∑̀
i=1

si paiqbi , (2)

with si ∈ {−1, 1}, ai, bi ≥ 0 and (ai, bi) 6= (aj , bj) for i 6= j.

The size, or length, of a DBNS expansion is equal to the
number ` of terms in (2). In the following, we will only
consider bases p = 2 and q ∈ {3, 5, 7}.

Whether one considers signed (si = ±1) or unsigned (si =
1) expansions, this representation scheme is highly redundant.
Indeed, if one considers unsigned double-base representations
(DBNR) only, with bases 2 and 3, then one can prove that 10
has exactly 5 different DBNR; 100 has exactly 402 different
DBNR; and 1000 has exactly 1295579 different DBNR. The
following theorem holds.

Theorem 1: Let n be a positive integer and let q be a prime
> 2. The number of unsigned DBNR of n with bases 2 and
q is given by f(1) = 1, and for n ≥ 1

f(n) =

{
f(n− 1) + f(n/q) if n ≡ 0 (mod q),
f(n− 1) otherwise.

(3)

Remark: The proof consists of counting the number of
solutions of the diophantine equation n = h0 + qh1 + q2h2 +
· · ·+ qtht, where t =

⌊
logq(n)

⌋
and hi ≥ 0.

Not only this system is highly redundant, but it is also
very sparse. Probably, the most important theoretical result
about the double-base number system is the following theorem
from [11], which gives an asymptotic estimate for the number
of terms one can expect to represent a positive integer.

Theorem 2: Every positive integer n can be represented as
the sum (or difference) of at most O (log n/ log log n) {p, q}-
integers.

The proof is based on Baker’s theory of linear forms of
logarithms and more specifically on the following result by R.
Tijdeman [12].

Theorem 3: There exists an absolute constant C such that
there is always a number of the form paqb in the interval[
n− n/(log n)C , n

]
.

Theorem 1 tells us that there exists very many ways to
represent a given integer in DBNS. Some of these rep-
resentations are of special interest, most notably the ones
that require the minimal number of {p, q}-integers; that is,
an integer can be represented as the sum of m terms, but
cannot be represented with (m − 1) or fewer terms. These
so-called canonic representations are extremely sparse. For
example, with bases 2 and 3, Theorem 1 tells us that 127
has 783 different unsigned representations, among which 6
are canonic requiring only three {2, 3}-integers. An easy way
to visualize DBNS numbers is to use a two-dimensional array
(the columns represent the powers of 2 and the rows represent
the powers of 3) into which each non-zero cell contains the
sign of the corresponding term. For example, the six canonic
representations of 127 are given in Table I.

Finding one of the canonic DBNS representations in a
reasonable amount of time, especially for large integers, seems
to be a very difficult task. Fortunately, one can use a greedy
approach to find a fairly sparse representation very quickly.
Given n > 0, Algorithm 1 returns a signed DBNR for n.

Although Algorithm 1 sometimes fails in finding a canonic
representation (the smallest example is 41; the canonic rep-
resentation is 32 + 9, whereas the algorithm returns 41 =
36 + 4 + 1) it is very easy to implement and it guarantees a
representation of length O (log n/ log log n).

The complexity of the greedy algorithm mainly depends
on the complexity of step 3: finding the best approximation
of n of the form paqb. An algorithm based on Ostrowski’s
number system was proposed in [13]. It is possible to prove

Algorithm 1 Greedy algorithm
INPUT: A positive integer n
OUTPUT: The sequences (si, ai, bi)i≥0 s.t. n =

∑
i sip

aiqbi

with si ∈ {−1, 1}, ai, bi ≥ 0 and (ai, bi) 6= (aj , bj) for
i 6= j

1: s← 1 {To keep track of the sign}
2: while n 6= 0 do
3: Find the best approximation of n of the form z = paqb

4: print (s, a, b)
5: if n < z then
6: s← −s
7: n← |n− z|

that its complexity is O(log log n). (The algorithm proposed
in [13] focuses on base 2 and 3 but the results extend to
bases p, q.) Since Algorithm 1 finishes in O(log n/ log log n)
iterations, its overall complexity is thus optimal in O(log n).
Another solution for Step 3 was recently proposed by Doche
and Imbert in [14]; it uses lookup tables containing the binary
representations of some powers of q and can be implemented
very quickly, even for large numbers.

V. SUBLINEAR CONSTANT MULTIPLICATION

In this core section, we propose a generic algorithm for
constant multiplication that takes advantage of the sparseness
of the double-base encoding scheme. Our algorithm computes
a special DBNS representation of the constants, where the
largest exponent of the second base q is restricted to an
arbitrary (small) value B. It uses a divide and conquer strategy
to operate on separate blocks of small sizes. For each block,
it is possible to generate those specific DBNS representations
using a modified version of the greedy algorithm, or to
precompute and store them in a lookup table in a canonical
form; i.e., a DBNS expansion with a minimal number of
terms. We show that both approaches lead to sublinear constant
multiplication algorithms.

Let us illustrate the algorithm on a small example. We
express c = 10599 = (10100101100111)2 in radix 27; that
is, we split c in two blocks of 7 bits each. We obtain c =
82 × 27 + 103 and we represent the ”digits” 82 and 103 in
DBNS with bases 2 and 3 using as few terms as possible,
where the exponents of the second base q = 3 are at most
equal to 2. We find that 82 can be written using two terms as
64 + 18 and 103 using only three terms as 96 + 8 − 1. (We
have results which prove that these values are optimal). By
sticking the two parts together, we obtain the representation
given in Table II.

Using this representation, the product c× x is decomposed
as follows:

x0 = (x� 8)
x1 = 3x0 + (x� 5)
x2 = 3x1 + (x� 13) + (x� 3)− x

Since multiplications by 3 can be performed by a shift

TABLE I
THE SIX CANONIC UNSIGNED DBNR OF 127

2233 + 2132 + 2030 = 108 + 18 + 1 2233 + 2430 + 2031 = 108 + 16 + 3

1 2 4
1 1
3
9 1
27 1

1 2 4 8 16
1 1
3 1
9
27 1

2531 + 2033 + 2230 = 96 + 27 + 4 2332 + 2133 + 2030 = 72 + 54 + 1

1 2 4 8 16 32
1 1
3 1
9
27 1

1 2 4 8
1 1
3
9 1

27 1

2630 + 2133 + 2032 = 64 + 54 + 9 2630 + 2232 + 2033 = 64 + 36 + 27

1 2 4 8 16 32 64
1 1
3
9 1
27 1

1 2 4 8 16 32 64
1 1
3
9 1

27 1

TABLE II
A DBNS REPRESENTATION OF c = 10599 OBTAINED USING TWO BLOCKS OF 7 BITS EACH

20 21 22 23 24 25 26 27 28 29 210 211 212 213

30 −1 1 1
31 1
32 1︸ ︷︷ ︸ ︸ ︷︷ ︸

103 82

followed by an addition, the resulting sequence of shift-and-
add becomes:

x0 = (x� 8)
x1 = ((x0 � 1) + x0) + (x� 5)
x2 = ((x1 � 1) + x1) + (x� 13) + (x� 3)− x

Let us give a formal description of the algorithm outlined
in the previous example. We express c in DBNS as

c =
bmax∑
j=0

amax∑
i=0

ci,j2iqj , (4)

with digits ci,j = {1, 0, 1}. Algorithm 2 below can be used to
compute c × x. We remark that each step of the algorithm
requires a multiplication by q. It is therefore important to
select the second base q such that the multiplication by q
only requires a single addition; i.e., with q = 3, we have
3x = (x � 1) + x. At the end, the result is given by
xbmax

= c×x. If ` is the length of the double-base expansion;
i.e, the number of non-zero digits ci,j in (4), and if bmax is
the largest exponent of q, then the overall number of additions
is equal to

` + bmax − 1. (5)

The goal is to set B, the predefined upper bound for the

Algorithm 2 Double-base constant multiplication
INPUT: A constant c =

∑
i,j ci,j2i3j , with ci,j = {1, 0, 1};

and an integer x
OUTPUT: c× x

1: x−1 ← 0
2: for j = 0 to bmax do
3: xj ← q × xj−1

4: xj ← xj +
∑

i ci,bmax−j (x� i)
5: Return xbmax

exponents of q, such that the overall number of addition is
minimal. (Note that bmax might be different from B, but
bmax ≤ B holds.)

The following theorem shows that the number of additions
required to evaluate the product c× x using our algorithm is
sublinear in the size of the constant c.

Theorem 4: Let c be a positive integer constant of size n
(in bits). Then, the multiplication by c can be computed in
O(n/ log n) additions.

Proof: We split c in blocks of size n/ log n bits each.
Clearly, one needs log n such blocks. Each block corresponds
to an integer of size n/ log n bits and can thus be represented
in DBNS with exponents all less than n/ log n. In particular,
we have bmax ∈ O(n/ log n). From Theorem 2, we know that
the number of non-zero digits in the DBNS representations of
each block belongs to O

(
n/(log n)2

)
. Note that this is true

whether one uses the greedy algorithm or considers a canonic
double-base representation for each block. Therefore, since we
have log n blocks, the number of non-zero digits in the DBNS
representation of c belongs to O (n/ log n). From (5), since
bmax ∈ O(n/ log n), we obtain that the overall complexity of
the algorithm is in O(n/ log n).

VI. HEURISTICS

The algorithm presented in the previous section must be
seen as a generic method; it must be adapted for each specific
application. In particular, there are several parameters that need
to be defined carefully: the second base q, the upper bound B
on the exponents of q, and the size of the blocks.

As mentioned previously, when the block size is not too
large, it is possible to store the canonic representations of each
possible number in the range in a lookup table. The values
given in Table III have been computed using exhaustive search.
For integers of size up to 21 bits, we report the average number
of non-zero digits in canonic double base representation with
bases 2 and q = 3, maximum binary exponent amax = 19 and
ternary exponent bmax ∈ {3, 4, 5}. We also give the maximum
number of terms ever needed in the corresponding range and
the first integer x for which it occurs2.

Let us analyze some options offered by our algorithm for
a multiplication by a 64-bit constant c. For this example, we
only consider bases 2 and 3 with maximum ternary exponent

2We also have similar data for q = 5 and q = 7.

bmax = 3. If we split our 64-bit constant in 7 blocks of 10
bits, we know from Table III that, in the worst case, the DBNS
decomposition of c will require 7 × 3 = 21 non-zero digits.
Therefore, we know that the number of additions will be ≤
23. If, instead, we consider four blocks of 16 bits each, we
obtain 22 additions in the worst case. We remark that our
worst case is similar to the average complexity if one uses the
CSD representation (64/3 ' 21.3333). The average number of
operations in our case is roughly equal 3.64× 4 + 2 ' 16.56,
which represents a speedup of about 22% compared to the
CSD approach. This is the kind of analysis a programmer
should do in order to define an appropriate set of parameters
for his specific problem.

This approach is encouraging but is is possible to do better.
In the algorithm presented so far, the blocks are all of the
same size. This is to the detriment of efficiency since there
might exist better way to split the constant than these regular
splitting. In the next two sections, we present to families of
heuristics that operates from right-to-left or from left-to-right.

A. Right-to-left splitting

The regular splitting does not exploit the nature of the binary
representation of the constant c. The idea here is to try to
avoid blocks with long strings of zeros and rather use these
strings to split the constant c. For a predefined integer m > 1,
we define a separating string as a string of m consecutive
zeros. The heuristic works as follows: starting from the least
significant bit, we look for the first separating string. If such
a string is found at position j, the first block corresponds to
the bits of c of weight less than j. We then look for the next
separating string starting from the first non-zero digit of weight
> j. Therefore, every block is an odd number and there is no
need to store the canonic representations of even numbers in
our lookup table. The separating size m must be carefully
chosen in function of the size of c. If it is too small, there
will be too many blocks and the overall number of additions
will increase accordingly. Reversely, if it is too large, there
might not be any such strings and we might end up with
the entire constant c, for which we do not know a canonic
DBNS representation. In the second case, the solution is to
fix the largest block size (according to the amount of memory
available for the lookup table) and to split the constant c either
when we find a separating string or when we reach this largest
block size. In Figures 1 and 2, we have plotted the average
number of additions as a function of the largest block size
for m = 2, 3, 4, 5, for amax = 19 and bmax = 3, for 100000
random 32-bit and 64-bit constants. We also have similar plots
for bmax = 2, 4, 5 but bmax = 3 seems to give the best results.

B. Left-to-right splitting

Another possible strategy is to start from the most signifi-
cant bit of c and to look for the largest odd number of size
less than the predefined largest block size. As previously, we
impose that each block starts and finishes with a non-zero
digit in order to store odd numbers only. This strategy might

TABLE III
NUMERICAL RESULTS FOR PARAMETERS q = 3, amax = 19, bmax = 3, 4, 5

size bmax = 3 bmax = 4 bmax = 5
(in bits) Avg Max at x =? Avg Max at x =? Avg Max at x =?

1 0.5 1 1 0.5 1 1 0.5 1 1
2 0.75 1 1 0.75 1 1 0.75 1 1
3 1.125 2 5 1.125 2 5 1.125 2 5
4 1.375 2 5 1.375 2 5 1.375 2 5
5 1.5625 2 5 1.5625 2 5 1.5625 2 5
6 1.71875 2 5 1.71875 2 5 1.71875 2 5
7 1.89844 3 77 1.84375 3 103 1.83594 3 103
8 2.10547 3 77 2.02734 3 103 1.96875 3 103
9 2.31836 3 77 2.23047 3 103 2.15234 3 103

10 2.51074 3 77 2.42773 3 103 2.34961 3 103
11 2.68408 4 1229 2.59863 4 1843 2.52881 3 103
12 2.86743 4 1229 2.75391 4 1843 2.67871 4 2407
13 3.06897 4 1229 2.92224 4 1843 2.81982 4 2407
14 3.27203 4 1229 3.10913 4 1843 2.97766 4 2407
15 3.46136 5 19661 3.29990 5 29491 3.15594 4 2407
16 3.64391 5 19661 3.47905 5 29491 3.33882 5 52889
17 3.83374 5 19661 3.64627 5 29491 3.50820 5 52889
18 4.03194 5 19661 3.81557 5 29491 3.66204 5 52889
19 4.22856 6 314573 3.99545 6 471859 3.81476 5 52889
20 4.44634 6 314573 4.20838 6 471859 3.99837 5 52889
21 4.67745 6 314573 4.41817 6 471859 4.19770 6 1103161

 9

 9.5

 10

 10.5

 11

 11.5

 4 6 8 10 12 14 16 18

A
v
g

 #
 o

f
A

d
d

it
io

n
s

Max Block (LUT) Size (in bits)

Separating size m = 2
Separating size m = 3
Separating size m = 4
Separating size m = 5

Sliding Window from MSB

Fig. 1. Average number of additions for 100000 randomly chosen 32-bit constants, using bases 2 and 3, with amax = 19 and bmax = 3

 16

 17

 18

 19

 20

 21

 22

 4 6 8 10 12 14 16 18

A
v
g

 #
 o

f
A

d
d

it
io

n
s

Max Block (LUT) Size (in bits)

Separating size m = 2
Separating size m = 3
Separating size m = 4
Separating size m = 5

Sliding Window from MSB

Fig. 2. Average number of additions for 100000 randomly chosen 64-bit constants, using bases 2 and 3, with amax = 19 and bmax = 3

look optimal as it best exploit the precomputed values, but
Figures 1 and 2 show that this is not the case.

C. Remarks

1) In Figures 1 and 2, we remark that for 32-bit and 64-
bit constants, with lookup tables of reasonable size (10
to 12 input bits), the best results seems to be given for
separating string of size m = 3.

2) In Table IV, we give the average number of additions
and the worst case for 100000 randomly chosen 64-bit
constants (with separating size m = 3). We remark that
Lookup tables of 10 to 12 input bits lead to roughly
17 additions on average and 22 in the worst case.
Using much larger lookup tables only provides small
improvements. For 64-bit constants, lookup tables of 10
to 12 input bits seems to be a good choice. For 32-bit
numbers, tables of size 8 to 10 input bits lead to < 10
additions on average and 13 in the worst case.

3) We have performed the same kind of experiments with
second base q = 5 and q = 7. Bases 2 and 3 seem to
provide the best results.

4) In terms of comparisons, our recoding algorithm requires
more additions, both on average and in the worst case,
than Boullis and Tisserand’s algorithm [4] (using the
graph heuristic strategy); which is the best known al-
gorithm so far for multiplication by constant matrices.
Using their approach for a single constant, one get about

TABLE IV
AVERAGE AND WORST CASE NUMBER OF ADDITIONS FOR 64-BIT

CONSTANTS

Max block size Avg # add Worst case
4 21.7133 31
5 20.5069 28
6 18.9489 24
7 18.5809 26
8 18.2813 25
9 17.9844 24

10 17.5323 22
11 17.1257 22
12 16.9249 23
13 16.818 22
14 16.694 21
15 16.5134 21
16 16.366 22
17 16.277 21
18 16.2151 21

13.5 additions on average and 19 in the worst case. This
is not surprising since their approach based on pattern
search generates very optimized results. However, the
computational cost of our DBNS recoding algorithm,
both in time and memory, is smaller, which might allow
its use in compilers.

5) Note that it is possible to reduce the average and worst
case number of additions. Indeed, the canonic repre-
sentations stored in the lookup tables we used for our
experiments are not the ”best” possible ones; i.e., among
all the canonic representations for a given number, we do
not necessarily store the representation with the smallest
second exponent. By doing so, we can probably save
some additions.

VII. CONCLUSIONS

In this paper, we proposed a new recoding algorithm for the
constant multiplication problem. Our approach uses a divide
and conquer strategy combined with the double-base number
system. We proved that our approach leads to a sublinear
algorithm. To our knowledge, this is the first sublinear al-
gorithm for the constant multiplication problem. We illustrate
the potential interest of our approach with several numerical
experiments. The sequence of shifts-and-adds obtained with
our algorithm is not as ”good” as the sequences obtained
with the best known methods based on pattern search or cost
funcions. However, our DBNS-based generation algorithm
requires much less computational effort than these optimal
methods and it gives better results than the other direct
recoding methods. A natural extension to the problem is the
multiplication by constant vectors and matrices, where the high
redundancy of the DBNS can certainly be exploited.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their comments. This work was partly funded by an
NSERC strategic grant on the Canadian side and by an ACI
grant on the French side.

REFERENCES

[1] A. D. Booth, “A signed binary multiplication technique,” Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 1951, reprinted in E. E. Swartzlander, Computer Arithmetic, Vol.
1, IEEE Computer Society Press Tutorial, Los Alamitos, CA, 1990.

[2] R. Bernstein, “Multiplication by integer constants,” Software – Practice
and Experience, vol. 16, no. 7, pp. 641–652, jul 1986.

[3] V. Lefèvre, “Multiplication by an integer constant,” INRIA, Research
Report 4192, May 2001.

[4] N. Boullis and A. Tisserand, “Some optimizations of hardware multipli-
cation by constant matrices,” IEEE Transactions on Computers, vol. 54,
no. 10, pp. 1271–1282, Oct. 2005.

[5] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, “Theory and applications
of the double-base number system,” IEEE Transactions on Computers,
vol. 48, no. 10, pp. 1098–1106, Oct. 1999.

[6] V. Dimitrov, L. Imbert, and P. K. Mishra, “Efficient and secure elliptic
curve point multiplication using double-base chains,” in Advances in
Cryptology, ASIACRYPT’05, ser. Lecture Notes in Computer Science,
vol. 3788. Springer, 2005, pp. 59–78.

[7] G. W. Reitwiesner, “Binary arithmetic,” Advances in Computers, vol. 1,
pp. 231–308, 1960.

[8] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 43, no. 10, pp. 677–688, Oct. 1996.

[9] “GCC, the GNU compiler collection,” http://www.gnu.org.
[10] A. G. Dempster and M. D. Macleod, “Constant integer multiplication

using minimum adders,” IEE Proc. Circuits Devices Syst., vol. 141,
no. 5, pp. 407–413, 1994.

[11] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, “An algorithm for
modular exponentiation,” Information Processing Letters, vol. 66, no. 3,
pp. 155–159, May 1998.

[12] R. Tijdeman, “On the maximal distance between integers composed of
small primes,” Compositio Mathematica, vol. 28, pp. 159–162, 1974.

[13] V. Berthé and L. Imbert, “On converting numbers to the double-base
number system,” in Advanced Signal Processing Algorithms, Architec-
ture and Implementations XIV, ser. Proceedings of SPIE, vol. 5559.
SPIE, 2004, pp. 70–78.

[14] C. Doche and L. Imbert, “Extended double-base number system with
applications to elliptic curve cryptography,” in Progress in Cryptology,
INDOCRYPT’06, ser. Lecture Notes in Computer Science, vol. 4329.
Springer, 2006, pp. 335–348.

