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Abstract. We present algorithms for computing the cube of an ideal in an
imaginary quadratic number field or function field. In addition to a version
that computes a non-reduced output, we present a variation based on Shanks’
NUCOMP algorithm that computes a reduced output and keeps the sizes of
the intermediate operands small. Extensive numerical results are included
demonstrating that in many cases our formulas, when combined with double
base chains using binary and ternary exponents, lead to faster exponentiation.

1. Introduction

Exponentiation of ideals in quadratic number fields and function fields (aka hy-
perelliptic curves) has a number of applications in cryptography and computational
number theory. For example, the main step in public-key cryptosystems whose secu-
rity is based on the presumed intractability of the discrete logarithm problem in the
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class group is to compute a reduced ideal equivalent to gn, where g is some publicly-
available reduced ideal and n is a randomly-selected positive integer. Sutherland’s
algorithms for computing the order of an element in a group and the structure of a
group [19], when applied to class groups, require the same exponentiation operation
for a randomly-selected ideal g and a large, smooth exponent n. Thus, improvements
to the speed of ideal exponentiation translate directly into improvements for both
of these applications.

Fast exponentiation is usually implemented using repeated squarings and multi-
plications based on the standard binary representation of the exponent. Although
the number of squarings is fixed and equals the bit-length of the exponent, the
number of multiplications depends on the number of non-zero digits in its binary
expansion. Recoding techniques such as signed digits, for example non-adjacent
form (NAF) or window methods, reduce the number of multiplications required.
When a fast cubing operation is available, i.e., the time for a cubing is less than
that of a squaring followed by a multiplication, hybrid binary/ternary methods such
as double-base chains, for which the average number of multiplications is generally
small, can be advantageous [5, 6].

The present work is an attempt to speed up ideal exponentiation in quadratic
number fields and function fields by using double-base chains with binary and
ternary exponents. To this end, we have developed formulas for cubing an ideal
based on the standard ideal multiplication algorithm for quadratic number fields [13]
and Cantor’s algorithm for quadratic function fields [4]. The cost of ideal multipli-
cation, squaring, and cubing is dominated in both cases by extended GCD compu-
tations and ideal reduction. Cubing an ideal by squaring and multiplying requires
two extended GCD computations in general and at most three, whereas our new
formulas require only one in general and at most two. The number of reduction
steps required in both cases is roughly the same, but the drawback of our cubing
operation is that the coefficients of the resulting non-reduced ideal are significantly
larger than those obtained by squaring and multiplying. This disadvantage could be
mitigated by using an improved reduction algorithm due to Jacobson, Sawilla, and
Williams [9] in quadratic fields and its generalization to the function field case [1].

Another approach to mitigating the growth in intermediate operands is to use
Shanks’ NUCOMP algorithm [17, 13]. NUCOMP essentially performs a type of
reduction on the intermediate operands in the ideal multiplication algorithm before
computing the product. The result is an output that is in many cases completely
reduced but at least almost reduced, and although more operations are required than
when simply multiplying and reducing, the sizes of the operands are significantly
smaller. As the description of NUCOMP for quadratic fields from [13] is the most
efficient in practice, we generalize this version to the function field case and use it
as the basis for a fast cubing algorithm, which we refer to as NUCUBE.

We have run extensive numerical experiments in order to assess the efficiency of
our cubing algorithms. We compare ideal exponentiation using a standard left-to-
right binary method, left-to-right NAF, left-to-right double base chains and right-to-
left double base chains. For the double base chain methods, we use binary-ternary
exponents and our new cubing algorithms. In many cases, except for very large
parameters for which the cost of our cubing formula become more expensive than
the combined costs of a squaring and a multiplication, the double base methods
with our NUCUBE algorithms offer a significant improvement over the binary and
NAF methods.
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The remainder of this paper is organized as follows. In Section 2 we present the
background on ideals in function fields and continued fraction expansions that is
required to derive our cubing algorithms. Our cubing formulas for the function field
case are derived and presented in Section 3, followed by our function field NUCUBE
algorithm in Section 4. The number field versions of cubing and NUCUBE are
presented in Section 5. Our numerical results are presented in Section 6, after
which we conclude with a summary of open problems and possible directions of
further research.

2. Continued Fractions and Ideals in Quadratic Function Fields

Throughout this paper, let K denote either an imaginary quadratic number field
or imaginary quadratic (hyperelliptic) function field of genus g over a finite field
Fq. In the former case, we write K = Q(

√
∆), where ∆ < 0 with ∆ ≡ 0, 1 (mod 4)

and ∆ or ∆/4 square-free, is a fundamental discriminant. In the latter case, taking
Fq as the finite field with q elements, we write K = Fq(C) = Fq(x, y) to denote the
function field of an imaginary hyperelliptic curve C, i.e., an absolutely irreducible
non-singular curve of the form

C : y2 + h(x)y = f(x) ,

where f, h ∈ Fq[x], f is monic of degree 2g + 1, and h = 0 if q is odd and is monic
with deg(h) ≤ g if q is even.

In this section, we confine our attention to the function field case. The results
for number fields are analogous and can be found in the literature, for example [13,
Ch. 3 and 4]. The main differences to the function field case are presented as
required in Section 5. For more background on hyperelliptic curves and quadratic
function fields, see [7] and [11].

The maximal order Fq[x, y] of Fq(x, y) is an integral domain and a Fq[x]-module
of rank 2 with Fq[x]-basis {1, y}. The non-zero integral ideals in Fq[x, y] are exactly
the Fq[x]-modules of the form a = Fq[x]SQ + Fq[x]S(P + y) where P,Q, S ∈ Fq[x]
and Q divides f + hP − P 2. Here, S and Q are unique up to factors in F∗

q and P
is unique modulo Q. For brevity, we write a = S(Q,P ). An ideal a = S(Q,P ) is
primitive if S ∈ F∗

q , in which case we simply take S = 1 and write a = (Q,P ). A
primitive ideal a is reduced if deg Q ≤ g.

A fractional Fq[x]-ideal is a subset f of Fq(x, y) such that df is a Fq[x, y]-ideal
for some non-zero d ∈ Fq[x]. Let I denote the group of non-zero fractional Fq[x, y]-
ideals, P the subgroup of I of non-zero principal fractional Fq(x, y)-ideals (which
we write as (α) for α ∈ Fq(x, y)∗), Cl = I/P the ideal class group of Fq(x, y), and
h = |Cl| the ideal class number of Fq(x, y). It is well-known that the class number is
finite, and that every ideal class has exactly one reduced ideal representative. Thus,
in order to perform arithmetic in the class group, we represent equivalence classes
using reduced ideals and multiply them by finding a reduced ideal equivalent to the
product of the two representatives. The identity element is the principal class, and
a representative of the inverse of the ideal class of (Q,P ) is given by (Q,−P − h).

The correspondence between ideals of Fq[x, y] and divisors of the corresponding
hyperelliptic curve is also well-known (see, for example, [11]). The ideal coefficients
(Q,P ) are the same coefficients as the Mumford representation of a divisor, and the
ideal class group in the case of imaginary quadratic function fields is isomorphic to
the divisor class group of the corresponding curve. Thus, all of the algorithms for
quadratic function fields presented in this paper also work trivially for divisors.
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2.1. Continued Fraction Expansions. A continued fraction expansion is rep-
resented by the symbolic expression

q0 +
1

q1 +
1

. . .
qn +

1
φn+1

,

which we denote by

(1) 〈q0, q1, . . . , qn, φn+1〉

for short. The theory of continued fractions plays an important role in ideal arith-
metic, and is required for the development of our NUCUBE algorithm.

In the following, we present the required results on continued fraction expansions
of relevance to the quadratic function field case. The corresponding results for
quadratic number fields are analogous, and can be found in [13, Ch. 3]; the relevant
results are summarized as needed in Section 5. This function field material has
been described in more detail elsewhere (see [11]). In our presentation below, we
follow the notation of [13] in order to unify as much as possible our treatment of
the number field and function field cases.

As shown in [11], elements φ ∈ Fq(x, y) can be expressed as elements in Fq〈x−1/2〉,
the field of Puiseux series in x−1/2. The expression φ = 〈q0, q1, . . . , qn, φn+1〉 with
qi ∈ Fq[x] is referred to as the continued fraction expansion of φ0 with partial
quotients q0, q1, . . . , qn. It uniquely defines a Puiseaux series φn+1 ∈ Fq〈x−1/2〉
where φ0 = φ and

(2) φi+1 = (φi − qi)−1

for 0 ≤ i ≤ n. If we set A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0 and define for
i = 0, 1, . . .

Ai = qiAi−1 + Ai−2

Bi = qiBi−1 + Bi−2 ,

then Ai/Bi = 〈q0, qi, . . . , qi〉 for i = 0 ≤ i ≤ n − 1. By induction, it is easy to see
that

(3) AiBi−1 −BiAj−1 = (−1)i−1 .

If the qi, rather than being arbitrary polynomials in Fq[x], are chosen as qi = bφic,
then (1) is the well-known regular continued fraction expansion of φ. The partial
quotients q0, qi, . . . are uniquely determined by φ and deg(qi) ≥ 1 for all i ∈ N. The
rational function Ai/Bi = 〈q0, q1, . . . , qi〉 is called the ith convergent of φ.

If instead we take φ = K/L for K, L ∈ Fq[x], then the regular continued fraction
expansion of φ as just defined is nothing more than the simple continued fraction
expansion of the rational function K/L. In this case, the Euclidean algorithm can
be used to compute it as follows. Set R−2 = K, R−1 = L and define for i =
0, 1, . . . , n− 1

Ri = Ri−2 − qiRi−1, where qi = bRi−2/Ri−1c.

It can be shown by induction that

(4) (−1)i+1Ri = LAi −KBi
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and

(5) BiRi−1 + Bi−1Ri = L .

We also require the sequence {Ci}−2≤i<n with Ci = (−1)i+1Bi for our NUCUBE
algorithm. It is easy to see that

Ci = Ci−2 − qiCi−1 ,

so the Ci can be computed directly during the computation of the Ri and qi.
Suppose now that a0 = (Q0, P0) denotes a primitive ideal in an imaginary qua-

dratic function field Fq(x, y). Put φ0 = (P0 + y)/Q0, and let q0, q1, . . . be any
sequence of polynomials in Fq[x]. Define

(6) Pi+1 = qiQi − Pi + h, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
,

for i ≥ 0. If we set φi = (Pi + y)/Qi and φi+1 = (φi − qi)−1, then for all i ≥ 0, we
have φ0 = 〈q0, q1, . . . , qi, φi+1〉. Thus, (6) determines a continued fraction expansion
of φ0 in Fq〈x−1/2〉, and moreover defines a sequence ai = (Qi−1, Pi−1) of primitive
ideals.

Set θ1 = 1 and θi =
∏i−1

j=1 φ−1
j for i ≥ 2. Since φiφi = −Qi−1/Qi, where a + by =

a + b(−h− y) denotes the hyperelliptic involution of a + by ∈ Fq(x, y), it is easy to
see that Q0θiθi = (−1)i−1Qi−1. Thus

θi =
i−1∏
j=1

φ
−1

j = (−1)i−1 Qi−1

Q0θi
= (−1)i−1 Qi−1

Q0

i−1∏
j=1

φj .

Then ai+1 = (φ
−1

i )ai and hence ai = (θi)a0, for i ∈ N. Therefore, the ideals ai

are all equivalent, so the continued fraction expansion of φ0 produces a sequence of
equivalent ideals. If we choose the qi in (6) to be bφic, i.e. the partial quotients in
the regular continued fraction expansion of φ0 in Fq〈x−1/2〉, then, as shown in [11],
the sequence of ideals ai given by (6) produces a reduced ideal equivalent to a0 after
at most d(deg(Q0)− g)/2e steps.

There are two main ingredients to computing the reduced product of two ideals
using NUCOMP as described in [11], and in our NUCUBE algorithm. Suppose
that multiplying two ideals yields the non-reduced ideal (Q0, P0). The first trick is
to recover the same partial quotients qi that lead to a reduced ideal without having
to explicitly compute Q0 and P0. We show in Section 4 that this can be done
by computing the simple continued fraction expansion of a certain rational function
whose numerator and denominator have degree smaller than that of Q0. The second
is to derive alternative formulas for Qi+1 and Pi+1 using the partial quotients qi

that do not involve computing all of (Qj , Pj) for 0 ≤ j ≤ i. The following results on
continued fraction expansions, adapted from the corresponding results for quadratic
number fields described in [13, Ch. 3], are needed for this purpose.

First, note that

(7) φ0 =
φi+1Ai + Ai−1

φi+1Bi + Bi−1
and φi+1 = −φ0Bi−1 −Ai−1

φ0Bi −Ai
.

The first identity can be shown by repeatedly substituting (2) for φi+1, φi, . . . , φ1

and simplifying. The second can be obtained by algebraic manipulations to the
first.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260
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Next, define

(8) Gi = Q0Ai − P0Bi .

It can be shown that

(9) (−1)i−1Q0 = GiBi−1 −BiGi−1

by substituting (8) for Gi and Gi−1. From (7) it follows that

(10) φi+1 = −Gi−1 − yBi−1

Gi − yBi
,

and by using (2) and induction, we have

(11) φi =
Pi + y

Qi
,

where Qi and Pi are obtained from the continued fraction expansion of φ0 as per
(6).

Finally, by combining (10) and (11) and using (9), we can show that

(−1)i+1Qi+1 = (G2
i + hGiBi − fB2

i )/Q0

(−1)i+1Pi+1 = (fBiBi−1 − hBiGi−1 −GiGi−1)/Q0 ,
(12)

giving us the means to compute Qi+1 and Pi+1 given only the partial quotients qj

and without having to compute the Qj and Pj for 0 ≤ j ≤ i. The equations (12)
also imply that

(13) Gi = Pi+1Bi + Qi+1Bi−1 − hBi ,

giving us a means to recover one of Qi+1 or Pi+1 given the other.

3. Cubing Formulas

Formulas for ideal multiplication can be found in many sources (see, for example,
[11]), and dedicated formulas for ideal squaring can be obtained from these general
formulas. See [13, Section 5.4] for a description of how these formulas are derived
in the number field case (the function field case is analogous). Special-purpose
formulas for ideal cubing can be developed using the same methods.

Let a = (Q′, P ′) be a primitive ideal in some imaginary quadratic function field
Fq(x, y), and set R′ = (f + P ′h − (P ′)2)/Q′. We now describe an algorithm to
compute a3 = S(Q,P ) along with R = (f + Ph − P 2)/Q, as having R available is
computationally useful in the subsequent reduction process (see [11]).

In the general case, we have

a3 = (Q′Fq[x] + (P ′ + y)Fq[x])3

= (Q′)3Fq[x] + (Q′)2(P ′ + y)Fq[x] + Q′(P ′ + y)2Fq[x] + (P ′ + y)3Fq[x]

= (Q′)3Fq[x] + ((Q′)2P ′ + (Q′)2y)Fq[x] + (Q′((P ′)2 + f) + Q′(2P ′ − h)y)Fq[x]

+
(
((P ′)3 + 3P ′f − hf) + ((2P ′ − h)2 + Q′R′)y

)
Fq[x] .

(14)

Let

(15) S′ = gcd(Q′, 2P ′ − h) = u1Q
′ + v1(2P ′ − h)

with S′, u1, v1 ∈ Fq[x] and

(16) S = gcd
(
Q′S′, (2P ′ − h)2 + Q′R′) = u2Q

′S′ + v2((2P ′ − h)2 + Q′R′)

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260
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with S, u2, v2 ∈ Fq[x]. Putting (15) and (16) together yields

S = gcd
(
(Q′)2, Q′(2P ′ − h), (2P ′ − h)2 + Q′R′)

= u2u1(Q′)2 + u2v1(Q′(2P ′ − h)) + v2((2P ′ − h)2 + Q′R′) .
(17)

It follows that

(18) Q =
(Q′)3

S2
,

and by combining (14) and (17) we obtain

P ≡ u2u1(Q′)2P ′ + u2v1Q
′((P ′)2 + f) + v2((P ′)3 + 3P ′f − hf)

S

≡ P ′ +
Q′

S
R′ (u2v1Q

′ + v2(2P ′ − h)) mod Q .

(19)

Note that the expression K = R′(u2v1Q
′ + v2(2P ′ − h)) may be reduced modulo

(Q′)2/S in the computation of P. Also, note that the u1 coefficient from (15) is not
used, and thus does not need to be computed when applying the extended Euclidean
algorithm to Q′ and 2P ′ − h.

If the coefficient R = (f + Ph−P 2)/Q is also desired, it can be computed using
the formula

R =
SR′ −K(2P ′ − h + KQ′/S)

(Q′)2/S
,

derived by substituting (19) into R = (f +Ph−P 2)/Q. In evaluating R, K may be
reduced modulo (Q′)2/S, the term KQ′/S may be reused from the computation of
P, and (Q′)2/S may be reused from the computation of Q. As a result, using this
formula is more efficient than computing R = (f + hP − P 2)/Q.

As we have just seen, an ideal cubing requires, in general, two executions of the
extended Euclidean algorithm. However, if S′ = gcd(Q′, 2P ′−h) = 1, as one would
expect to occur fairly frequently, the second execution of the extended Euclidean
algorithm can be avoided as follows.

Consider the formula for the product of two ideals a′a′′ = a, with a′ = (Q′, P ′),
a′′ = (Q′′, P ′′), and the result a = S(Q,P ) given by

S = gcd(Q′, Q′′, P ′ + P ′′ − h) = UQ′ + V Q′′ + W (P ′ + P ′′ − h)

and

Q =
Q′Q′′

S2
, P = P ′′ +

Q′′

S
(V (P ′ − P ′′) + WR′′)

where R′′ = (f + P ′′h − (P ′′)2)/Q′′. Using these formulas under the assumption
that S = 1 yields

(a′)2 = ((Q′)2, P ′ + v1Q
′R′)

with R′ = (f + P ′h− (P ′)2)/Q′. By applying the multiplication formulas to a2 and
a, the cube a3 = S(Q,P ) of a = (Q′, P ′) can be derived as follows. First, we have

S = gcd
(
(Q′)2, Q′, 2P ′ + v1R

′Q′ − h
)

= U(Q′)2 + V Q′ + W (2P ′ + v1R
′Q′ − h)

= gcd (Q′, 2P ′ − h + v1R
′Q′)

= gcd (Q′, 2P ′ − h)

= u1Q
′ + v1(2P ′ − h)

= 1 ,

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260
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If we set U = 0, V = u1 − v2
1R′ and W = v1, then we obtain

U(Q′)2 + V Q′ + W (2P ′ + v1R
′Q′ − h) = (u1 − v2

1R′)Q′ + v1(2P ′ + v1R
′Q′ − h)

= u1Q
′ + v1(2P ′ − h)

= 1

and therefore
Q = (Q′)3

P ≡ P ′ + Q′R′v1

(
(u1 − v2

1R′)Q′ + 1
)

≡ P ′ + Q′R′v1 (2 + v1(v1Q
′R′ − 2P ′ + h)) mod Q .

(20)

In this case, we can compute K = R′v1 (2 + v1(v1Q
′R′ − 2P ′ + h)) modulo (Q′)2,

and we only need the v1 coefficient of (15). The same formula for R described above
can be used, taking S = 1.

The ideal cubing formulas for quadratic function fields are summarized in Al-
gorithm 1. Notice that this algorithm works for an arbitrary quadratic function
field Fq(x, y) where y is defined by y2 + hy = f. In fact, it works for imaginary,
real, and unusual quadratic function fields (see [11] for the definitions of real and
unusual function fields), as the derivation of the formulas did not make use of any
specific properties of f and h. The formulas in Algorithm 1 can be simplified based

Algorithm 1 Ideal Cubing for Quadratic Function Fields

Input: a = (Q′, P ′), R′ = (f + hP ′ − (P ′)2)/Q′

Output: a3 = S(Q,P ), (optional) R = (f + hP − P 2)/Q
1: Compute S′ = u1Q

′ + v1(2P ′ − h) (only compute S′ and v1).
2: if S′ = 1 then
3: Set S = 1.
4: Set N = Q′, L = N2, K = R′v1(2 + v1(v1Q

′R′ − 2P ′ + h)) (mod L).
5: else
6: Compute S = u2Q

′S′ + v2((2P ′ − h)2 + Q′R′).
7: Set N = Q′/S, L = NQ′, K = R′(u2v1Q

′ + v2(2P ′ − h)) (mod L).
8: end if
9: Set T = NK.

10: Set Q = NL.
11: Set P = P ′ + T.
12: (optional) Set R = (SR′ −K(2P ′ − h + T )) /L.

on the characteristic of Fq. If the characteristic is odd, then h can be taken to be
0 in Algorithm 1. If the characteristic is even, then h is non-zero, but all terms
multiplied by 2 become zero and subtractions can be written as additions.

Notice that the ideal output by Algorithm 1 is not in general normalized in the
sense that P is not reduced modulo Q. This is done as part of the subsequent
reduction process, so it is not necessary to perform the normalization if reduction
will be immediately applied. If the normalization is required, compute q and r such
that P = qQ + r, set R = R + q(P + r − h), and set P = r.

4. NUCUBE

In this section, we describe a cubing algorithm which is computationally more
efficient than the algorithm presented in the previous section. Instead of computing

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260
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the ideal a3 using Algorithm 1 and reducing the output, we use the idea of NUCOMP
to reduce the coefficients before cubing. When applied to a reduced ideal, we show
that the reduction can be accomplished by computing the simple continued fraction
expansion of K/L where K and L have degree at most 2g, as opposed to operands
of size 3g when doing reduction after multiplication. Furthermore, we show that
the output of our NUCUBE algorithm is always reduced.

We require a generalization of the NUCOMP algorithm as described in [13] for
quadratic fields. The following theorem describes the approach.

Theorem 4.1 (Theorem 5.21 of [13]). Suppose Q,P,N, L, K, P ′, P ′′ ∈ Fq[x] such
that (Q,P ) is an ideal in Fq[x, y] and

(21) P = P ′ + NK, Q = NL, P ′′ ≡ P (mod L) .

If K/L = 〈q0, q1, . . . , qn〉 and we put

(22)
P + y

Q
= 〈q0, q1, . . . , qi,

Pi+1 + y

Qi+1
〉 (0 ≤ i < n) ,

then

Qi+1 = (−1)i−1(RiM1 − CiM2),

Pi+1 = (NRi + Qi+1Ci−1)/Ci − P ′ + h

for −1 ≤ i < n where

M1 = (NRi + (P ′′ − P ′)Ci)/L ∈ Fq[x],

M2 = (Ri(P ′ + P ′′ − h) + TCi)/L ∈ Fq[x], T = (f + hP ′ − (P ′)2)/N.

Proof. From (4) and the definition of Ci we get

(23) (−1)i+1Ri = LAi −KBi = LAi − (−1)i+1KCi .

By (8), (21), and (23) we have

Gi = QAi − PBi

= NLAi − PBi

= N(−1)i+1(Ri + KCi)− (−1)i+1Ci(P ′ + NK)

= (−1)i+1(NRi − P ′Ci)

(24)

and

(25)
Gi + BiP

Q
=

LAi

L
=

(−1)i+1(Ri + KCi)
L

.

implying that

(26) Ri ≡ −KCi (mod L) .

By (24) we have

fBi + Gi(P − h)
Q

=
fBi + (−1)i+1(NRi − P ′Ci)(P − h)

Q

= (−1)i+1 Ci(f − P ′P + hP ′) + NRi(P − h)
NL

= (−1)i+1 Ci(f + hP ′ − (P ′)2)− CiNKP ′ + NRi(P − h)
NL

= (−1)i+1(CiT − CiKP ′ + Ri(P − h))/L ,

(27)

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260
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where T = (f +hP ′−(P ′)2)/N. By (8), Gi ≡ −PBi (mod Q), from which it follows
that

fBi + Gi(P − h) ≡ fBi − PBi(P − h) ≡ Bj(f + Ph− P 2) ≡ 0 (mod Q)

as (Q,P ) is an ideal of Fq[x, y]. Combining with (27) we obtain CiT − CiKP ′ +
Ri(P − h) ≡ 0 (mod L) and using (21) and (26) we have

CiT − CiKP ′ + Ri(P − h) ≡ CiT + RiP
′ + Ri(P − h)

≡ CiT + Ri(P ′ + P − h)

≡ CiT + Ri(P ′ + P ′′ − h)

≡ 0 (mod L) .

(28)

By (12), (24), (25), and (27), we get

Qi+1 = (−1)i+1(G2
i + hGiBi − fB2

i )/Q

= (−1)i+1

„
Gi

Gi + BiP

Q
−Bi

fBi + Gi(P − h)

Q

«
= (−1)i+1

„
(NRi − P ′Ci)

(Ri + KCi)

L
−Bi(−1)i+1 CiT − CiKP ′ + Ri(P − h)

L

«
= (−1)i+1

„
NRi

Ri + KCi

L
− P ′Ci

Ri + KCi

L
−Ri

Ci(P − h)

L
− C2

i
T −KP ′

L

«
= (−1)i+1

„
Ri

NRi + NKCi − CiP )

L
− Ci

P ′Ri + P ′KCi −Rih + Ci(T −KP ′)

L

«
= (−1)i+1

„
Ri

NRi − CiP
′

L
− Ci

Ri(P
′ − h) + CiT

L

«
= (−1)i+1

„
Ri

NRi + Ci(P
′′ − P ′)

L
− Ci

Ri(P
′ + P ′′ − h) + CiT

L

«
= (−1)i+1(RiM1 − CiM2) .

Equations (21) and (26) imply that

NRi + Ci(P ′′ − P ′) ≡ −NKCi + Ci(P ′′ − P ′) ≡ Ci(P ′′ − P ′) ≡ 0 (mod L) ,

so M1 ∈ Fq[x], and (28) implies that M2 ∈ Fq[x]. Finally, by (13) and (24) we have

Pi+1 =
Gi −Qi+1Bi−1 + hBi

Bi

=
(−1)i+1(NRi − P ′Ci)−Qi+1Bi−1 + hBi

Bi

=
NRi + Qi+1Ci−1

Ci
− P ′ + h

as required.

The NUCUBE algorithm is constructed by aligning the quantities of Algorithm 1
with those in Theorem 4.1, applying the formulas for Qi+1 and Pi+1, and deter-
mining what value of i results in the ideal (Qi+1, Pi+1) being reduced. We assume
that we want to compute a reduced ideal equivalent to a3 = S(Q,P ) given a re-
duced ideal a = (Q′, P ′). As a is reduced, we can assume that deg(Q′) ≤ g and
deg(P ′) < g. We also assume that R′ = (f + hP ′ − (P ′)2)/Q′ is given.
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First, we set

N = Q′/S ,

L = (Q′)2/S ,

K =

{
R′v1 (2 + v1(v1Q

′R′ − 2P ′ + h)) if S′ = 1
R′(u2v1Q

′ + v2(2P ′ − h)) if S′ > 1

(29)

where S′ and S are defined in (15) and (16). Algorithm 1 shows that N,L, and K
satisfy the conditions of Theorem 4.1, so the ideals (Qi+1, Pi+1) for −1 ≤ i < n are
all equivalent to a3.

It remains to determine the index i at which the algorithm should terminate in
order to ensure that (Qi+1, Pi+1) is as close to being reduced as possible. We now
show that selecting i such that

deg Ri ≤
deg Q′ + g

2
< deg Ri−1

satisfies this property.

Theorem 4.2. Given a reduced ideal a = (Q′, P ′) of an imaginary quadratic func-
tion field Fq(x, y), set N, L, and K as in (29) and compute the ideal (Qi+1, Pi+1) as
described in Theorem 4.1. If i is chosen such that Ri ≤ (deg Q′ + g)/2 < deg Ri−1,
then (Qi+1, Pi+1) is reduced.

Proof. First, observe that from (5), we have

(30) deg Bi ≤ deg
L

Ri−1
= deg

(Q′)2

SRi−1
.

We now bound the degree of Qi+1. From its definition in Theorem 4.1 we have

deg Qi+1 = deg
(

Ri
NRi + Ci(P ′′ − P ′)

L
− Ci

Ri(P ′′ + P ′ − h) + CiT

L

)
= deg

(
NR2

i

L
− RiCi(2P ′ − h)

L
− C2

i (f + hP ′ − (P ′)2)
LN

)
= deg

(
R2

i

Q′ −
SRiCi(2P ′ − h)

(Q′)2
− C2

i R′S2

(Q′)2

)
= max

{
deg

R2
i

Q′ , deg
SRiCi(2P ′ − h)

(Q′)2
, deg

C2
i R′S2

(Q′)2

}
.

The condition on deg Ri implies

deg
R2

i

Q′ ≤ 2 deg Ri − deg Q′ ≤ g .
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Equation (30) implies

deg
SRiCi(2P ′ − h)

(Q′)2
≤ deg Bi

SRi(2P ′ − h)
(Q′)2

≤ deg
(Q′)2

SRi−1

SRi(2P ′ − h)
(Q′)2

≤ deg
Ri(2P ′ − h)

Ri−1

≤ deg(2P ′ − h)− 1
≤ g ,

as well as

deg
C2

i R′S2

(Q′)2
≤ deg

(Q′)4

S2R2
i−1

R′S2

(Q′)2

≤ deg
(Q′)2R′

R2
i−1

= deg Q′R′ + deg Q′ − 2 deg Ri−1

< deg(f + P ′h− (P ′)2) + deg Q′ − deg Q′ − g

≤ g + 1 .

It follows that deg Qi+1 ≤ g, and that the ideal (Qi+1, Pi+1) is reduced.

Another issue to deal with before presenting our NUCUBE algorithm is to elim-
inate the possibility that Ci is zero when computing Pi+1 in Theorem 4.1. The
values of Ci for 0 ≤ i < n are computed from the partial quotients qi using the
recurrence Ci = Ci−2 − qiCi−1 with initial values C−2 = −1 and C−1 = 0. As the
qi for 1 ≤ i < n are not equal to 0, we see that the only time we can have Ci = 0 is
for i = −1, i.e., when R−1 = L has deg(L) ≤ (deg Q′ + g)/2. However, in this case
the cubing formulas from Section 3 (Algorithm 1) produce a reduced ideal directly,
as

deg L = deg((Q′)2/S) = 2 deg Q′ − deg S

and 2 deg Q′ − deg S ≤ (deg Q′ + g)/2 implies that 3 deg Q′ − 2 deg S = deg Q ≤ g.
Thus, if we have deg L ≤ (deg(Q′) + g)/2 we compute (Q,P ) using the cubing
formulas from Algorithm 1; otherwise, we use Theorem 4.1.

As with Algorithm 1, the output ideal (Q,P ) is not in general normalized in the
sense that P is not necessarily reduced modulo Q. In this case, no reduction steps
need to be performed, so it is desirable to perform this normalization. Again, this
can be done by computing q and r such that P = qQ+r, setting R = R+q(P +r−h),
and setting P = r.

Our NUCUBE algorithm is presented in Algorithm 2. As with Algorithm 1,
NUCUBE works for an arbitrary quadratic function field Fq(x, y), and similar sim-
plifications can be made in the odd and even characteristic cases. Although Theo-
rem 4.2 only applies to imaginary quadratic function fields, the algorithm will also
work for real and unusual quadratic function fields; finding and proving an analo-
gous termination condition that guarantees a reduced output in these cases is the
subject of further research.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260



Fast Ideal Cubing 13

Algorithm 2 NUCUBE for Imaginary Quadratic Function Fields

Input: a = (Q′, P ′), R′ = (f + hP ′ − (P ′)2)/Q′

Output: Reduced ideal (Q,P ) equivalent to a3, (optional) S and R = (f + hP −
P 2)/Q

1: Compute S′ = u1Q
′ + v1(2P ′ − h) (only compute S′ and v1).

2: if S′ = 1 then
3: Set S = 1.
4: Set N = Q′, L = (Q′)2, K = R′v1(2 + v1(v1Q

′R′ − 2P ′ + h)) (mod L).
5: else
6: Compute S = u2Q

′S′ + v2((2P ′ − h)2 + Q′R′).
7: Set N = Q′/S, L = NQ′, K = R′(u2v1Q

′ + v2(2P ′ − h)) (mod L).
8: end if
9: if deg L ≤ (deg Q′ + g)/2 then

10: Set T = NK, Q = NL, and P = P ′ + T.
11: (optional) Set R = (SR′ −K(2P ′ − h + T )) /L.
12: else
13: Set R−1 = L, R0 = K, C−1 = 0, C0 = −1, i = 0.
14: while deg Ri > (deg(Q′) + g)/2 do
15: i = i + 1
16: Set qi = bRi−2/Ri−1c, Ri = Ri−2 − qiRi−1, and Ci = Ci−2 − qiCi−1.
17: end while
18: Set P ′′ = P ′ + NK (mod L).
19: Set M1 = (NRi + (P ′′ − P ′)Ci)/L.
20: Set M2 = (Ri(P ′ + P ′′ − h) + R′S)/L.
21: Set Q = (−1)i−1(RiM1 − CiM2).
22: Set P = (NRi + QCi−1)/Ci − P ′ + h.
23: (optional) Set R = (f + hP − P 2)/Q.
24: end if
25: Compute q, r ∈ Fq[x] such that P = qQ + r (division with remainder).
26: Set P = r.
27: (optional) Set R = R + q(P + r − h).

5. Ideal Cubing and NUCUBE in Quadratic Number Fields

The quadratic number field Q(
√

∆) can also be expressed as Q(
√

D), where
D ∈ Z is square-free and ∆ = (2/r)2D with

r =

{
1 if D ≡ 2, 3 (mod 4)
2 if D ≡ 1 (mod 4).

If D < 0 we call Q(
√

∆) an imaginary quadratic field, and if D > 0 we call it a real
quadratic field. As shown in [13, Ch. 4], ideals of Q(

√
D) can be represented as

S(Q,P ) = S

(
Q

r
Z +

(
P +

√
D

r

)
Z

)
with Q,P ∈ Z and Q|(D − P 2). The ideal S(Q,P ) is primitive if S = 1, written
as (Q,P ) for short, and by [13, Theorems 5.6 and 5.9], if D < 0 and (Q,P ) is a
primitive ideal with Q/r <

√
|∆|/2, then (Q,P ) is reduced.
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As shown in [13, Ch. 3], these ideals are associated with the quadratic irrational-
ities (P +

√
D)/Q, and the results of Section 2 hold verbatim in the number field

case using integers instead of polynomials in Fq[x], y =
√

D and h = 0. Thus, it
is a straightforward matter to derive ideal cubing formulas for quadratic number
fields by adapting the results of Section 3. The resulting algorithm is presented in
Algorithm 3, and as with the function field version works for both imaginary and
real quadratic fields. We use the notation from Section 3 and set R = (D−P 2)/Q.

Algorithm 3 Ideal Cubing for Quadratic Number Fields

Input: a = (Q′, P ′), R′ = (D − (P ′)2)/Q′

Output: a3 = S(Q,P ), (optional) R = (D − P 2)/Q
1: Compute S′ = u1(Q′/r) + v1(2P ′/r) (only compute S′ and v1).
2: if S′ = 1 then
3: Set S = 1.
4: Set N = Q′, L = NQ′/r2, K = R′v1(2 + v1(v1(Q′/r)(R′/r) − (2P ′)/r))

(mod L).
5: else
6: Compute S = u2(S′Q′/r) + v2((3(P ′)2 + D)/r2).
7: Set N = Q′/S, L = NQ′/r2, K = R′(u2v1(Q′/r) + v2(2P ′/r)) (mod L).
8: end if
9: Set T = NK.

10: Set Q = NL.
11: Set P = P ′ + T.
12: (optional) Set R = (rSR′ −K(2P ′ + T )) /L.

As in the function field case, the ideal output by Algorithm 3 is not normalized
in the sense that P is not necessarily reduced modulo Q. This is done as part of
the subsequent reduction process, so it is not necessary perform the normalization
if reduction will be immediately applied. If normalization is required, compute q′

and r′ such that P = q′Q + r′, set R = R + q′(P + r′), and set P = r′.

5.1. NUCUBE For Quadratic Number Fields. The NUCUBE algorithm can
also be adapted directly. The quadratic number field analogue of Theorem 4.1 is
proved in [13, Theorem 5.21], and is the same except that the polynomial coefficients
are integers, h = 0, and y is replaced by

√
D. To derive the number field version of

NUCUBE, we take, for a = (Q′, P ′), S′ and S as defined in Algorithm 3, set

N = Q′/S ,

L = (Q′)2/r2S ,

K =

{
R′v1 (2 + v1(v1(Q′/r)(R′/r)− 2P ′/r)) if S′ = 1
R′(u2v1Q

′/r + v2(2P ′)/r) if S′ > 1,

(31)

and apply Theorem 5.21 of [13] to obtain an ideal (Qi+1, Pi+1) equivalent to a3. If i

is chosen such that Ri <
√

Q′/r2 |D|1/4
< Ri−1, we can ensure that (Qi+1, Pi+1) is

at most two reduction steps away from being reduced. Although our paper focuses
primarily on the case of imaginary quadratic number and function fields, we prove
this result for real quadratic number fields, too, as extending to this case requires
only a minor modification.
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Theorem 5.1. Given a reduced ideal a = (Q′, P ′) of a quadratic field Q(
√

D), set
N, L, and K as in (31) and compute the ideal (Qi+1, Pi+1) as described in [13,
Theorem 5.21] (the number field version of Theorem 4.1). If i is chosen such that
Ri <

√
Q′/r2 |D|1/4

< Ri−1, then (Qi+1, Pi+1) is at most two reduction steps away
from being reduced.

Proof. First, by (12) we have

|Qi+1| =
∣∣(G2

i −DB2
i )/Q′∣∣

=
∣∣(N2R2

i + (P ′)2C2
i − 2NP ′RiCi − ((P ′)2 + R′Q′)B2

i )/((Q′)3/(rS)2)
∣∣

=
∣∣∣∣ (Q′)2R2

i

S2

r2S2

(Q′)3
+

(P ′)2B2
i

Q
− 2Q′P ′RiCir

2S2

S(Q′)3
− (P ′)2B2

i

Q
− R′Q′B2

i r2S2

(Q′)3

∣∣∣∣
=
∣∣∣∣R2

i r
2

Q′ − 2P ′RiCir
2S

(Q′)2
− R′B2

i r2S2

(Q′)2

∣∣∣∣ .

Put x = R2
i r

2/Q′, y = 2P ′RiCir
2S/(Q′)2, and z = R′B2

i r2S2/(Q′)2. Then we have

0 ≤ x = R2
i

r2

Q′ ≤
Q′
√
|D|

r2

r2

Q′ =
√
|D|

From (5) it follows that BiRi−1 ≤ L = (Q′)2/r2S and

Bi = |Ci| ≤
(Q′)2

r2S

1
Ri−1

≤ (Q′)2

r2S

r
√

Q′ |D|1/4
=

(Q′)3/2

rS |D|1/4
.

Thus, we obtain

|y| =
∣∣∣∣2P ′RiCir

2S

(Q′)2

∣∣∣∣ ≤ ∣∣∣∣2P ′Rir
2S

(Q′)2
(Q′)2

r2SRi−1

∣∣∣∣ ≤ 2 |P ′| .

Now assume D < 0. In this case we have R′ = − |D|+(P ′)2

Q′ < 0 and therefore

0 ≤ −z = −R′B2
i r2S2

(Q′)2
≤ − Q′R′√

|D|
=
|D|+ (P ′)2√

|D|
=
√
|D|+ (P ′)2√

|D|
.

Since a is reduced, we have Q′ ≤ 2
√
|D| /3 and P ′ ≤

√
|D| /3 and it follows that

2 |P ′| ≤ x− y − z ≤
√
|D|+ 2 |P ′|+

√
|D|+ (P ′)2√

|D|
≤ 3.5

√
|D| .

As argued in [13, p.122] this implies that the ideal (Qi+1, Pi+1) is reduced after at
most two reduction steps.

Now let D > 0. In this case we have R′ = D−(P ′)2

Q′ > 0 and

0 ≤ z =
R′B2

i r2S2

(Q′)2
≤ R′r2S2

(Q′)2
(Q′)3

r2S2
√

D
=

Q′R′
√

D
=
√

D − (P ′)2√
D

.

Putting the bounds on x, y, and z together yields

−2 |P ′| −
√

D ≤ x− y − z ≤
√

D + 2 |P ′| −
√

D +
(P ′)2√

D
≤
√

D + 2 |P ′| ,

which implies
|Qi+1| ≤

√
D + 2 |P ′| ≤ 3

√
D .

By [13, Theorem 5.13], (Qi+1, Pi+1) is reduced after at most one reduction step.
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Again, we need to eliminate the possibility that Ci is zero when computing Pi+1.
As with the function field case, this can only happen for i = −1, i.e., when R−1 =
L <

√
Q′/r2 |D|1/4

. However, in this case, the cubing formulas from Algorithm 3
produce a reduced ideal directly, as the bound on L implies that Q/r <

√
∆/2,

meaning that the ideal (Q,P ) is reduced.
Again as before, the ideal (Q,P ) is not normalized in general. If it is not reduced,

the normalization will occur as part of the subsequent reduction process. If it is
already reduced, then normalization can be performed as described above after
Algorithm 3.

Our NUCUBE algorithm for quadratic fields is presented in Algorithm 4. As
with Algorithm 3, NUCUBE works for both real and imaginary quadratic fields.

Algorithm 4 NUCUBE for Quadratic Number Fields

Input: a = (Q′, P ′), R′ = (D − (P ′)2)/Q′

Output: Almost reduced ideal (Q,P ) equivalent to a3, (optional) S and R = (D−
P 2)/Q

1: Compute S′ = u1(Q′/r) + v1(2P ′/r) (only compute S′ and v1).
2: if S′ = 1 then
3: Set S = 1.
4: Set N = Q′, L = (Q′/r)2, K = R′v1(2 + v1(v1(Q′/r)(R′/r) − (2P ′)/r))

(mod L).
5: else
6: Compute S = u2(S′Q′/r) + v2((3(P ′)2 + D)/r2).
7: Set N = Q′/S, L = NQ′/r2 (= (Q′)2/r2S), K = R′(u2v1(Q′/r)+ v2(2P ′/r))

(mod L).
8: end if
9: if L <

√
Q′/r2|D|1/4 then

10: Set T = NK, Q = NL, and P = P ′ + T.
11: (optional) Set R = (rSR′ −K(2P ′ + T )) /L.
12: else
13: Set R−1 = L, R0 = K, C−1 = 0, C0 = −1, i = 0.

14: while Ri >
√

Q′/r2|D|1/4 do
15: i = i + 1
16: Set qi = bRi−2/Ri−1c, Ri = Ri−2 − qiRi−1, and Ci = Ci−2 − qiCi−1.
17: end while
18: Set P ′′ = P ′ + NK (mod L).
19: Set M1 = (NRi + (P ′′ − P ′)Ci)/L.
20: Set M2 = (Ri(P ′ + P ′′) + R′S)/L.
21: Set Q = (−1)i−1(RiM1 − CiM2).
22: Set P = (NRi + QCi−1)/Ci − P ′.
23: (optional) Set R = (D − P 2)/Q.
24: end if
25: Compute q′, r′ ∈ Z such that P = q′Q + r′ (division with remainder).
26: (optional) Set R = R + q′(P + r′).
27: Set P = r′.

It is important to note that, as with the NUCOMP algorithm [13, Ch. 5], the
partial extended Euclidean algorithm step (Steps 14–17) must be implemented care-
fully in order to get the best performance out of this algorithm. In particular, using

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 237–260



Fast Ideal Cubing 17

an adaptation of Lehmer’s algorithm [15, 14] significantly speeds the algorithm; this
is done in our implementations described in Section 6.

5.2. Alternative Ideal Representation. Another common representation of
ideals in quadratic number fields used, for example, in [3], is a = (a, b) = aZ + (b +√

∆)/2Z, where c = (b2−∆)/(4a) ∈ Z. This representation is sometimes preferred as
it gives an immediate correspondence to the binary quadratic form aX2+bXY +cY 2.
Thus, algorithms for performing arithmetic with ideals in this representation can
be used directly for the corresponding operations on binary quadratic forms.

Algorithms using the (Q,P ) representation can be translated by setting Q = ra,
P = (r/2)b, and R = −rc. The resulting versions of Algorithm 3 and Algorithm 4
are listed in the Appendix.

6. Numerical Results

We performed our experiments on a 2.4 GHz Intel Core 2 Duo MacBook run-
ning Mac OS X version 10.5.7. We used NTL [18] for finite field and polynomial
arithmetic, with GMP as the base layer for large integer arithmetic. We compiled
our programs with the GNU C++ compiler version 4.0.1.

In order to test the efficiency of our cubing formulas, we implemented several ex-
ponentiation algorithms that take advantage of fast cubing operations, namely, the
left-to-right and right-to-left double-base chain methods. For validity checking and
comparison purposes, we also implemented the classical square-and-multiply (aka
binary) and NAF algorithms. For each of those, we considered both the NUCOMP
and non-NUCOMP approaches. However, we did not try to mix NUCOMP and
non-NUCOMP primitives within the same exponentiation routine. In total, this
represents eight different exponentiation algorithms. We considered the most gen-
eral situation, which occurs for example in the second stage of the Diffie-Hellman
key exchange agreement, where both the exponent n and the base, in our case a
reduced ideal, are not know in advance. Our timings represent the average time
taken by each algorithm over 100 random exponentiations. For fair comparison we
used the same values (fields, ideals, exponents) for every method.

Given n > 0, a double-base chain computing n is an expansion of the form

(32) n =
∑̀
i=1

2ai3bi , with ai, bi ≥ 0,

such that the sequence (ai, bi)i>0 decreases for the product order. Both the right-
to-left and left-to-right exponentiation algorithms consist of finding a double-base
chain representing the exponent and allowing for the exponentiation to be performed
à la Horner.

The right-to-left algorithm, denoted db-Rl in the following, starts by dividing
n by 3 and by 2 as much as possible. Then, adding or subtracting 1 leads to a
multiple of 3, and one can repeat the process until reaching 0. The left-to-right
algorithm, called db-Lr, is based on a greedy approach: find the closest integer to n
of the form 2a3b, subtract and continue until reaching 0. In order to find the closest
{2, 3}-integer1 from n, we implemented the fast algorithm proposed in [2] by Berthé
and Imbert.

The efficiency of the left-to-right approach is very dependent upon several param-
eters, namely the relative costs between a multiplication, a squaring, and a cubing,

1A S-integer is an integer whose prime factors all belong to S.
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and the length of the double-base chain used to perform the exponentiation. In
order to get optimal performance, an upper bound on the summands in (32) must
be set such that 2ai3bi ≤ 2A3B for 1 ≤ i ≤ `. For our experiments, we measured the
time over 100 random exponentiations for B ranging from 0 (a signed binary expan-
sion) to dlog3 ne, with A set accordingly such that 2A3B is the smallest number of
that form greater than or equal to n. The timings we report for db-Lr in the next
sections correspond to the minimum time obtained over all those tested bounds.
(Check the authors’ personal web pages for progress and up-to-date results.)

6.1. Number fields. We considered random imaginary fields Q(
√

∆) with ∆ <
0 of size ranging from 32 to 8192 bits, with random exponent of size half the
size of ∆. For each algorithm, the average time for one exponentiation (in ms) is
given in Table 1. In Table 2, we report timings for discriminants and exponents of
cryptographic relevant sizes. The discriminant sizes were selected to correspond to
NIST’s five recommended security levels [16] as described in [12]. In both tables,
the fastest results are highlighted. The prefix “N” in the algorithm designations
denotes the NUCOMP version of the corresponding exponentiation algorithm.

Table 1. Exponentiation timings (in ms) for random imaginary
number fields Q(

√
∆) of size ranging from 32 to 8192 bits, and

random exponents of size size(∆)/2 bits

size of ∆ (in bits)

32 64 128 256 512 1024 2048 4096 8192

bin 0.12 0.32 0.98 3.64 14.77 62.24 292.46 1616.19 9786.51
naf 0.11 0.29 0.87 3.23 13.09 55.77 260.28 1444.94 8703.83
db-Rl 0.10 0.28 0.89 3.31 13.45 58.36 282.38 1582.18 9842.75
db-Lr 0.11 0.29 0.90 3.27 13.18 55.94 261.49 1416.15 8626.10
Nbin 0.22 0.46 1.05 3.02 9.48 30.55 115.81 505.61 2521.85
Nnaf 0.20 0.42 0.94 2.68 8.41 27.10 102.81 448.11 2222.31
Ndb-Rl 0.14 0.31 0.74 2.28 7.31 25.64 102.76 477.98 2484.81
Ndb-Lr 0.13 0.29 0.75 2.33 7.33 25.57 100.72 453.13 2237.36

Table 2. Exponentiation timings (in ms) for imaginary number
fields Q(

√
∆) and exponents of cryptographic relevant sizes

size of ∆ / exponent size (in bits)

795 / 160 1384 / 224 1732 / 256 3460 / 384 5704 / 512

bin 14.85 38.76 59.00 232.15 673.87
naf 13.38 34.44 52.42 207.57 597.91
db-Rl 13.58 36.45 56.23 227.39 671.40
db-Lr 13.12 34.32 52.20 204.66 592.06
Nbin 8.15 17.93 25.17 78.70 196.81
Nnaf 7.24 15.93 22.32 69.83 174.30
Ndb-Rl 6.54 15.01 21.62 72.89 188.68
Ndb-Lr 6.53 14.86 21.20 69.77 174.19

For discriminants of size less than 4096 bits, the double-base algorithms, either
right-to-left or left-to-right, are faster than the binary approaches (NAF and square-
multiply). Not surprisingly, the NUCOMP versions become more interesting for
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multiple precision operands (∆ ≥ 2128). They are twice as fast than the non-
NUCOMP versions for 1024-bit discriminants, and almost three times faster for
discriminants of size 2048 bits. For bigger discriminants (size(∆) ≥ 4096), we
remark that Nnaf is the best choice. In these cases, our ideal cubing is more
expensive than a squaring followed by a multiplication and the best timings for
Ndb-Lr are obtained for double-base chains where the largest power of 3 is equal
or very close to 0. These chains therefore correspond to signed binary expansions.
Such representations can be computed faster using the NAF recoding algorithm,
which explains the results for large discriminants. For cryptographic relevant sizes
however, the exponents are much smaller and Ndb-Lr is always faster.

6.2. Function fields. We ran numerous experiments using random imaginary
function fields of genus g ranging from 2 to 20 over finite fields Fq of size ranging
from 4 to 512 bits. We restricted ourselves to the most common cases where q
is either an odd prime or a power of 2. For our random experiments, we used
exponents of size approximately g× log2 q bits. In Tables 3 and 4, we report timings
for function fields of various genera, defined over various finite fields of odd and even
characteristic, respectively. We do not give the timings for the binary algorithms,
which are naturally always slower than the NAF variants.

We also considered cryptographically-relevant function fields of small genus g =
2, 3, 4 over finite fields of various sizes selected to provide 80, 112, 128, 192, and
256 bits of security, using random exponents of sizes 160, 224, 256, 384, and 512
bits, respectively. As described in [10], our parameters’ sizes are based on the best-
known attack on the DLP for small genus [8]. The results are given in Tables 5 and
Table 6.

The behavior for function fields is very similar to the number field case, with
double-base algorithms giving good results up to the point where the cube operation
becomes more expensive than the combination square/multiplication. In particular,
double-base methods offer an interesting alternative to the classical exponentiation
algorithms for cryptographic applications.

We summarize all our experiments for random imaginary quadratic function fields
in Tables 7 and 8, where we give the fastest exponentiation algorithm for g ranging
from 2 to 20 and q ranging from 4 to 512 bits.
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Table 3. Timings (in ms) for one exponentiation for function
fields of genus g = 2, 3, 7, and 20 defined over Fp with p prime,
and exponents of sizes ' g log2 p

size of p / exponent size (in bits)

Genus 2 16/31 32/64 64/127 128/255 256/511 512/1024

naf 0.36 0.81 6.28 16.18 46.67 155.67
db-Rl 0.33 0.75 5.89 14.88 43.77 150.70
db-Lr 0.34 0.77 5.88 14.70 43.12 147.31
Nnaf 0.44 0.94 6.98 17.41 47.88 151.15
Ndb-Rl 0.39 0.86 6.44 16.05 46.26 152.63
Ndb-Lr 0.39 0.88 6.45 16.02 45.77 149.31

Genus 3 16/46 32/96 64/190 128/383 256/767 512/1535

naf 0.68 1.62 13.67 35.41 106.87 367.73
db-Rl 0.64 1.50 13.10 33.13 100.24 368.00
db-Lr 0.65 1.52 12.93 32.66 98.64 356.94
Nnaf 0.74 1.66 13.03 33.23 96.32 316.00
Ndb-Rl 0.69 1.58 12.77 32.24 95.89 332.92
Ndb-Lr 0.70 1.60 12.58 31.85 94.42 322.53

Genus 7 16/106 32/223 64/442 128/892 256/1788 512/3582

naf 3.11 7.56 81.78 206.31 656.24 2515.03
db-Rl 2.92 7.14 83.65 208.44 720.47 2610.04
db-Lr 2.89 7.13 80.75 202.85 666.21 2515.15
Nnaf 2.93 7.00 69.26 175.04 551.29 2157.34
Ndb-Rl 2.73 6.61 70.49 177.70 586.55 2279.67
Ndb-Lr 2.71 6.67 68.32 173.81 560.69 2183.60

Genus 20 16/302 32/636 64/1263 128/2548 256/5108 512/10232

naf 30.40 72.58 1134.77 3195.74 9687.28 34519.20
db-Rl 32.17 76.40 1294.09 3555.40 10626.89 37497.01
db-Lr 30.54 73.40 1144.94 3245.20 9700.58 34609.60
Nnaf 22.93 56.35 787.01 2105.68 7439.68 25737.79
Ndb-Rl 23.90 59.20 915.89 2579.84 8378.98 28828.97
Ndb-Lr 23.07 57.27 802.53 2123.23 7483.74 25813.70
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Table 4. Timings (in ms) for one exponentiation for function
fields of genus g = 2, 7, and 12 defined over finite fields F2m , with
exponents of sizes g ×m

size of q / exponent size (in bits)

Genus 2 16/32 32/64 64/128 128/256 256/512 512/1024

naf 1.55 3.75 10.25 18.18 61.27 257.63
db-Rl 1.45 3.63 10.10 16.89 58.28 243.79
db-Lr 1.46 3.61 9.98 16.79 57.78 239.95
Nnaf 1.83 4.29 11.31 19.48 62.23 251.28
Ndb-Rl 1.74 4.24 11.41 19.11 64.27 263.73
Ndb-Lr 1.74 4.15 11.14 18.73 62.96 254.47

Genus 7 16/112 32/224 64/448 128/896 256/1792 512/3584

naf 18.20 48.53 150.61 235.72 880.02 4107.18
db-Rl 18.15 49.16 156.55 245.45 930.15 4559.18
db-Lr 17.73 47.83 150.58 237.15 886.37 4119.82
Nnaf 17.98 47.50 143.29 218.41 833.95 3848.70
Ndb-Rl 18.05 48.73 151.78 235.87 882.02 4167.07
Ndb-Lr 17.55 47.14 142.84 223.25 843.72 3861.96

Genus 12 16/192 32/384 64/768 128/1536 256/3072 512/6144

naf 61.75 168.62 531.15 810.32 3307.53 16859.27
db-Rl 63.90 177.20 571.08 889.33 3710.25 19120.08
db-Lr 62.93 169.40 537.03 812.97 3313.26 16827.14
Nnaf 54.76 149.82 468.65 726.72 2812.44 13405.59
Ndb-Lr 57.35 159.86 514.94 799.22 3208.80 15688.03
Ndb-Rl 55.09 150.59 474.98 733.58 2819.55 13402.69
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Table 5. Timings (in ms) for cryptographic relevant function
fields of genus 2, 3, and 4, defined over Fp for some primes p chosen
to provide 80, 112, 128, 192 and 256 bits of security, with exponent
ranging from 160 to 512 bits

size of q / exponent size

Genus 2 80/160 112/224 128/256 192/384 256/512

naf 9.17 13.60 16.20 30.39 46.58
db-Rl 8.52 12.58 14.89 28.29 43.92
db-Lr 8.46 12.41 14.80 27.86 43.43
Nnaf 10.12 14.79 17.44 31.93 47.83
Ndb-Rl 9.26 13.65 16.04 30.22 46.40
Ndb-Lr 9.21 13.52 15.99 29.71 45.82

Genus 3 60/160 84/224 96/256 144/384 192/512

naf 11.44 19.10 22.13 42.35 61.58
db-Rl 10.82 17.96 20.75 39.95 57.19
db-Lr 10.70 17.71 20.49 39.16 56.12
Nnaf 10.99 18.02 20.84 39.15 56.50
Ndb-Rl 10.62 17.51 20.23 38.66 55.05
Ndb-Lr 11.13 18.59 21.58 41.24 59.67

Genus 4 54/160 75/224 86/256 128/384 171/512

naf 14.59 24.32 28.15 45.91 76.70
db-Rl 14.29 23.88 27.51 44.23 74.37
db-Lr 14.02 23.31 26.97 43.21 72.50
Nnaf 13.79 22.70 26.10 42.40 69.98
Ndb-Rl 13.46 22.41 25.79 41.51 69.45
Ndb-Lr 13.24 21.99 25.32 40.63 67.48
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Table 6. Timings (in ms) for cryptographic relevant function
fields of genus 2, 3, and 4, defined over binary fields F2m of size
chosen to provide 80, 112, 128, 192 and 256 bits of security, with
exponent ranging from 160 to 512 bits

size of q / exponent size

Genus 2 83/160 113/224 131/256 193/384 257/512

naf 10.23 15.85 35.17 48.37 80.97
db-Rl 9.59 14.86 34.98 46.92 79.92
db-Lr 9.58 14.77 34.29 46.15 78.81
Nnaf 11.38 17.22 37.31 50.52 82.85
Ndb-Rl 10.99 16.83 38.76 52.06 87.41
Ndb-Lr 10.84 16.54 37.43 50.41 85.01

Genus 3 61/160 89/224 97/256 149/384 193/512

naf 19.60 21.45 24.67 90.84 100.80
db-Rl 19.48 20.72 24.01 91.91 100.91
db-Lr 19.24 20.29 23.55 89.75 98.95
Nnaf 19.88 21.77 25.05 88.41 96.78
Ndb-Rl 20.65 21.87 25.24 94.71 102.91
Ndb-Lr 19.95 21.23 24.48 88.68 98.26

Genus 4 59/160 79/224 89/256 131/384 173/512

naf 25.83 27.01 31.73 116.19 94.68
db-Rl 26.41 27.18 31.69 120.93 94.37
db-Lr 25.85 26.39 30.91 116.44 91.92
Nnaf 25.87 26.97 31.67 113.70 93.35
Ndb-Rl 27.36 28.08 32.74 124.06 97.89
Ndb-Lr 26.13 26.89 31.61 113.93 93.19

Table 7. Fastest algorithms for function fields defined over finite
fields Fp with p prime

g size of p (in bits)

4 8 16 32 64 128 256 512

2 db-Lr
3 db-Rl
4
5 Ndb-Lr
6 Ndb-Rl
7 Ndb-Rl
8
9 Ndb-Lr
10
11 Ndb-Rl
12
13 Ndb-Lr Nnaf
14
15
20
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Table 8. Fastest algorithms for function fields defined over finite
fields F2m of even characteristic

g m

4 8 16 32 64 128 256 512

2
3 db-Rl
4
5 db-Lr
6
7
8
9 Ndb-Lr
10 Nnaf
11
12
13
14
15
20

7. Conclusions and Open Problems

One natural question to ask is whether there is any advantage to be gained by
exploring specialized formulas for higher powers, for example, quintupling. Our
specialized cubing formulas require one application of the extended Euclidean al-
gorithm fewer than using a squaring and a multiplication. It is conceivable that
higher powers might save even more, for example, requiring only one application in
many cases. Deriving such specialized formulas seems to be a difficult process, but
it may be worth investigating.

Our algorithms in the function field case are all generic in the sense that they
work for any genus and any finite field. The most interesting cases for cryptographic
applications are genus 2 and, to a somewhat lesser extent, 3. In those cases, explicit
formulas for ideal arithmetic have been developed that are significantly faster than
the generic formulas. Explicit formulas for ideal cubing could also be developed in
order to investigate the performance of double base number system exponentiation
in these low genus cases.

It would also be interesting to investigate double base infrastructure operations
using our cubing algorithms for real quadratic number and function fields. The
formulas presented in this paper all work in the real setting as presented, but in
the function field case it remains to devise a bound for the NUCUBE algorithm
that guarantees that the output is reduced or close to reduced. Infrastructure
applications also require an explicit representation of the relative generator θi+1

such that ai+1 = (θi+1)a3, but it is well-known how to compute this without having
to compute the non-reduced a3 (see [13] and [11]). These topics are the subject of
further research.
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Appendix A. Algorithms Using (a, b) Representation of Ideals in
Quadratic Number Fields

We list here the versions of Algorithm 3 and Algorithm 4 for cubing ideals in
number fields using the (a, b) representation of ideals.

Algorithm 5 Ideal Cubing for Quadratic Number Fields, (a, b) Representation

Input: a = (a′, b′), c′ = ((b′)2 − ∆)/(4a′)
Output: a3 = S(a, b), (optional) c = (b2 − ∆)/(4a)
1: Compute S′ = u1a′ + v1b′ (only compute S′ and v1).
2: if S′ = 1 then
3: Set S = 1.
4: Set N = a′, L = (a′)2, K = c′v1(2 − v1(b′ − v1a′c′)) (mod L).
5: else
6: Compute S = u2(S′a′) + v2((b′)2 − ac).
7: Set N = a′/S, L = Na′, K = c′(u2v1a′ + v2b′) (mod L).
8: end if
9: Set T = NK.

10: Set a = NL.
11: Set b = b′ − 2T.
12: (optional) Set c = (Sc + K(T − b)) /L.

Algorithm 6 NUCUBE for Quadratic Number Fields, (a, b) Representation

Input: a = (a′, b′), c′ = ((b′)2 − ∆)/(4a′)
Output: Almost reduced ideal (a, b) equivalent to a3, (optional) S and c = (b2 − ∆)/(4a)
1: Compute S′ = u1(a′) + v1(b′) (only compute S′ and v1).
2: if S′ = 1 then
3: Set S = 1.
4: Set N = a′, L = (a′)2, K = c′v1(2 − v1(b′ − v1a′c′)) (mod L).
5: else
6: Compute S = u2(S′a′) + v2((b′)2 − ac).
7: Set N = a′/S, L = Na′, K = c′(u2v1a′ + v2b′) (mod L).
8: end if
9: if L <

p
a′/2|∆|1/4 then

10: Set T = NK, a = NL, and b = b′ − 2T.
11: (optional) Set c = (Sc + K(T − b)) /L.
12: else
13: Set R−1 = L, R0 = K, C−1 = 0, C0 = −1, i = 0.

14: while Ri >
p

a′/2|∆|1/4 do
15: i = i + 1
16: Set qi = bRi−2/Ri−1c, Ri = Ri−2 − qiRi−1, and Ci = Ci−2 − qiCi−1.
17: end while
18: Set b′′ = b′ − 2NK (mod L).
19: Set M1 = (NRi + (b′′ − b′)Ci)/L.
20: Set M2 = (Ri(b

′ + b′′) + c′S)/L.
21: Set a = (−1)i−1(RiM1 − CiM2).
22: Set b = (NRi + aCi−1)/Ci − b′.
23: (optional) Set c = (b2 − ∆)/(4a).
24: end if
25: Compute q′, r′ ∈ Z such that b = q′(2a) + r′ (division with remainder).
26: (optional) Set c = c − q′(b + r′)/2.
27: Set b = r′.
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