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Abstract. We investigate the impact of larger digit sets on the length
of Double-Base Number system (DBNS) expansions. We present a new
representation system called extended DBNS whose expansions can be
extremely sparse. When compared with double-base chains, the average
length of extended DBNS expansions of integers of size in the range 200–
500 bits is approximately reduced by 20% using one precomputed point,
30% using two, and 38% using four. We also discuss a new approach
to approximate an integer n by d2a3b where d belongs to a given digit
set. This method, which requires some precomputations as well, leads to
realistic DBNS implementations. Finally, a left-to-right scalar multipli-
cation relying on extended DBNS is given. On an elliptic curve where
operations are performed in Jacobian coordinates, improvements of up
to 13% overall can be expected with this approach when compared to
window NAF methods using the same number of precomputed points. In
this context, it is therefore the fastest method known to date to compute
a scalar multiplication on a generic elliptic curve.
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1 Introduction

Curve-based cryptography, especially elliptic curve cryptography, has attracted
more and more attention since its introduction about twenty years ago [1–3], as
reflected by the abundant literature on the subject [4–7]. In curve-based cryp-
tosystems, the core operation that needs to be optimized as much as possible is a
scalar multiplication. The standard method, based on ideas well known already
more than two thousand years ago, to efficiently compute such a multiplication
is the double-and-add method, whose complexity is linear in terms of the size
of the input. Several ideas have been introduced to improve this method; see [8]
for an overview. In the remainder, we will mainly focus on two approaches:

• Use a representation such that the expansion of the scalar multiple is sparse.
For instance, the non-adjacent form (NAF) [9] has a non-zero digit density of



1/3 whereas the average density of a binary expansion is 1/2. This improve-
ment is mainly obtained by adding −1 to the set {0, 1} of possible coefficients
used in binary notation. Another example is the double-base number system
(DBNS) [10], in which an integer is represented as a sum of products of
powers of 2 and 3. Such expansions can be extremely sparse, cf. Section 2.

• Introduce precomputations to enlarge the set of possible coefficients in the
expansion and reduce its density. The k-ary and sliding window methods as
well as window NAF methods [11, 12] fall under this category.

In the present work, we mix these two ideas. Namely, we investigate how
precomputations can be used with the DBNS and we evaluate their impact on
the overall complexity of a scalar multiplication.

Also, computing a sparse DBNS expansion can be very time-consuming al-
though it is often neglected when compared with other representations. We in-
troduce several improvements that considerably speed up the computation of a
DBNS expansion, cf. Section 4.

The plan of the paper is as follows. In Section 2, we recall the definition and
basic properties of the DBNS. In Section 3, we describe how precomputations
can be efficiently used with the DBNS. Section 4 is devoted to implementation
aspects and explains how to quickly compute DBNS expansions. In Section 5, we
present a series of tests and comparisons with existing methods before concluding
in Section 6.

2 Overview of the DBNS

In the Double-Base Number System, first considered by Dimitrov et al. in a
cryptographic context in [13], any positive integer n is represented as

n =
�∑

i=1

di2ai3bi , with di ∈ {−1, 1}. (1)

This representation is obviously not unique and is in fact highly redundant.
Given an integer n, it is straightforward to find a DBNS expansion using a
greedy-type approach. Indeed, starting with t = n, the main task at each step is
to find the {2, 3}-integer z that is the closest to t (i.e. the integer z of the form
2a3b such that |t− z| is minimal) and then set t = t− z. This is repeated until
t becomes 0. See Example 2 for an illustration.

Remark 1. Finding the best {2, 3}-approximation of an integer t in the most
efficient way is an interesting problem on its own. One option is to scan all the
points with integer coordinates near the line y = −x log3 2+ log3 t and keep only
the best approximation. A much more sophisticated method involves continued
fractions and Ostrowski’s number system, cf. [14]. It is to be noted that these
methods are quite time-consuming. See Section 4 for a more efficient approach.
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Example 2. Take the integer n = 841232. We have the sequence of approxima-
tions

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 2232 − 2.

As a consequence, 841232 = 2738 + 2136 − 2232 + 21.

It has been shown that every positive integer n can be represented as the sum
of at most O

(
log n

log log n

)
signed {2, 3}-integers. For instance, see [13] for a proof.

Note that the greedy approach above-mentioned is suitable to find such short
expansions.

This initial class of DBNS is therefore very sparse. When one endomorphism
is virtually free, like for instance triplings on supersingular curves defined over F3,
the DBNS can be used to efficiently compute [n]P with max ai doublings, a very
low number of additions, and the necessary number of triplings [15]. Note that
this idea has recently been extended to Koblitz curves [16]. Nevertheless, it is not
really suitable to compute scalar multiplications in general. For generic curves
where both doublings and triplings are expensive, it is essential to minimize the
number of applications of these two endomorphisms. Now, one needs at least
max ai doublings and max bi triplings to compute [n]P using (1). However, given
the DBNS expansion of n returned by the greedy approach, it seems to be highly
non-trivial, if not impossible, to attain these two lower bounds simultaneously.

So, for generic curves the DBNS needs to be adapted to compete with other
methods. The concept of double-base chain, introduced in [17], is a special type
of DBNS. The idea is still to represent n as in (1) but with the extra require-
ments a1 � a2 � · · · � a� and b1 � b2 � · · · � b�. These properties allow to
compute [n]P from right-to-left very easily. It is also possible to use a Horner-like
scheme that operates from left-to-right. These two methods are illustrated after
Example 3.

Note that, it is easy to accommodate these requirements by restraining the
search of the best exponents (aj+1, bj+1) to the interval [0, aj]× [0, bj].

Example 3. A double-base chain of n can be derived from the following sequence
of equalities:

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 33 + 7,

7 = 32 − 2,

2 = 31 − 1.

As a consequence, 841232 = 2738 + 2136 − 33 − 32 + 31 − 1.

In that particular case, the length of this double-base chain is strictly bigger
than the one of the DBNS expansion in Example 2. This is true in general as
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well and the difference can be quite large. It is not known whether the bound
O

(
log n

log log n

)
on the number of terms is still valid for double-base chains.

However, computing [841232]P is now a trivial task. From right-to-left, we
need two variables. The first one, T being initialized with P and the other one, S
set to point at infinity. The successive values of T are then P , [3]P , [32]P , [33]P ,
[2136]P , and [2738]P , and at each step T is added to S. Doing that, we obtain
[n]P with 7 doublings, 8 triplings, and 5 additions. To proceed from left-to-right,
we notice that the expansion that we found can be rewritten as

841232 = 3
(
3
(
3
(
2133(2632 + 1)− 1

)− 1
)

+ 1
)− 1,

which implies that

[841232]P = [3]
(
[3]

(
[3]

(
[2133]([2632]P + P )− P

)− P
)

+ P
)− P.

Again, 7 doublings, 8 triplings, and 5 additions are necessary to obtain [n]P .
More generally, one needs exactly a1 doublings and b1 triplings to compute

[n]P using double-base chains. The value of these two parameters can be opti-
mized depending on the size of n and the respective complexities of a doubling
and a tripling (see Figure 2).

To further reduce the complexity of a scalar multiplication, one option is
to reduce the number of additions, that is to minimize the density of DBNS
expansions. A standard approach to achieve this goal is to enlarge the set of
possible coefficients, which ultimately means using precomputations.

3 Precomputations for DBNS scalar multiplication

We suggest to use precomputations in two ways. The first idea, which applies
only to double-base chains, can be viewed as a two-dimensional window method.

3.1 Window method

Given integers w1 and w2, we represent n as in (1) but with coefficients di in
the set {±1,±21,±22, . . . ,±2w1,±31,±32, . . . ,±3w2}. This is an indirect way
to relax the conditions a1 � a2 � · · · � a� and b1 � b2 � · · · � b� in order
to find better approximations and hopefully sparser expansions. This method,
called (w1, w2)-double-base chain, lies somewhere between normal DBNS and
double-base chain methods.

Example 4. The DBNS expansion of 841232 = 2738 +2136− 2232 + 21, can be
rewritten as 841232 = 2738 + 2136− 2× 2132 + 21, which is a (1, 0)-window-base
chain. The exponent a3 that was bigger than a2 in Example 2 has been replaced
by a2 and the coefficient d3 has been multiplied by 2 accordingly. As a result, we
now have two decreasing sequences of exponents and the expansion is only four
terms long.
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It remains to see how to compute [841232]P from this expansion. The right-
to-left scalar multiplication does not provide any improvement, but this is not
the case for the left-to-right approach. Namely, writing

841232 = 2
(
32

(
34(2632 + 1)− 2

)
+ 1

)
,

we see that

[841232]P = [2]
(
[32]

(
[34]([2632]P + P )− [2]P

)
+ P

)
.

If [2]P is stored along the computation of [2632]P then 7 doublings, 8 triplings
and only 3 additions are necessary to obtain [841232]P .

It is straightforward to design an algorithm to produce (w1, w2)-double-base
chains. We present a more general version in the following, cf. Algorithm 1. See
Remark 6 (v) for specific improvements to (w1, w2)-double-base chains.

Also a left-to-right scalar multiplication algorithm can easily be derived from
this method, cf. Algorithm 2.

The second idea to obtain sparser DBNS expansions is to generalize the
window method such that any set of coefficients is allowed.

3.2 Extended DBNS

In a (w1, w2)-double-base chain expansion, the coefficients are signed powers of
2 or 3. Considering other sets S of coefficients, for instance odd integers coprime
with 3, should further reduce the average length of DBNS expansions. We call
this approach extended DBNS and denote it by S-DBNS.

Example 5. We have 841232 = 2738 + 5× 2532 − 24. The exponents form two
decreasing sequences, but the expansion has only three terms. Assuming that [5]P
is precomputed, it is possible to obtain [841232]P as

[24]
(
[2132]([2436]P + [5]P )− P

)

with 7 doublings, 8 triplings, and only 2 additions

This strategy applies to any kind of DBNS expansion. In the following, we
present a greedy-type algorithm to compute extended double-base chains.

Algorithm 1. Extended double-base chain greedy algorithm

Input: A positive integer n, a parameter a0 such that a0 � �log2 n�, and
a set S containing 1.

Output: Three sequences (di, ai, bi)1�i�� such that n =
P�

i=1 di2
ai3bi

with |di| ∈ S , a1 � a2 � · · · � a�, and b1 � b2 � · · · � b�.
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1. b0 ← �(log2 n− a0) log2 3� [See Remark 6 (ii)]

2. i← 1 and t← n

3. s← 1 [to keep track of the sign]

4. while t > 0 do

5. find the best approximation z = di2
ai3bi of t

with di ∈ S , 0 � ai � ai−1, and 0 � bi � bi−1

6. di ← s× di

7. if t < z then s← −s

8. t← |t− z|
9. i← i + 1

10. return (di, ai, bi)

Remarks 6.

(i) Algorithm 1 processes the bits of n from left-to-right. It terminates since the
successive values of t form a strictly decreasing sequence.

(ii) The parameters a0 and b0 are respectively the biggest powers of 2 and 3
allowed in the expansion. Their values have a great influence on the density
of the expansion, cf. Section 5 for details.

(iii) To compute normal DBNS sequences instead of double-base chains, replace
the two conditions 0 � ai � ai−1, 0 � bi � bi−1 in Step 5 by 0 � ai � a0

and 0 � bi � b0.
(iv) In the following, we explain how to find the best approximation di2ai3bi

of t in a very efficient way. In addition, the proposed method has a time-
complexity that is mainly independent of the size of S and not directly
proportional to it as with a näıve search. See Section 4 for details.

(v) To obtain (w1, w2)-double-base chains, simply ensure that S contains only
powers 2 and 3. However, there is a more efficient way. First, introduce
two extra variables amax and bmax, initially set to a0 and b0 respectively.
Then in Step 5, search for the best approximation z of t of the form 2ai3bi

with (ai, bi) ∈ [0, amax +w1]× [0, bmax +w2] \ [amax +1, amax +w1]× [bmax +
1, bmax+w2]. In other words, we allow one exponent to be slightly bigger than
its current maximal bound, but the (exceptional) situation where ai > amax

and bi > bmax simultaneously is forbidden. Otherwise, we should be obliged
to include in S products of powers of 2 and 3 and increase dramatically the
number of precomputations. Once the best approximation has been found, if
ai is bigger than amax, then ai is changed to amax while di is set to 2ai−amax .
If bi is bigger than bmax, then bi is changed to bmax while di is set to 3bi−bmax .
Finally, do amax ← min(ai, amax) and bmax ← min(bi, bmax) and the rest of
the Algorithm remains unchanged.

(vi) Examples of sets S used in Section 5 are all subset of {1, 5, 7, 11, 13,
17, 19, 23, 25}.

We now give an algorithm to compute a scalar multiplication from the expansion
returned by Algorithm 1.
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Algorithm 2. Extended double-base chain scalar multiplication

Input: A point P on an elliptic curve E, a positive integer n represented
by the sequence (di, ai, bi)1�i�� as returned by Algorithm 1, and the
points [k]P for each k ∈ S .

Output: The point [n]P on E.

1. T ← OE [OE is the point at infinity on E]

2. set a�+1 ← 0 and b�+1 ← 0

3. for i = 1 to � do

4. T ← T ⊕ [di]P

5. T ← [2ai−ai+13bi−bi+1 ]T

6. return T

Example 7. For n = 841232, the sequence returned by Algorithm 2 with a0 = 8,
b0 = 8, and S = {1, 5} is (1, 7, 8), (5, 5, 2), (−1, 4, 0). In the next Table, we shows
the intermediate values taken by T in Algorithm 2 when applied to the above-
mentioned sequence. The computation is the same as in Example 5.

i di ai − ai+1 bi − bi+1 T

1 1 2 6 [2236]P
2 5 1 2 [2132]([2236]P + [5]P )
3 −1 4 0 [24]

(
[2132]([2236]P + [5]P )− P

)

Remark 8. The length of the chain returned by Algorithm 1 greatly determines
the performance of Algorithm 2. However, no precise bound is known so far,
even in the case of simple double-base chains. So, at this stage our knowledge
is only empirical, cf. Figure 2. More work is therefore necessary to establish the
complexity of Algorithm 2.

4 Implementation aspects

This part describes how to efficiently compute the best approximation of any
integer n in terms of d12a13b1 for some d1 ∈ S, a1 � a0, and b1 � b0. The
method works on the binary representation of n denoted by (n)2. It operates on
the most significant bits of n and uses the fact that a multiplication by 2 is a
simple shift.

To make things clear, let us explain the algorithm when S = {1}. First, take
a suitable bound B and form a two-dimensional array of size (B + 1) × 2. For
each b ∈ [0, B], the corresponding row vector contains [(3b)2, b]. Then sort this
array with respect to the first component using lexicographic order denoted by
� and store the result.
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To compute an approximation of n in terms of 2a13b1 with a1 � a0 and
b1 � b0, find the two vectors v1 and v2 such that v1[1] � (n)2 � v2[1]. This can
be done with a binary search in O(log B) operations.

The next step is to find the first vector v′1 that is before v1 in the sorted array
and that is suitable for the approximation. More precisely, we require that:

• the difference δ1 between the binary length of n and the length of v′1[1]
satisfies 0 � δ1 � a0,

• the corresponding power of 3, i.e. v′1[2], is less than b0.

This operation is repeated to find the first vector v′2 that is after v2 and fulfills
the same conditions as above. The last step is to decide which approximation,
2δ13v′

1[2] or 2δ23v′
2[2], is closer to n.

In case |S| > 1, the only difference is that the array is of size
(|S|(B+1)

)×3.
Each row vector is of the form [(d3b)2, b, d] for d ∈ S and b ∈ [0, B]. Again the
array is sorted with respect to the first component using lexicographic order.
Note that multiplying the size of the table by |S| has only a negligible impact
on the time complexity of the binary search. See [18, Appendix A] for a concrete
example and some improvements to this approach.

This approximation method ultimately relies on the facts that lexicographic
and natural orders are the same for binary sequences of the same length and
also that it is easy to adjust the length of a sequence by multiplying it by some
power of 2. The efficiency comes from the sorting operation (done once at the
beginning) that allows to retrieve which precomputed binary expansions are close
to n, by looking only at the most significant bits.

For environments with constrained memory, it may be difficult or even im-
possible to store the full table. In this case, we suggest to precompute only the
first byte or the first two bytes of the binary expansions of d3b together with
their binary length. This information is sufficient to find two approximations A1,
A2 in the table such that A1 � n � A2, since the algorithm operates only on the
most significant bits. However, this technique is more time-consuming since it is
necessary to actually compute at least one approximation and sometimes more,
if the first bits are not enough to decide which approximation is the closest to
n.

In Table 1, we give the precise amount of memory (in bytes) that is required
to store the vectors used for the approximation for different values of B. Three
situations are investigated, i.e. when the first byte, the first two bytes, and the
full binary expansions d3b, for d ∈ S and b � B are precomputed and stored.

See [19] for a in PARI/GP implementation of Algorithm 1 using the tech-
niques described in this section.

5 Tests and results

In this section, we present some tests to help evaluating the relevance of extended
double-base chains for scalar multiplications on generic elliptic curves defined
over Fp, for p of size between 200 and 500 bits. Comparisons with the best

8



Bound B 25 50 75 100 125 150 175 200

S = {1}
First byte 33 65 96 127 158 190 221 251

First two bytes 54 111 167 223 279 336 392 446

Full expansion 85 293 626 1,084 1,663 2,367 3,195 4,108

S = {1, 5, 7}
First byte 111 214 317 420 523 627 730 829

First two bytes 178 356 534 712 890 1,069 1,247 1,418

Full expansion 286 939 1,962 3,357 5,122 7,261 9,769 12,527

S = {1, 5, 7, 11, 13}
First byte 185 357 529 701 873 1,045 1,216 1,381

First two bytes 300 597 894 1,191 1,488 1,785 2,081 2,366

Full expansion 491 1,589 3,305 5,642 8,598 12,173 16,364 20,972

S = {1, 5, 7, 11, 13, 17, 19, 23, 25}
First byte 334 643 952 1,262 1,571 1,881 2,190 2,487

First two bytes 545 1,079 1,613 2,148 2,682 3,217 3,751 4,264

Full expansion 906 2,909 6,026 10,255 15,596 22,056 29,630 37,947

Table 1. Precomputations size (in bytes) for various bounds B and sets S

systems known so far, including �-NAFw and normal double-base chains are
given.

In the following, we assume that we have three basic operations on a curve E
to perform scalar multiplications, namely addition/subtraction, doubling, and
tripling. In turn, each one of these elliptic curve operations can be seen as a
sequence of inversions I, multiplications M, and squarings S in the underlying
field Fp.

There exist different systems of coordinates with different complexities. For
many platforms, projective-like coordinates are quite efficient since they do not
require any field inversion for addition and doubling, cf. [20] for a comparison.
Thus, our tests will not involve any inversion. Also, to ease comparisons between
different scalar multiplication methods, we will make the standard assumption
that S is equivalent to 0.8M. Thus, the complexity of a scalar multiplication
will be expressed in terms of a number of field multiplications only and will be
denoted by NM.

Given any curve E/Fp in Weierstraß form, it is possible to directly obtain
[3]P more efficiently than computing a doubling followed by an addition. Until
now, all these direct formulas involved at least one inversion, cf. [21], but re-
cently, an inversion-free tripling formula has been devised for Jacobian projective
coordinates [17]. Our comparisons will be made using this system. In Jacobian
coordinates, a point represented by (X1 : Y1 : Z1) corresponds to the affine point
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(X1/Z
2
1 , Y1/Z

3
1 ), if Z1 �= 0, and to the point at infinity OE otherwise. A doubling

can be done with 4M + 6S, a tripling with 10M + 6S and a mixed addition, i.e.
an addition between a point in Jacobian coordinates and an affine point, using
8M + 3S.

With these settings, we display in Figure 1, the number of multiplications
NM required to compute a scalar multiplication on a 200-bit curve with Al-
gorithm 2, for different choices of a0 and various DBNS methods. Namely, we
investigate double-base chains as in [17], window double-base chains with 2 and
8 precomputations, and extended double-base chains with S2 = {1, 5, 7} and
S8 = {1, 5, 7, 11, 13, 17, 19, 23, 25}, as explained in Section 3.2. Comparisons are
done on 1, 000 random 200-bit scalar multiples. Note that the costs of the pre-
computations are not included in the results.

Figure 1 indicates that a0 = 120 is close to the optimal choice for every
method. This implies that the value of b0 should be set to 51. Similar computa-
tions have been done for sizes between 250 and 500. It appears that a simple and
good heuristic to minimize NM is to set a0 = �120×size/200� and b0 accordingly.
These values of a0 and b0 are used in the remainder for sizes in [200, 500].

In Figure 2, we display the average length of different extended DBNS ex-
pansions in function of the size of the scalar multiple n. Results show that the
length of a classic double-base chain is reduced by more than 25% with only 2
precomputations and by 43% with 8 precomputations.

In Table 2, we give the average expansion length �, as well as the maxi-
mal power a1 (resp. b1) of 2 (resp. 3) in the expansion for different methods
and different sizes. The symbol #P is equal to the number of precomputed
points for a given method and the set Sm contains the first m + 1 elements of
{1, 5, 7, 11, 13, 17, 19, 23, 25}. Again, 1, 000 random integers have been considered
in each case.

In Table 3, we give the corresponding complexities in terms of the number of
multiplications and the gain that we can expect with respect to a window NAF
method involving the same number of precomputations.

See [18] for a full version including a similar study for some special curves.

6 Conclusion

In this work, we have introduced a new family of DBNS, called extended DBNS,
where the coefficients in the expansion belong to a given set S. A scalar multipli-
cation algorithm relying on this representation and involving precomputations
was presented. Also, we have desribed a new method to quickly find the best
approximation of an integer by a number of the form d2a3b with d ∈ S. This
approach greatly improves the practicality of the DBNS. Extended DBNS se-
quences give rise to the fastest scalar multiplications known to date for generic
elliptic curves. In particular, given a fixed number of precomputations, the ex-
tended DBNS is more efficient than any corresponding window NAF method.
Gains are especially important for a small number of precomputations, typically
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up to three points. Improvements larger than 10% over already extremely opti-
mized methods can be expected. Also, this system is more flexible, since it can
be used with any given set of coefficients, unlike window NAF methods.

Further research will include an extension of these ideas to Koblitz curves, for
which DBNS-based scalar multiplication techniques without precomputations
exist already, see [16, 22, 23]. This will most likely lead to appreciable perfor-
mance improvements.
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Appendix: Graphs and tables
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Fig. 1. Average number of multiplications to perform a random scalar multiplication
on a generic 200-bit curve with various DBNS methods parameterized by a0
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Size 200 bits 300 bits 400 bits 500 bits

#P � a1 b1 � a1 b1 � a1 b1 � a1 b1
2NAF2 0 66.7 200 0 100 300 0 133.3 400 0 166.7 500 0

Binary/ternary 0 46.1 90.7 68.1 69.2 136.4 102.2 91.9 182.6 136.3 114.4 228.0 170.7

DB-chain 0 45.6 118.7 50.4 68.2 178.7 75.5 91.3 239.0 100.6 113.7 298.6 126.2

3NAF2 1 50 200 0 75 300 0 100 400 0 125 500 0

(1, 0)-DB-chain 1 46.8 118.9 50.2 70.5 179.1 75.1 94.5 239.3 100.3 117.7 298.8 125.9

(0, 1)-DB-chain 1 42.9 118.7 50.4 63.8 178.7 75.5 85.4 239.0 100.6 106.4 298.6 126.2

S1-DB chain 1 36.8 118.1 49.9 55.0 178.0 75.0 72.9 238.2 100.1 91.0 297.8 125.7

2NAF3 2 50.4 0 126 75.6 0 189 100.8 0 252 126 0 315

(1, 1)-DB-chain 2 39.4 118.9 50.2 58.5 179.1 75.1 77.9 239.3 100.3 96.6 298.8 125.9

S2-DB chain 2 32.9 117.8 49.8 49.2 177.8 74.9 65.3 238 100.0 81.5 297.7 125.6

4NAF2 3 40 200 0 60 300 0 80 400 0 100 500 0

S3-DB chain 3 30.7 117.5 49.7 45.7 177.5 74.8 60.6 237.8 99.8 75.6 297.3 125.4

(2, 2)-DB-chain 4 36.8 119.2 49.8 54.7 179.3 74.8 72.6 239.4 100.1 90.5 299.0 125.7

S4-DB chain 4 28.9 117.3 49.6 43.2 177.3 74.7 57.6 237.6 99.8 71.5 297.1 125.4

(3, 3)-DB-chain 6 35.3 119.3 49.5 52.2 179.4 74.6 69.2 239.5 99.6 86.1 299.2 125.2

S6-DB chain 6 27.3 117.4 49.4 40.6 177.3 74.5 54.0 237.6 99.6 67.1 297 125.3

3NAF3 8 36 0 126 54 0 189 72 0 252 90 0 315

(4, 4)-DB-chain 8 34.2 119.3 49.3 50.5 179.5 74.2 67.0 239.6 99.3 83.5 299.3 125

S8-DB chain 8 25.9 117.2 49.3 38.5 177.1 74.4 51.2 237.4 99.5 63.6 296.9 125.2

Table 2. Parameters for various scalar multiplication methods on generic curves

Size 200 bits 300 bits 400 bits 500 bits
#P NM Gain NM Gain NM Gain NM Gain

2NAF2 0 2442.9 — 3669.6 — 4896.3 — 6122.9 —
Binary/ternary 0 2275.0 6.87% 3422.4 6.74% 4569.0 6.68% 5712.5 6.70%
DB-chain 0 2253.8 7.74% 3388.5 7.66% 4531.8 7.44% 5666.5 7.45%
3NAF2 1 2269.6 — 3409.6 — 4549.6 — 5689.6 —
(1, 0)-DB-chain 1 2265.8 0.17% 3410.3 −1.98% 4562.3 −1.72% 5707.4 −1.69%
(0, 1)-D B-chain 1 2226.5 1.90% 3343.2 1.95% 4471.0 1.73% 5590.4 1.74%
S1-DB chain 1 2150.4 5.25% 3238.1 5.03% 4326.3 4.91% 5418.1 4.77%

2NAF3 2 2384.8 — 3579.3 — 4773.8 — 5968.2 —
(1, 1)-DB-chain 2 2188.6 8.23% 3285.5 8.21% 4390.0 8.04% 5487.7 8.05%
S2-DB chain 2 2106.5 11.67% 3174.1 11.32% 4243.6 11.11% 5314.8 10.95%
4NAF2 3 2165.6 — 3253.6 — 4341.6 — 5429.6 —
S3- DB chain 3 2078.1 4.04% 3132.8 3.71% 4189.8 3.50% 5248.5 3.34%
(2, 2)-DB-chain 4 2158.2 — 3242.6 — 4333.1 — 5421.6 —
S4-DB chain 4 2056.7 — 3105.0 — 4156.1 — 5204.0 —
(3, 3)-DB-chain 6 2139.4 — 3215.0 — 4291.7 — 5371.9 —
S6-DB chain 6 2036.3 — 3074.3 — 4115.4 — 5155.1 —
3NAF3 8 2236.2 — 3355.8 — 4475.4 — 5595.0 —
(4, 4)-DB-chain 8 2125.4 4.95% 3192.2 4.88% 4264.1 4.72% 5340.5 4.55%
S8-DB chain 8 2019.3 9.70% 3049.8 9.12% 4084.3 8.74% 5116.8 8.55%

Table 3. Complexity of various extended DBNS methods for generic curves and gain
with respect to window NAF methods having the same number of precomputations

14


