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Abstract—Single and double scalar multiplications are the most computational intensive operations in elliptic curve based

cryptosystems. Improving the performance of these operations is generally achieved by means of integer recoding techniques, which

aim at minimizing the scalars’ density of nonzero digits. The hybrid binary-ternary number system provides both short representations

and small density. In this paper, we present three novel algorithms for both single and double scalar multiplication. We present a

detailed theoretical analysis, together with timings and fair comparisons over both tripling-oriented Doche-Ichart-Kohel curves and

generic Weierstrass curves. Our experiments show that our algorithms are almost always faster than their widely used counterparts.

Index Terms—Elliptic curve cryptography, single/double scalar multiplication, hybrid binary-ternary number system, DIK-3 curves.
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1 INTRODUCTION

EVEN though elliptic curves have been studied for more
than a 100 years, their practical use for public key

cryptography has only been proposed at the end of the
1980s independently by Koblitz [1] and Miller [2]. Since
then elliptic curve cryptography (ECC) has drawn lots of
attention from different research communities [3], [4], [5].
The probable intractability of the elliptic curve discrete
logarithm problem (ECDLP) represents a major advantage
of elliptic curves over other problems used for public key
cryptography such as the discrete logarithm problem in the
multiplicative group Z�p, used for Diffie-Hellman key
exchange [6], or the famous integer factorization problem
used for RSA [7], since it leads to shorter key lengths.

In ECC-based cryptographic protocols, most of the
computational power is dedicated to single and multiple-
point multiplication. Let E be an elliptic curve defined over
a field K, P a point of order n in the group EðKÞ, and k an
integer. The computation which consists in adding P to itself
k� 1 times, denoted ½k�P ¼ P þ � � � þ P , is called single
scalar multiplication. If we consider a second point Q in
EðKÞ and another integer l, the computation of ½k�P þ ½l�Q is
called double-point multiplication.

In the single scalar case, the binary representation of a t-bit
scalar k has t=2 nonzero bits on average, leading to t� 1 point
doublings and t=2 point additions on average. Since the cost
of point negation is negligible over elliptic curves, we can
use signed binary representations [8], [9], [10], [11] with

digits f�1; 0; 1g. A generalized concept of signed binary
representation called window nonadjacent form (w-NAF)
can be used to further reduce the number of nonzero
elements [12]. Dimitrov et al. have recently proposed an
efficient algorithm for computing ½k�P using double-base
chains [13], [14]. This idea has been extended to windowed
double-base chains in [15] by Doche and Imbert. More
discussions and methods based on chain representations are
available in [16], [17], [18], [19]. Very recently, Méloni and
Hasan proposed to combine double-base representations
and Yao’s algorithm [20]. Extending the double-base concept
further, number of multibase variants have been proposed
for single scalar multiplication1 (see [21], [22]). At the end of
this paper, we present many implementation results and
comparisons based on standardized curves and parameters.

In the double scalar multiplication, we need to perform
t� 1 point doublings plus 3t=4 point additions on average
(assuming two t-bit scalars). In [23], Solinas proposed an
algorithm to compute a minimal joint representation for two
scalars. The new representation, called joint sparse form
(JSF), requires only t=2 point additions and only two
precomputations, namely the points P þQ and P �Q.
Later, Hankerson et al. introduced the interleaving w-NAF
method [12]. The number of point additions involved in this
algorithm is as low as 2t=ðwþ 1Þ for two t-bit numbers while
requiring precomputations of 3P; 5P; . . . ; ð2w�1 � 1ÞP and
3Q; 5Q; . . . ; ð2w�1 � 1ÞQ. More recently, Doche et al. intro-
duced joint double-base chains to represent a pair of
numbers in [24]. The advantage of having a joint representa-
tion for a pair of scalars is that we can apply Straus’ idea [25]
(also known as Shamir’s trick) to combine point doublings.

The different number representations that we discussed
above consider techniques which minimize the number of
nonzero elements or columns in the representation. How-
ever, we can also reduce the length of these representations,
for example, by using higher radices. The hybrid binary-
ternary number system (HBTNS) [26] can be used to find a
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short and sparse representation for a single scalar or a joint
representation for a pair of scalars. Note that the HBTNS is
a special case of double-base representation. More precisely,
any given integer is having one or more double-base
representations. Double-base chains are special cases of
double-base representations, while HBTNS corresponds to
a particular double-base chain for a given integer.

In this paper, which is a substantial extension of the work
presented at the ARITH 19 Symposium [27], we propose
three novel algorithms based on the HBTNS, namely, the
window hybrid binary-ternary form (w-HBTF) for single-
point multiplication, and the hybrid binary-ternary joint
form (HBTJF) and reduced hybrid binary-ternary joint form
(RHBTJF) for double-point multiplication.

In the case of generic short Weierstrass curves, we
achieve up to 12 percent improvement in single-scalar
multiplication and up to eight percent gain in double-scalar
multiplication. However, over tripling-oriented DIK curves,
a family of curves which allows for fast point tripling, our
software implementation is faster than w-NAF by more than
25 percent. One may argue that these curves are “special,”
and, therefore, provide less security. The belief that random
curves provide more security than specific curves has been
seriously criticized by Koblitz et al. in [28]. Their conclusion
is that, in some cases, random curves may not provide the
level of security one would think. Therefore, using well
chosen specific curves, such as DIK-3 curves, does not
weaken a cryptosystem.

The organization of this paper is as follows: In Section 2,
the basics of elliptic curve and hybrid binary-ternary number
system are presented. In Section 3, we extend the hybrid
binary-ternary concept to represent a scalar with a novel
recoding algorithm. In Section 4, we describe two novel
algorithms for double-scalar multiplication. We present our
software implementation and some numerical comparisons
in Section 5 and conclude the paper in Section 6.

2 BACKGROUND

2.1 Elliptic Curve Arithmetic

The general definition of an elliptic curve E defined over a
field K is given by the Weierstrass equation

E=K : y2 þ a1xyþ a3y ¼ x3 þ a2x
2 þ a4xþ a6; ð1Þ

where a1; a2; a3; a4; a6 2 K. In addition, the elliptic curve
must be smooth, i.e., there is no point on the curve which
has two or more distinct tangent lines. Smooth curves can
be constructed by carefully selecting the coefficients
a1; a2; a3; a4; a6 in (1). (See [5] for more details).

For fields of characteristic not equal to 2 or 3, we use the
short Weierstrass equation

E=K : y2 ¼ x3 þ axþ b: ð2Þ

The coefficients a; b, and the underlying field K can be
selected to optimize the efficiency of the elliptic curve
operations (e.g., choosing a ¼ �3 allows for faster point
arithmetic).

In [29], Doche et al. introduced a new family of elliptic
curves that are very efficient for point triplings. Tripling-
oriented Doche-Ichart-Kohel (DIK) curves are defined over
a field of characteristic larger than three and have a rational
three-torsion subgroup. They can be expressed as

E=K : y2 ¼ x3 þ 3uðxþ 1Þ2: ð3Þ

Over DIK-3 curves, the cost ratio (in terms of field
operations) between a point tripling and a point doubling
is smaller than the same ratio over other known models or
families of elliptic curves.

When point addition, doubling, and tripling operations
are executed in affine coordinates, field inversions are
required. Field inversion is significantly expensive com-
pared to other field arithmetic operations, namely, addition,
subtraction, and multiplication. To minimize field inver-
sions in our computations, we use projective coordinates.

Let K be the field over which the elliptic curve is
defined. The set of affine coordinates, AðKÞ is given by

AðKÞ ¼ fðx; yÞ 2 K�K : y2 þ a1xyþ a3y

� x3 � a2x
2 � a4x� a6 ¼ 0g [1;

ð4Þ

where 1 is the point at infinity. Let c and d be positive
integers and let x ¼ X=Zc and y ¼ Y =Zd, then we define the
projective coordinates as

PðKÞ ¼ fðX : Y : ZÞ : X;Y ; Z 2 K; Z 6¼ 0g: ð5Þ

The set of projective points at infinity is defined by

PðKÞ0 ¼ fðX : Y : ZÞ : X;Y ; Z 2 K; Z ¼ 0g: ð6Þ

The set PðKÞ0 is called the line at infinity because its points
do not correspond to any of the affine points. We define
standard projective coordinates by setting c ¼ 1 and d ¼ 1.
In addition to projective coordinates, Jacobian coordinates
are defined when c ¼ 2 and d ¼ 3 [5], [12], [30], [31].

2.2 Hybrid Binary-Ternary Number System

Dimitrov and Cooklev introduced the hybrid binary-ternary
number system in 1995 in [26] in order to speed up modular
exponentiation. The proposed method for computing this
particular recoding of an integer is illustrated in Algorithm 1.

Algorithm 1. HBTNS representation

Input: An integer n > 0

Output: Arrays digits[], base[]

1: i ¼ 0

2: while n > 0 do

3: if n � 0 ðmod 3Þ then

4: digits[i� ¼ 0

5: base[i� ¼ 3

6: else if n � 0 ðmod 2Þ then

7: digits[i] = 0

8: base[i� ¼ 2

9: else

10: digits[i� ¼ 1

11: base[i� ¼ 2

12: end if

13: n ¼ bn= base[i] c
14: i ¼ iþ 1

15: end while

16: return digits[], base[]

Mixing bases two and three in the representation of n
can be seen as expressing n in a base that is a real number
between 2 and 3. Using some probabilistic arguments, this
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average base � can be easily evaluated. For the recoding
algorithm presented in Algorithm 1, one obtains
� ¼ 210=1333=13 � 2:1962. Consequently, a t-bit integer has
ðlog�2Þt � 0:8811t digits on average. This corresponds to a
reduction of roughly 12 percent compared to the binary
length. The proportion of ones can also be evaluated to
5=13 � 0:3846, that is approximately 0:3388t.

Example 1. The hybrid binary-ternary form of n ¼ 703 ¼
ð1010111111Þ2 given by

digits½ � ¼ ½1 0 0 1 0 0 0 1�
base½ � ¼ ½2 2 3 2 3 3 3 2�

has only eight digits among which three only are
nonzero. In standard binary representation, 703 is
10-bit long and has eight nonzero bits. Note that the
least significant digit is the right-most value in
digits[], such that 703 ¼ 2334 þ 2133 þ 1.

Using a 2D array, we can visualize the expansion of the
hybrid binary-ternary representation of an integer. In this
graphic representation, we use powers of two in columns
and powers of three in rows. Powers of two grow from left
to right while powers of three grow downward making
the upper-left corner 2030 ¼ 1. A staircase walk from the
bottom-right nonzero element to the top-left nonzero
element gives the corresponding double-base chain gener-
ated by Algorithm 1. The convention in the staircase
representation is going up as much as possible before
going left. We give an example of staircase walk in Fig. 1.

A similar idea has been introduced in the context of ECC
by Ciet et al. in [32]. Dimitrov et al. generalized this concept
in [13] by using a greedy approach to compute special
signed double-base expansions [33], [34], i.e., expressions of
the form

X
i

	2ai3bi ; with ai; bi 
 0;

where the exponents form two simultaneously decreasing
sequences. These expansions, called double-base chains (see
Definition 1 below), allow for fast scalar multiplication. See
[14], [35], [36], [37] for more details about this number
system and double-base chain generation.

Definition 1 (Double-base chain). Given k > 0, a sequence
ðKnÞn>0, of positive integers satisfying: K1 ¼ 1, Knþ1 ¼
2u3vKn þ s, with s 2 f�1; 1g for some u; v 
 0, and such

that Km ¼ k for some m > 0, is called a double-base chain for
k. The length m of a double-base chain is equal to the number
of terms (often called f2; 3g-integers), used to represent k.

Later, Doche and Imbert introduced window-based
double-base chains mixing both concepts of double-base
chains and w-NAF in [15]. The scalar multiplication can be
speeded up by using fast addition, doubling and tripling
formulas in different coordinates.

3 SINGLE SCALAR MULTIPLICATION

3.1 Window Hybrid Binary-Ternary Form

In this section, we introduce the window hybrid binary-
ternary form (w-HBTF) for single scalar multiplication.
Extending the concept of w-NAF where w represents the
width of a 1D window, the value of w in w-HBTF is an
expression of the form 2b3t with b; t 2 N, which can be seen
as a 2D window of width b and height t. For example, when
b ¼ 1 and t ¼ 2 we get a window of size 2132 ¼ 18. Note that
when t ¼ 0 the hybrid binary-ternary representation is
equivalent to 2b-NAF.

Algorithm 2 is an extension of Algorithm 1. We start by
checking whether the input number is divisible by 2 or 3
and, if this is the case, we assign the corresponding digit to
zero and the base accordingly. If the number k is neither
divisible by 2 nor 3, we subtract k mods w from k such that
the result is divisible by w ¼ 2b3t. The corresponding digit is
set to k mods w, an integer in ½�2b�13t; 2b�13t�, while base is
set to 3. The value k is then divided by 3. This guarantees
that the next tþ b� 1 digits will all be zero.

Algorithm 2. w-hybrid binary-ternary form (w-HBTF)
Input: A positive integer k, two integers b; t > 0 such that

w ¼ 2b3t

Output: Arrays whbt[], base[]

1: i ¼ 0

2: while k > 0 do

3: if k � 0 ðmod 2Þ then

4: whbt½i� ¼ 0

5: base½i� ¼ 2

6: else if k � 0 ðmod 3Þ then

7: whbt½i� ¼ 0

8: base½i� ¼ 3

9: else

10: whbt½i� ¼ k mods 2b3t

11: base½i� ¼ 2

12: k ¼ k� whbt½i�
13: end if

14: k ¼ k=base½i�
15: i ¼ iþ 1

16: end while

17: return whbt[], base[]

Example 2. In the following example, we give the 4-NAF
and 5-NAF decompositions of 727:

4-NAFð727Þ ¼ ½0 0 3 0 0 0 �3 0 0 0 7�;
5-NAFð727Þ ¼ ½1 0 0 0 0 �9 0 0 0 0 �9�;

and its 12 and 18-HBTF
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Fig. 1. An example of staircase walk for a double-base chain
representing 703.



12-HBTFð727Þ ¼ ½5 0 0 1 0 0 �5�
base½ � ¼ ½2 3 2 2 3 2 2�;

18-HBTFð727Þ ¼ ½5 0 0 0 0 0 7�
base½ � ¼ ½2 3 3 2 2 2 2�:

Just like w-NAF, the use of w-HBTF for elliptic-curve-
scalar multiplication requires some precomputed points. For
w ¼ 2b3t, these points are of the form ½d�P with �2b�13t �
d � 2b�13t and gcdðd; 2; 3Þ ¼ 1. For instance, for 18-HBTF
only the points 	5P and 	7P are required. Because the
negation of a point is easy to compute, only one of 	5P and
one of 	7P are precomputed and stored in this case.

3.2 Theoretical Analysis of w-HBTF

Algorithm 2 is designed to produce a more compact (fewer
digits) and sparser (fewer nonzero digits) representation
than the binary, NAF, and w-NAF recoding schemes. These
parameters can be precisely estimated using probabilistic
arguments. Considering a Markov process, we can deduce
the probability to divide a number by 2 or by 3 and the
probability to get a zero or a nonzero digit.

We build a transition graph with w states, where each
state corresponds to a residue class modulo w. The
corresponding w� w transition matrix contains the prob-
abilities to go from state i to state i0, i.e., the probabilities to
obtain a number of the form wt0 þ i0 from a number of the
form wtþ i after performing either a division by 2 or by 3 or
a subtraction of i followed by a division by 2. More
precisely, if the current number, say, wtþ i is divisible by 3,
we obtain with probability 1=2, either a number of the form
wt0 þ i=2 or a number of the form wt0 þ w=2þ i=2 depend-
ing on the parity of t. Similarly, if the current number is
divisible by 3, we get with probability 1=3 a number of the
form wt0 þ i=3 or wt0 þ w=3þ i=3 or wt0 þ 2w=3þ i=3. If
none of the above conditions are satisfied, we make the
current number divisible by w by subtracting the suitable
value and we divide it by 3. Therefore, we obtain with
probability 1=2, a number of the form wt0 or wt0 þ w=2.

If Pi;i0 denotes the probability to go from state i to state i0,
we obtain the following probabilities:

. if i � 0 ðmod 2Þ then
Pi;i0 ¼ 1

2 for i0 2 fi2 ; i2þ w
2g and 0 otherwise.

. if i � 0 ðmod 3Þ then
Pi;i0 ¼ 1

3 for i0 2 fi3 ; i3þ w
3 ;

i
3þ 2w

3 g and 0 otherwise.
. if gcdði; 2; 3Þ ¼ 1 then

Pi;i0 ¼ 1
2 for i0 2 f0; w2g and 0 otherwise.

For example, for w ¼ 6 the above relations lead to the
following transition matrix:

MS ¼

1
2 0 0 1

2 0 0
1
2 0 0 1

2 0 0
0 1

2 0 0 1
2 0

0 1
3 0 1

3 0 1
3

0 0 1
2 0 0 1

2
1
2 0 0 1

2 0 0

0
BBBBBB@

1
CCCCCCA
:

The stationary distribution is then calculated as

�1 ¼ lim
n!1

�0M
n
S;

with �0 ¼ ð1=6; 1=6; 1=6; 1=6; 1=6; 1=6Þ the initial prob-
abilities (although they do not play any role). We obtain

�1 ¼ ð2=7; 1=7; 0; 3=7; 0; 1=7Þ:

We deduce the average probabilities: p2 (respectively p3)
to perform a division by 3 (respectively 3) and pnz
(respectively pz) to get a nonzero (respectively zero) digit:

p3 ¼ �1½3� ¼
3

7
; p2 ¼ 1� p3 ¼

4

7
;

pnz ¼ �1½1� þ �1½5� ¼
2

7
; pz ¼ 1� pnz ¼

5

7
:

The average base � for 6-HBTF can be evaluated by

� ¼ 2
4
73

3
7 ¼ 7

ffiffiffiffiffiffiffiffiffi
2433
p

¼ 7
ffiffiffiffiffiffiffiffi
432
p

� 2:379565578968:

Therefore the average length of 6-HBTF is given by

ðlog� 2Þ � t � 0:86691794� t

for a t-bit number. Finally, we evaluate its density of
nonzero digits with

0:86691794� t� 2

7
� 0:24769084028� t:

Using a similar analysis, we have computed these quantities
for different window sizes. The results are summarized in
Table 1. In the last row, we give the number of precomputa-
tions required for single scalar multiplication.
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4 DOUBLE SCALAR MULTIPLICATION

In this section, we present two algorithms for double scalar
multiplication based on HBTNS, namely, the Hybrid
Binary-Ternary Joint Form (HBTJF) and Reduced Hybrid
Binary-Ternary Joint Form (RHBTJF).

4.1 Hybrid Binary-Ternary Joint Form

4.1.1 Algorithm

In this new joint number representation, both scalars share
the same base sequence which, as before, mixes integers 2
and 3. In the following, we denote by column a triple
ðbi; di; d0iÞ, where bi is the common base used for the ith pair
of digits di and d0i. If both di and d0i are zero, we call it a zero
column; otherwise, it is a nonzero column. Our algorithm is
designed to generate fewer nonzero columns than its
counterparts. We describe our new joint representation in
Algorithm 3.

Algorithm 3. Hybrid binary-ternary joint form

Input: Two positive integers k1; k2

Output: Arrays hbt1[], hbt2[], base[]

1: i ¼ 0

2: while k1 > 0 or k2 > 0 do

3: if k1 � 0 ðmod 2Þ and k2 � 0 ðmod 2Þ then

4: hbt1½i� ¼ 0, hbt2½i� ¼ 0

5: base½i� ¼ 2

6: else if k1 � 0 ðmod 3Þ and k2 � 0 ðmod 3Þ then

7: hbt1½i� ¼ 0, hbt2½i� ¼ 0

8: base½i� ¼ 3

9: else

10: hbt1½i� ¼ k1 mods 6, hbt2½i� ¼ k2 mods 6

11: base½i� ¼ 2

12: k1 ¼ k1 � hbt1½i�, k2 ¼ k2 � hbt2½i�
13: end if

14: k1 ¼ k1=base½i�, k2 ¼ k2=base½i�
15: i ¼ iþ 1

16: end while

17: return hbt1[], hbt2[], base[]

The computation of the HBTJF for two scalars k1; k2 starts
by checking whether both numbers k1 and k2 are divisible
by 2. If it is the case, the common base is set to two and both
digits are set to 0. In other words, a zero column in base 2 is
generated. Failing this first condition, both k1 and k2 are
checked for divisibility by three. If both numbers are
divisible by three, then a zero-column in base 3 is produced.
If none of the above conditions are satisfied, i.e., if k1 and k2

are neither divisible by 2 nor 3 simultaneously, then the

values ki mods 6 for i ¼ 1; 2 are subtracted from k1 and k2,
respectively, such that both scalars become simultaneously
divisible by 6. We then divide both numbers by 2. This step
generates a nonzero column in base 2 with the guarantee to
generate a zero-column in base 3 at the next step. We repeat
this procedure until both k1 and k2 are equal to 0. Note that
in the case of a nonzero column, the possible digits belong
to the set f�2;�1; 0; 1; 2; 3g.
Example 3. The following example illustrates the potential

advantage of the HBTJF over interleaving method. For
k1 ¼ 1;225 and k2 ¼ 723, the interleaving method with
different window sizes five and four leads to the
following decompositions:

5-NAFð1; 225Þ ¼ ½1 0 0 0 0 13 0 0 0 0 0 9�;
4-NAFð723Þ ¼ ½0 0 0 3 0 0 0 3 0 0 0 3�;

which have six nonzero elements. Note that when the
interleaving method is used for double-scalar multi-
plication, the cost depends on the number of nonzero
elements instead of the number of nonzero columns
since it would be too expensive to precompute all the
possible combinations of points which could occur for a
column. Larger window sizes are, therefore, possible.
(For this example, the decomposition using w ¼ 4 for
1,225 and w ¼ 5 for 723 also leads to six nonzero digits.)
Using Algorithm 3, the hybrid binary-ternary joint form
given below

1; 225 ¼ ½3 0 �1 0 0 0 0 1�;
723 ¼ ½2 0 �2 0 0 0 0 3�;

base½ � ¼ ½2 3 2 2 2 3 3 2�;

only requires eight digits (as opposed to 12 above) and
has only three nonzero columns. The corresponding
double-base chains are shown in Fig. 2. Note that both
chains share the same staircase walk, a consequence of
expressing both numbers with a single base sequence. In
this example, however, the digits also occur exactly at the
same location. Note that it is not necessarily the case and
only occurs here because every nonzero columns have
both digits different from zero.

The digits obtained using Algorithm 3 belong to the set
f�2;�1; 0; 1; 2; 3g. This leads to 14 points that need to be
precomputed online. These points are given in Table 2. Note
that the points 2P , 2Q, 3P , 3Q are not needed as they
correspond to pairs of integers that are simultaneously
divisible by 2 or 3. Since the negation of a point is negligible,
only one set of point difference needs to be calculated; for
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Fig. 2. Double-base chains for 1,225 and 723 obtained using Algorithm 3.

TABLE 2
HBTJF Precomputations



example, 2Q� 3P is easily obtained from 3P � 2Q. In
contrast, interleaving 5-NAF needs seven offline precom-
putations for the point that is known in advance, plus
another seven online precomputations for the other point.

4.1.2 Theoretical Analysis of HBTJF

In this section, we analyze Algorithm 3. Our aim is to
evaluate the probabilities of occurrence of base 2 and base 3
in the hybrid joint representation. As in the single-scalar case,
we calculate the average base and deduce the proportion of
nonzero columns.

We consider classes of congruence modulo 6 for a pair of
integers. We have 36 different state, denoted Si1;i2 , corre-
sponding to the 36 distinct pairs of integers of the form
ð6k1 þ i1; 6k2 þ i2Þ for k1; k2 2 N and i1; i2 2 f0; 1; 2; 3; 4; 5g.
We construct the 36� 36 transition matrix MD, where the
entries correspond to the probabilities to go from state Si1;i2
to state Sj1;j2

after applying one step of Algorithm 3.
If both numbers are even, divisions by 2 (performed in

step 14) lead to any of S0;0, S0;3, S3;0, S3;3 with probability
1=4. Similarly, the state S3;0 corresponds to the case where
both numbers are divisible by 3 but not by 2. The
divisions by 3 lead to any of the states S1;0, S1;2, S1;4, S3;0,
S3;2, S3;4, S5;0, S5;2, S5;4, with probability 1=9. In the last
case, i.e., when both numbers are neither divisible by 3
nor 2 simultaneously, we subtract the suitable values to
obtain a pair of number simultaneously divisible by six
and we perform a division by 2. Hence, we reach one of
the four states S0;0, S0;3, S3;0, S3;3 with probability 1=4.
These states correspond to the four pairs of multiples of
3. The complete transition matrix MD is given in the
Appendix.

As before, the stationary distribution �1 is equal to
limn!1 �0M

n
D, where �0 ¼ ð1=36; . . . ; 1=36Þ denotes the

initial probabilities (although they do not play any role).
We have

�1½i� ¼

8

59
; for i ¼ 0;

9

59
; for i 2 f3; 18; 21g;

0; for i 2 f2; 4; 12; 14; 16; 24; 26; 28g;
1

59
; otherwise:

8>>>>>><
>>>>>>:

This allows us to compute the following average
probabilities:

p3 ¼
X
i;j2S3

�1½6iþ j�;

where S3 ¼ fi; j � 0 ðmod 3Þ and i; j 6� 0 ðmod 2Þg, and

pz ¼
X
i;j2Sz

�1½6iþ j�;

where Sz ¼ fi; j � 0 ðmod 3Þ or i; j � 0 ðmod 2Þg. As before,
p3 denotes the probability to perform a division by 3 and pz
denote the probability to generate a zero column. Clearly,
the probability to perform a division by 2 is p2 ¼ 1� p3 and
the probability to generate a nonzero column is pnz ¼ 1� pz.
We have

p2 ¼
32

59
; p3 ¼

27

59
; pz ¼

35

59
; pnz ¼

24

59
: ð7Þ

Now, using p2 and p3, we can evaluate the average base

� ¼ 59
ffiffiffiffiffiffiffiffiffiffiffiffiffi
232327
p

¼ 59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32751691810479015985152
p

� 2:407765:

For a pair of t-bit integers, the average number of columns

in the HBTJF is approximately

ðlog� 2Þ � t � 0:7888� t: ð8Þ

Finally, from (7) and (8), we derive that the expected

number of elliptic curve additions per bit is approximately

24

59
� 0:7888 � 0:3209:

We summarize our theoretical results and compare them to

interleaving w-NAF in Table 3, with real values rounded to

the nearest hundredth. For simplicity, we consider that the

same window width is used for both numbers in the

interleaving w-NAF method.

4.2 Reduced Hybrid Binary-Ternary Joint Form

4.2.1 Algorithm

As shown in Table 2, the hybrid binary-ternary joint form

needs 14 online precomputations, which may not be

acceptable for devices with limited memory. In this section,

we propose the reduced HBTJF, which reduces the number

of online precomputations to two points, namely, P þQ
and P �Q. The decomposition method is presented in

Algorithm 4.

Algorithm 4. Reduced hybrid binary-ternary joint form

Input: Two positive integers k1; k2

Output: Arrays rhbt1[], rhbt2[], base[]

1: i ¼ 0

2: while k1 > 0 or k2 > 0 do

3: if k1 � 0 ðmod 2Þ and k2 � 0 ðmod 2Þ then

4: rhbt1½i� ¼ 0, rhbt2½i� ¼ 0

5: base½i� ¼ 2

6: else if k1 � 0 ðmod 3Þ and k2 � 0 ðmod 3Þ then

7: rhbt1½i� ¼ 0, rhbt2½i� ¼ 0

8: base½i� ¼ 3

9: else

10: if k1 � 0 ðmod 4Þ or k2 � 0 ðmod 4Þ then

11: rhbt1½i� ¼ k1 mods 4,

rhbt2½i� ¼ k2 mods 4

12: base½i� ¼ 2
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13: else

14: rhbt1½i� ¼ k1 mods 3,

rhbt2½i� ¼ k2 mods 3

15: base½i� ¼ 3

16: end if

17: k1 ¼ k1 � rhbt1½i�, k2 ¼ k2 � rhbt2½i�
18: end if

19: k1 ¼ k1=base½i�, k2 ¼ k2=base½i�
20: i ¼ iþ 1

21: end while

22: return rhbt1[], rhbt2[], base[]

The difference with Algorithm 3 which computes the
(nonreduced) HBTJF is in the treatment of the last
condition, that is, when k1 and k2 are neither divisible by
2 or by 3 simultaneously (steps 9-18). Instead of subtracting
a value from f�2; . . . ; 3g from both numbers to get a pair of
integers that is divisible by 6, we now check whether k1 or
k2 is divisible by 4. If so, we subtract k1 mods 4 and
k2 mods 4 from k1 and k2, respectively, followed by a
division by 2. Finally, if none of the above conditions are
satisfied, we subtract k1 mods 3 and k2 mods 3 from k1 and
k2 and perform a division by 3. We reiterate the whole
procedure until both k1 and k2 are zero.

Example 4. In the following example, we compare Solinas’
JSF with the RHBTJF since the precomputations are
identical in both methods. The JSF of 1,225 and 723 has
11 columns out of which seven are nonzero

1;225 ¼ ½1 0 1 0 �1 0 0 1 0 0 1�;
723 ¼ ½1 0 �1 0 0 �1 0 �1 �1 0 �1�:

The reduced hybrid binary-ternary joint form obtained
from Algorithm 4 has length nine with five nonzero
columns

1;225 ¼ ½1 �1 0 �1 0 0 0 0 1�;
723 ¼ ½0 1 0 1 0 0 0 1 0�;

base½ � ¼ ½2 3 3 3 3 2 2 2 3�:

4.2.2 Theoretical Analysis of RHBTJF

First of all, let us prove that the only precomputations are
indeed P þQ and P �Q. Clearly, the first two conditions
generate zero columns and no point is added in the course
of a scalar multiplication. The first nonzero column may
occur if either k1 or k2 is congruent to 0 modulo 4. In this
case, the digits are set to ki mods 4 for i ¼ 1; 2, i.e., a value in
f�1; 0; 1; 2g in theory. However, if the condition is satisfied
because one of the two numbers is divisible by 4, we know
that the other number is not divisible by 2. Since in that
case, both numbers are divisible by 2 and the first condition
(in step 3) would have been satisfied. Therefore, digit 2
never occurs. If none of the first three conditions are
satisfied, the digits are obtained by computing ki mods 3 for
i ¼ 1; 2 and clearly belong to f�1; 0; 1g.

As in Section 4.1.2, we can evaluate different relevant
probabilities using a simple Markov process. In this case,
we need to consider residue classes modulo 12 for a pair of
integer, which lead to a 144� 144 transition matrix MRD

(not given in this paper).

Starting from initial probabilities �0 ¼ ð1=144; . . . ; 1=144Þ,
the stationary distribution is obtained by computing �1 ¼
limn!1 �0M

n
RD as before. This gives us pz, pnz the prob-

abilities of a zero and nonzero column, respectively, and p2,

p3 the probabilities of performing a division by 2 and 3,

respectively. We have:

pz ¼
272

583
� 0:4665523156;

pnz ¼
311

583
� 0:5334476844;

p2 ¼
832

1421
� 0:5855031668;

p3 ¼
589

1421
� 0:4144968332:

ð9Þ

We evaluate the average base

� ¼ 2832=14213589=1421 � 2:366024518:

Therefore, the average length of the representation is given

by:

ðlog� 2Þ � t � 0:8048516306� t: ð10Þ

From (9) and (10), we get the average number of nonzero

columns in the RHBTJF for a pair of t-bit integers

311

583
� 0:8048516306� t � 0:4293462386� t:

In Table 4, we summarize these results and compare them

with Solina’s jsf and Doche’s joint double-base chains [37]

since all three methods require the same precomputations.

5 IMPLEMENTATION AND RESULTS

In this section, we present experimental results based on
our software implementation and we compare our algo-
rithms to their counterparts. We carried out a software
implementation on two kinds of curves:

. Short Weierstrass curves with a ¼ �3,

. Tripling-oriented Doche-Ichart-Kohel (DIK3) curves.

Choosing a ¼ �3 in the equation of a short Weierstrass

curves allows some savings in repeated point doubling [38].

We considered the curves recommended by the NIST [39]

defined over finite fields of prime characteristic of sizes 192,

224, 256, 384, and 521 bits, respectively.
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The same fields are used for DIK3 curves. These curves
allow for very fast point tripling [29]. According to [40], a
small value or some power of two is a good choice for u in
(3). For our benchmarks, we considered the simpler case
u ¼ 2, i.e., our DIK3 curves are defined by the equation
y2 ¼ x3 þ 6ðxþ 1Þ2.

Regarding coordinates, we used Jacobian coordinates for
short Weierstrass curves (x ¼ X=Z2; y ¼ Y =Z3) and mod-
ified Jacobian coordinates (x ¼ X=Z; y ¼ Y =ZZ; ZZ ¼ Z2)
for DIK3 curves.

For single scalar multiplication, the program first
calculates a random scalar k and a random point P , on
the curve. These calculations are not taken into account in
our timings. The necessary precomputations are performed
online and the time required to compute them is naturally
taken into account for our comparisons.

For double scalar multiplication, the program initially
generates a pair of random scalars (k1, k2) and two points on
the curve. We consider that one point, say P is known in
advance. Therefore, the precomputations involving only P
are performed offline and are not taken into account in our
timings. All the other precomputations are performed online.

For both single and double scalar multiplication, the
precomputed points are converted in affine coordinate in
order to save some field operations when additions involving
those points occur. (The operation which consist in adding a

point in Jacobian coordinate to a point in affine coordinate,
i.e., with Z ¼ 1, is called a mixed addition). To compute the
affine coordinates, we need to compute the inverse of the
Z coordinates. Since inversion is a costly operation, we use
Montgomery trick [41], [42]: we multiply all Z coordinates
together and perform only one inversion for the product. For
example, with two integers Z1 and Z2, one can compute
Z�1

1 ¼ Z2=Z1Z2 and Z�1
2 ¼ Z1=Z1Z2 with one inversion and

three multiplications, instead of two inversions.
Finally, in the case of HBTJF, the precomputations of

pairs of points of the form ðaP þ bQ; aP � bQÞ can be
optimized by reusing some partial results. For example, it is
possible to compute both P þQ and P �Q with five
multiplications and three squarings, instead of eight multi-
plications and four squarings if the two points are
computed separately.

Our software implementation was implemented in C++

with the GNU Multiple Precision (GMP) library version
4.2.2 [43]. The binaries have been compiled with g++

version 4.1.3. Our benchmarks ran on an AMD Sempron
1.8 GHz with 1 GB memory. Timings are given in millisecond
per scalar multiplication (either single or double).

In Tables 5, 6, 7, 8, 9, 10, 11, 12, we compare several
single-scalar multiplication algorithm. We present fair
comparisons based on the amount of precomputations
required by each algorithm. For example, we compare
4-NAF with 24-HBTF because both representations need
three precomputed points (3P , 5P , and 7P for 4-NAF and
5P , 7P , and 11P for 24-HBTF). When the amount of
precomputations required by w-HBTF does not match any
window-NAF, we propose two close comparisons. For
example, 18-HBTF, which needs two precomputations is
compared to both 3-NAF and 4-NAF. The left-most column
is always the fastest method. For the other algorithms, the
execution time is given together with the additional time as
a percentage of the fastest method.
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TABLE 6
Comparison of 6-HBTF, NAF, and
DB-chains for Weierstrass curves

TABLE 7
Comparison of 18-HBTF, 12-HBTF, and 3-NAF for DIK3 Curves

TABLE 8
Comparison of 18-HBTF, 12-HBTF,
and 3-NAF for Weierstrass Curves

TABLE 9
Comparison of 18-HBTF, 24-HBTF, and 4-NAF for DIK3 Curves



In Tables 5 and 6, we first compare methods that do not
require any precomputation (other than the point P ),
namely, 6-HBTF, NAF and (left-to-right) double-base chains
[14]. For both DIK3 (Table 5) and Weierstrass (Table 6)
curves, 6-HBTF is always faster with significant speed ups.
Although the number of point addition is generally smaller
than for 6-HBTF, the relative poor performance of DB-chains
is due to the time spent in the computation of these chains.

In Tables 7 and 8, 18-HBTF and 12-HBTF, which require
two and one precomputed points, respectively, are compared
to 3-NAF (one point). Significant speed ups are obtained for
DIK3 curves, with 18-HBTF slightly faster than 12-HBTF. A
small gain is achieved for Weierstrass curves.

In Tables 9 and 10, 18-HBTF and 24-HBTF, which require
two and three precomputed points respectively, are
compared to 4-NAF (three points). For DIK3 curves,
18-HBTF is always the fastest method. Our results show a
gain of roughly 20 percent compared to 4-NAF. For
Weierstrass curves, however, 24-HBTF is only slightly
faster than 18-HBTF and the gain compared to 4-NAF is
marginal.

Finally, in Tables 11 and 12, we compare 36-HBTF (five
precomputed points) to 5-NAF (seven points). On both
families of curves, the best results are obtained for 36-HBTF.

Now, we focus our analysis on double-scalar multi-
plication. In Tables 13 and 14, we compare our hybrid
binary-ternary joint form (HBTJF), which requires 14
precomputed points, with interleaving 4-NAF (six points)
and interleaving 5-NAF (14 points). Over DIK3 curves,
HBTJF is faster than both methods and should be used
when the amount of storage can be afforded. For Weier-
strass curves, however, it seems that interleaving 4-NAF is a
better choice since fewer points need to be stored and the
performance is equivalent to that of HBTJF.

Finally, in Tables 15 and 16, we present simulation data
for our reduced hybrid binary-ternary joint form, JSF, and
joint double-base chains (JDBC) [37]. All three methods
only require two precomputations, namely, P þQ and
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TABLE 10
Comparison of 24-HBTF, 18-HBTF,
and 4-NAF for Weierstrass Curves

TABLE 11
Comparison of 36-HBTF and 5-NAF for DIK3 Curves

TABLE 12
Comparison of 36-HBTF and 5-NAF for Weierstrass Curves

TABLE 13
Comparison of HBTJF, Interleaving 5-NAF,

and Interleaving 4-NAF for DIK3 Curves

TABLE 14
Comparison of HBTJF, Interleaving 5-NAF,

and Interleaving 4-NAF for Weierstrass Curves

TABLE 15
Comparison of RHBTJF, JDBC, and JSF for DIK3 Curves

TABLE 16
Comparison of RHBTJF, JSF, and

JDBC for Weierstrass Curves



P �Q. Over both tripling-oriented DIK curves and
Weierstrass curves, RHBTJF outperforms JSF and JDBC
quite significantly.

6 CONCLUSIONS

Three novel algorithms have been proposed and thoroughly
analyzed. The first one, called w-HBTF is a family of
algorithms for single scalar multiplication. It combines the
hybrid binary-ternary number system with widely used
windowing methods. The other two algorithms, namely,
HBTJF and RHBTJF, are for double scalar multiplication.

Which algorithm should be used for the implementation
of an elliptic curve protocol depends on several parameters:
the amount of memory that is available to store the
precomputed points, the size of the finite field, and the
type of elliptic curve. For elliptic curves with fast tripling,
like tripling-oriented DIK curves, our algorithms are likely
to provide significant improvements. Fast tripling algo-
rithms have also been proposed for Weierstrass curves (see

[31]). Our experimental results show that, even in that case,

our hybrid algorithms are almost always faster than

classical w-NAF methods or JSF.

APPENDIX

TRANSITION MATRIX FOR HYBRID BINARY-TERNARY

JOINT FORM

The transition matrix is depicted at the bottom of this page.
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Aixin-Marseille in 1997 and 2000, respectively.
Since October 2001, he has been a tenured
researcher at the Centre National de la Re-
cherche Scientifique (CNRS), working in the
Laboratoire d’Informatique, de Robotique et de
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