
A Full RNS Implementation of RSA

Laurent Imbert, Member, IEEE, and
Jean-Claude Bajard, Member, IEEE

Abstract—We present the first implementation of RSA in the Residue Number

System (RNS) which does not require any conversion, either from radix to RNS

beforehand or RNS to radix afterward. Our solution is based on an optimized RNS

version of Montgomery multiplication. Thanks to the RNS, the proposed algorithms

are highly parallelizable and seem then well suited to hardware implementations.

We give the computational procedure both parties must follow in order to recover

the correct result at the end of the transaction (encryption or signature).

Index Terms—Cryptography, RSA, Montgomery multiplication, Residue Number

Systems.

�

1 INTRODUCTION

DURING the last decade, fast hardware implementations of public-
key cryptosystems have been widely studied [3], [5], [15] while
confidentiality and security requirements were becoming more
and more important. As a consequence, key-length has kept
growing. Nowadays, it is assumed that a 1,024-bit key-length
makes a reasonable choice for RSA [14] and current analysis
predicts that 2,048-bit or 4,096-bit key will become the standard in
the very near future. The ability to perform fast arithmetic on large
integers is then still a major issue for the implementation of public
key cryptography, particularly from a hardware viewpoint.

Different approaches have been proposed to accelerate the
implementation of RSA. For the deciphering, a well-known
solution performs the computations over ZZ=pZZ and ZZ=qZZ
independently and reconstructs the final result via the Chinese
Remainder Theorem (CRT) [13]. This first application of the
CRT to RSA was restricted to this special case (the isomorph-
ism ZZ=nZZ ’ ZZ=pZZ� ZZ=qZZ, with n ¼ pq), but it can also be
useful in other situations and is not restricted to the decipher-
ment or signature steps, i.e., when the secret quantities p and q

are known. More recently, other CRT-based solutions have been
proposed [12], [7], [11], [1]. They all use a quite similar version
of the Montgomery multiplication based on the Residue
Number System (RNS) [18] which is well-adapted to fast
parallel arithmetic. The computational complexity of all those
algorithms mainly depends on two RNS base extensions that
are required for each modular multiplication.

In this paper, we refine and detail the implementation and
complexity of an efficient RNS version of the Montgomery
multiplication algorithm previously proposed by the authors in
[1]. The proposed algorithm uses two different techniques for the
first and second base extensions. In terms of elementary opera-
tions, its cost is similar to the previous proposed methods.
However, in the previous approaches, different conversion
techniques, from binary to RNS and RNS to binary, were proposed.
Although the same conversion techniques apply for our algorithm,
the real novelty of this paper is a full RNS implementation which
does not require any conversion. We directly consider the message
as a value represented in RNS and we perform all the computa-
tions within this system. Unlike other RNS Montgomery-based

implementations of RSA, the final correction step of our technique
does not require a full precision comparison. We illustrate this fact
with a complete textbook implementation of RSA in RNS.
Moreover, the proposed solution is also interesting for those who
already have an RNS Montgomery multiplication procedure or
architecture since it can be easily adapted to any RNS-based
multiplication algorithm.

2 THE RESIDUE NUMBER SYSTEM

Residue Number Systems (RNS) have been widely studied and
used in many applications, from digital signal processing to
multiple precision arithmetic [17], [18], [8]. In the RNS, an integer x
is represented according to a base B ¼ ðm1; m2; . . . ;mkÞ of k

relatively prime moduli (k is the size of the base), by the sequence
ðx1; x2; . . . ; xkÞ of positive integers, where xi ¼ xmodmi for
i ¼ 1 . . . k. The Chinese Remainder Theorem (CRT) ensures the
uniqueness of this representation within the range 0 � x < M ,
where M ¼

Qk
i¼1 mi. A constructive proof of this theorem gives an

algorithm to convert x from its residue representation to the
classical radix representation:

x ¼
Xk
i¼1

xiMi

��M�1
i

��
mi

modM; ð1Þ

where Mi ¼ M=mi and
��M�1

i

��
mi

is the inverse of Mi modulo mi. In
the following portions of the paper, we shall use jxjm to denote the
remainder of x in the division by m, i.e., the value ðxmodmÞ < m.

The advantages of RNS is that addition, subtraction, and
multiplication are very simple and can be implemented in constant
time on a parallel architecture. If x and y are given in their RNS
form ðx1; . . . ; xkÞ and ðy1; . . . ; ykÞ, one has

x� y ¼ jx1 � y1jm1
; . . . ; jxk � ykjmk

� �
;

x� y ¼ jx1 � y1jm1
; . . . ; jxk � ykjmk

� �
:

An important remark is that the final result of a computational
task must belong to the interval ½0;MÞ to admit a valid RNS
representation in the base B. However, all the intermediate
computations can always be performed within the same system,
even if the dynamic range provided by the RNS base is not large
enough.

On the other hand, one of the disadvantages of this representa-
tion is that we cannot easily decide whether ðx1; . . . ; xkÞ is greater
or less1 than ðy1; . . . ; ykÞ and overflows that can occur during
computations are not easily detected.

In cryptographic applications, modular reduction (the compu-
tation of xmodm), multiplication (xymodm) and exponentiation
(xy modm) are the most important operations. They can be
efficiently computed without division using Montgomery’s algo-
rithms [10].

3 MODULAR EXPONENTIATION

Let us briefly recall the principles of Montgomery’s techniques.
Given two integers R;N such that gcdðR;NÞ ¼ 1, and 0 � x < RN ,
the Montgomery reduction technique evaluates xR�1 modN by
computing the value q < R such that xþ qN is a multiple of R.
Hence, the quotient y ¼ ðxþ qNÞ=R is exact and easily performed.
It satisfies y < 2N and y � xR�1ðmod NÞ. In the same way,
Montgomery modular multiplication algorithm computes
xyR�1 modN . For practical implementations, the Montgomery
constant R is chosen as a power of 2 to reduce the division by R to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004 1

. The authors are with the Laboratoire d’Informatique, Robotique et
Microélectronique de Montpellier, LIRMM, 161 rue Ada, 34392
Montpellier cedex 5, France.
E-mail: {laurent.Imbert}@lirmm.fr.

Manuscript received 15 Apr. 2003; accepted 5 Sept. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0011-0403.

1. According to the CRT testing, the equality of two RNS numbers is
trivial.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

simple shifts. A more detailed discussion on Montgomery

reduction and multiplication algorithms can be found in [9], [4].
In the next sections, we present an RNS version of Montgomery

multiplication and the conditions for its use within a modular

exponentiation algorithm based on the classical technique which

combines Montgomery reduction and a binary or k-ary method. If

we want to evaluate xa modN , the input x is first transformed into

x0 ¼ xRmodN . x0 is often called the Montgomery representation

of x, or the N-residue of x according to R. It is easy to see that this

can be done using a Montgomery multiplication with x and

ðR2 modNÞ as inputs. This representation has the advantage of

being stable over Montgomery multiplication:

x0 � y0 modN ¼ xyRmodN:

At the end of the exponentiation, the value z0 ¼ xaRmodN is

converted back into z ¼ xa modN using a last call to Montgomery

multiplication with z0 and 1 as inputs. The efficiency of the

exponentiation clearly relies on the ability to perform the

Montgomery modular multiplication.

4 RNS MONTGOMERY MULTIPLICATION

In the RNS version of the Montgomery multiplication algorithm

proposed here, the value

M ¼
Yk
i¼1

mi; ð2Þ

is chosen as the Montgomery constant. Hence, the RNS

Montgomery multiplication of a and b yields

r ¼ abM�1 modN; ð3Þ

where r, a, b, and N are represented in RNS according to a

predefined base B. As in the classical Montgomery algorithm, we

look for an integer q such that ðabþ qNÞ is a multiple of M. Hence,

the resulting division ðabþ qNÞ=M is exact and is easily performed

in RNS by multiplying ðabþ qNÞ by M�1. Unfortunately, the

inverse of M does not exist modulo M. Then, the multiplication by

M�1 cannot be performed in the base B. We define an extended

base B0 of k extra relatively prime moduli and perform the

multiplication by M�1 within this new base B0. For simplicity, we

will consider in the rest of the paper that both B and B0 are of size

k. Let us define B ¼ ðm1; . . . ; mkÞ and B0 ¼ ðmkþ1; . . .m2kÞ, with

M 0 ¼
Qk

i¼1 mkþi, gcdðM;M 0Þ ¼ 1.
Now, in order to determine q, we use the fact that ðabþ qNÞ

must be a multiple of M . Clearly, its representation in the base B is

merely composed of 0. The RNS representation of q (in the base B)
is then given by the solutions of the equations

ðaibi þ qiniÞ � 0 ðmod miÞ; 8i ¼ 1 . . . k; ð4Þ

which gives

qi ¼
����aibi��� n�1

i

��
mi

����
mi

; 8i ¼ 1 . . . k: ð5Þ

As a result, we have computed a value q < M such that

q ¼ �abN�1 modM .
As pointed out previously, we compute ðabþ qNÞ in the extra

base B0. Before we can evaluate ðabþ qNÞ, we have to know the

product ab in base B0 and extend q—which has just been computed

in base B using (5)—in base B0. We shall discuss this first base

extension in detail in Section 4.1. We then compute r ¼
ðabþ qNÞM�1 in base B0 and extend the result back to the base B
for future use (the next call to Montgomery multiplication). The

second base extension is discussed in Section 4.2. Algorithm 1

(shown in Fig. 1) summarizes the computations of our RNS

Montgomery multiplication. It computes the Montgomery product

abM�1 modN , where a; b, and N are represented in RNS in both

bases B and B0.
Steps 1, 2, and 4 of Algorithm 1 consist of full RNS operations

and can be performed in parallel. As a consequence, the complex-

ity of the algorithm clearly relies on the two base extensions of

lines 3 and 5. This algorithm is very similar to those of Posch and

Posch [12] and Kawamura et al. [7] which also require two base

extensions. However, in their approaches, the same technique is

applied for both the first and second base extensions, whereas our

solution uses different algorithms. In the next two sections, we give

the details of each base extension and we show that our choice

requires approximately the same number of elementary operations

as those previously proposed methods.

4.1 First Base Extension

In Step 3 of Algorithm 1, we convert q obtained in its RNS form

ðq1; . . . ; qkÞ in base B to its RNS representation in base B0 and for an

extra-modulus mr (we explain the reason for this redundant

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

Fig. 1. Algorithm 1.

modulus in the next section). We first compute in parallel, for all

i ¼ 1 . . . k, the values

�i ¼ qi
��M�1

i

��
mi

modmi; ð6Þ

where the
��M�1

i

��
mi

are precomputed constants. From (1), we have

q ¼
Xk
i¼1

�iMi � �M; ð7Þ

where � < k.
In the context of Algorithm 1, it is important to note that we do

not need to compute the exact value of q for each modulus of B0.

We only extend

q̂q ¼ q þ �M

by computing, in parallel, for j ¼ kþ 1 . . . 2k and for j ¼ r, the

residues

q̂qj ¼
���Xk
i¼1

�i
��Mi

��
mj

���
mj

; ð8Þ

where the values
��Mi

��
mj

are also precomputed constants. In Step 4,

we then compute

r̂r ¼ ðabþ q̂qNÞM�1 ¼ ðabþ qNÞM�1 þ �N; ð9Þ

which yields

r̂r � abM�1 ðmod NÞ: ð10Þ

The computed value r̂r is less than M 0 and then has a valid RNS

representation in base B0. Actually, the conditions � < k, q < M,

and ab < MN give q̂q < ðkþ 1ÞM and, thus, r̂r < ðkþ 2ÞN < M 0.

However, in order to use Algorithm 1 within an exponentiation

algorithm (see Section 3), we must be able to reuse the output

r̂r < ðkþ 2ÞN as inputs in MMðr̂r; r̂r; NÞ. The condition ab < MN of

our algorithm implies ðkþ 2Þ2N2 < MN , which rewrites:

ðkþ 2Þ2N < M: ð11Þ

If N is a 1,024-bit number and if we use 32-bit moduli, we need

base B to be of size k � 33. In fact, condition (11) is verified as soon

as k � 34.
As we shall see later, the second base extension requires the

knowledge of q̂q for an additional modulus. This is done by

extending q̂q using (8) for a redundant modulus mr. The

computational steps are given in Algorithm 2, shown in Fig. 2.
Compared to previous methods, our approach offers the

advantage that it does not require the exact computation � in (7).

This is a major difference from [12] and [7], where a dedicated

hardware, called the cox unit in [7], is used to evaluate a real
approximation of �.

As in [7], we evaluate the cost of our algorithms in terms of
elementary operations which, in this case, is a modular multi-
plication of size of the operands; for instance, 32-bit numbers. The
first base extension then requires k2 þ 2k modular multiplications.
An interesting implementation option is to choose a power of 2 for
the redundant modulus mr, which reduces the cost of the first base
extension to k2 þ k.

4.2 Second Base Extension

For the second base extension, we use a different algorithm due to
Shenoy and Kumaresan [16], described in Algorithm 3 shown in
Fig. 3. As previously, we first evaluate in parallel, for all
j ¼ kþ 1 . . . 2k, the values

�j ¼ r̂rj
��M 0�1

j

��
mj

modmj: ð12Þ

Again from (1), we have

r̂r ¼
X2k
j¼kþ1

�jM
0
j � �M 0; ð13Þ

where � < k. Once � is known, we can extend r̂r back in base B by
evaluating, in parallel, for all i ¼ 1 . . . k,

jr̂rjmi
¼
���� X2k
j¼kþ1

�j
��M 0

j

��
mi

�
���M 0��

mi

����
mi

: ð14Þ

In order to compute �, we have to know the value of r̂r for an
additional modulus. This is done by evaluating r̂r (Step 4 of
Algorithm 1) for the redundant modulus mr for which we have
computed q̂qr in the first base extension. From (13), we have

�M 0 ¼
X2k
j¼kþ1

�jM
0
j � r̂r;

���M 0��
mr

¼
���� X2k
j¼kþ1

�j
��M 0

j

��
mr

� jr̂rjmr

����
mr

�����
mr

¼
�����
���M 0�1

����
mr

X2k
j¼kþ1

�j
��M 0

j

��
mr

� jr̂rjmr

 !�����
mr

:

Since � < k, choosing mr � k ensures � < mr and (15) gives the
correct result.

� ¼
�����
���M 0�1

����
mr

�Xk
j¼1

�j
��M 0

j

��
mr

� jr̂rjmr

������
mr

: ð15Þ

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004 3

Fig. 2. Algorithm 2.

The sum in (15) requires a total cost of 2kþ 1 modular

multiplications (Steps 1 to 5 of Algorithm 3, distributed as follows:

. k to compute the values �j ¼ jr̂rjjM 0�1
j jmj

jmj
,

. k for each jjM 0
jjmr

�jjmr
,

. and 1 for the multiplication by jM 0�1jmr
.

Since the values �j have already been computed for all j, the

number of operations needed to evaluate (14)—which corresponds

to Steps 7 to 9 of Algorithm 3—is kþ 1 for each modulus mi in B,
i.e., kðkþ 1Þ. This results in a total of k2 þ 3kþ 1 modular

multiplications. If mr is a power of 2, the evaluation of � requires

k operations and the total cost of the second base extension reduces

to kþ kðkþ 1Þ ¼ k2 þ 2k.
Another option to reduce this cost is to precompute the

constants jM 0
jjM 0�1

j jmj
jmr

. Since those values only depends on

B0, they can be stored in tables. This reduces the number of

modular multiplications to kðkþ 2Þ, but we must choose

mr � k ~mm, where ~mm ¼ maxfmj; j ¼ kþ 1 . . . 2kg, to obtain the

correct value of � with (15).
In Table 1, we compare our RNS Montgomery multiplication

algorithm with the previously proposed method by Kawamura

et al. [7] that has itself been demonstrated to be more efficient than

another efficient solution proposed in 1995 by Posch and Posch

[12]. Without considering the option proposed in the previous

paragraph, we obtain similar results.

5 RSA IMPLEMENTATION

At the end of the classical Montgomery multiplication, the result is

less than 2N . A subtraction by N is necessary if the result is greater

than N . As mentioned previously, in our RNS version, the output r̂r

of algorithm MM is less than ðkþ 2ÞN . For the same reason, a

correction step may be needed. The next two textbook implemen-

tations of RSA address this problem. The first version uses

conversions to and from the residue number system. We present

this version for completeness and since it allows for more freedom

in the implementation of the RSA protocol. The second version,

without conversion, is a lot more attractive and represents the real

novelty of this paper.

5.1 RSA with Conversions

A solution is to perform the first base extension of the very

last Montgomery multiplication exactly. This last call to

MMðxaM modN; 1; NÞ is the one which suppresses the Montgom-

ery constant M and gives the final result xa mod n. This can be

done rather efficiently via the Mixed Radix System (MRS) as

suggested in 1959 by Garner [6]. For each mj, we evaluate

jqjmj
¼
���t1 þ t2m1 þ � � � þ tkm1 . . .mk�1

���
mj

; ð16Þ

where

t1 ¼ jqjm1
¼ q1

t2 ¼ jðq2 � t1Þc12jm2

..

.

tk ¼ jð� � � ðqk � t1Þc1k � � � � � tk�1Þcðk�1Þkjmk

and cij ¼ jm�1
i jmj

. This method requires the precomputation of

kðk� 1Þ=2 constants cij. As with the original Montgomery multi-

plication, the result is less than 2N . A subtraction by N may be

required.

5.2 RSA without Conversion

An easy way to consider the binary message x ¼
P

i xi2
i we want

to encrypt as a valid RNS number is to split it into blocks whose

sizes depend on the sizes of the moduli of the base B. For example,

if B is composed of 32-bit modulus, splitting x in blocks of at most

31 bits makes it possible to consider each block as a value xi < mi

and provides what we call a valid RNS number for the base B.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

Fig. 3. Algorithm 3.

TABLE 1
Number of Modular Multiplications of

Two RNS Montgomery Multiplication Algorithms

In order to correct the value we obtain at the end of the

exponentiations, let us consider one of the moduli of B, say the last

one, as a special modulus. This special modulus plays a crucial role

in the correction step of our algorithm and, as a consequence, in its

validity. Once the message x is expressed in the RNS form

ðx1; . . . ; xk�1Þ for a set of k� 1 moduli, we consider the integer

which RNS representation in the base B ¼ ðm1; . . . ;mk�1;mkÞ is:

ðx1; . . . ; xk�1; 0Þ: ð17Þ

By doing this, we are constructing an integer less than M that

we only know in RNS and not in any radix form, which is a

multiple of mk.
To encrypt a message with RSA, we compute y ¼ xb modN .

As we have seen previously, our algorithm does not return y

exactly, but

ŷy ¼ xb modN þ �N; with � < kþ 2: ð18Þ

At the end of the decryption step, we must obtain a value z

congruent to x modulo N and less than N . Our algorithm returns

ẑz ¼ xba modN þ �N; with � < kþ 2: ð19Þ

The returned value ẑz satisfies ẑz � xðmod NÞ, but it might be greater

than N .
In order to correct this result if necessary, we are going to use

the extra information we have thanks to the special modulus mk.

Since we know that the correct result zmust be a multiple ofmk, its

RNS representation must be z ¼ ðz1; . . . ; zk�1; 0Þ. In other words,

we are looking for a value z < M such that z � xmodN and

z � 0 modmk. From the Chinese remainder theorem, this value z

maps back to a unique integer within the interval ½0;mkNÞ. Since
x < M by construction, M � mkN is a necessary condition in order

for z to have the same RNS representation as x. The algorithm we

propose is correct under the slightly more restrictive condition

which gives the final conditions for our algorithm:

ðkþ 2Þ2N < M � ðmk � ðkþ 2ÞÞN: ð20Þ

Let us consider that the result we have obtained after the

second exponentiation has the following RNS representation:

ẑz ¼ ðẑz1; . . . ; ẑzk�1; ẑzkÞ. If ẑzk ¼ 0, then (20) ensures that ẑz ¼ x and no

correction is needed. In the other cases, the solution we propose

consists of looking for a value t such that ~zz ¼ ẑzþ tN is a multiple

of mk less than M and thus satisfies ẑz ¼ x. The following algorithm

computes t in two steps.

1. We compute t0 ¼ ẑzkð�n�1
k Þmodmk, where nk ¼ N modmk

is given by the RNS representation of N .
2. If t0 < mk � ðkþ 2Þ, then t ¼ t0 else t ¼ t0 �mk.

Proof. Since t is computed such that ẑzþ tN ¼ x, the sign of t

depends on the order between x and ẑz. Furthermore, since

t � t0ðmod mkÞ, we have �mk < t < mk. If x > ẑz, then t > 0 and

then t ¼ t0 > 0. Otherwise, if x < ẑz, then t < 0 and then

t ¼ t0 �mk < 0.
Since we only know x and ẑz in RNS, it is not possible

to decide whether x is less or greater than ẑz. We must
find another way of comparing them. If x < ẑz, then
Algorithm 1 gives 0 < x < ðkþ 2ÞN and 0 < ẑz < ðkþ 2ÞN .
Hence, jx� ẑzj < ðkþ 2ÞN) jtjN < ðkþ 2ÞN . This implies
mk � t0 < kþ 2) t0 > mk � ðkþ 2Þ. The negation of this im-
plication results in the first condition of our algorithm: If
t0 < mk � ðkþ 2Þ, then x > ẑz and then t ¼ t0. Conversely, if
t0 > mk � ðkþ 2Þ, then the only solution is t ¼ t0 �mk. tu

It is still important to note that the validity of our algorithm is
based on an important assumption. Since the message is always
considered in RNS and never converted back in binary, even for
the transmission, it is clear that both parties must choose a
common set of RNS bases, in particular, the same value for mk.
This exchange can be a part of the protocol initialization between
the two communicants and is beyond the scope of this paper.

6 EXAMPLE

We illustrate our algorithm with an implementation of RSA with
small values. Let us define the classical RSA parameters.

. p ¼ 479, q ¼ 317, n ¼ pq ¼ 151; 843.

. �ðnÞ ¼ 151; 048, a ¼ 173, b ¼ 79; 453 ¼ a�1 mod �ðnÞ.
We also define the RNS bases where the last element of B is the
special modulus mk ¼ 73.

. B ¼ ð3; 7; 13; 17; 29; 73Þ, M ¼ 9; 824; 997,

. B0 ¼ ð5; 11; 19; 23; 31; 37Þ, M 0 ¼ 27; 568; 145.

For the second base extension, we use the redundant modulus
mr ¼ 8. Let us first verify the conditions of our algorithm. We have
ðkþ 2Þ2N ¼ 9; 717; 952 < M;M 0 and

M � ðmk � ðkþ 2ÞÞN ¼ 9; 869; 795:

Let x ¼ 11010101001101, the binary representation of the
message we want to encrypt. Instead of converting it from its
binary representation to its RNS form in base B, we split it into
blocks to get a valid RNS number. In this example, the moduli
do not all have the same size. We consider an irregular
splitting of x. If we express the moduli set in binary we have
B ¼ ð11; 111; 1101; 10001; 11101; 1001001Þ, a valid splitting of x is
x ¼ 1 10 101 0100 1101. The size of each block is 1 less than the size
of the corresponding modulus. In a real implementation, we can
simply consider 32-bit moduli and split x into 31-bit blocks. The
RNS message we are going encrypt is X ¼ ð1; 2; 5; 4; 13; 0ÞB. The
first operation consists of extending X is the base B0, which must
be performed exactly (for example, via the mixed radix representa-
tion suggested in the implementation with conversion in
Section 5.1). This gives

X ¼ ð1; 2; 5; 4; 13; 0ÞB; ð3; 4; 2; 7; 18; 7ÞB0 ;

The first step of the exponentiation is the call to
MMðX;M2 modN;NÞ which puts X in the Montgomery notation
X0 ¼ XM modN . We get:

X0 ¼ ð1; 2; 12; 16; 0; 10ÞB; ð4; 10; 3; 11; 3; 10ÞB0 :

The full exponentiation Y ¼ XbM modN results in

Y ¼ ð2; 3; 6; 6; 17; 10ÞB; ð2; 4; 0; 11; 3; 27ÞB0 :

At this step, we are still in the Montgomery notation. We send this
value to the other party, who decrypts it. Since the transmitted
value Y is already in the Montgomery notation, the first call to MM
to get into this form can be omitted. We directly perform the
exponentiation by computing Z ¼ Y a modN . The last call to
MMðZ; 1; NÞ removes the Montgomery constant and gives

Z ¼ ð1; 2; 7; 8; 5; 10ÞB; ð0; 3; 12; 1; 6; 1ÞB0 :

Since Zk ¼ 10 6¼ 0, we do not have a multiple of mk ¼ 73 and,
thus, a final correction step is needed. We compute
t0 ¼ Zkð�N�1

k Þmodmk ¼ 21; . S ince t0 ¼ 21 < 73� ð6þ 2Þ ¼ 65,
we have t ¼ t0 ¼ 21. We compute the final result in RNS

Z þ 21N ¼ ð1; 2; 5; 4; 13; 0ÞB:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004 5

If we express it back in binary according to the same splitting and
without considering the last residue, we retrieve the original
message x ¼ 11010101001101.

7 CONCLUSIONS

We have presented a new implementation of Montgomery multi-
plication in RNS and have shown its efficiency toward a new full
RNS implementation of RSA. The message is never considered as a
binary number, but rather in RNS during the whole process. Thus,
no conversion is needed. This approach requires both parties to
agree on a set of RNS parameters beforehand. Compared to
previously proposed solutions [12], [7], [11], our algorithms
require approximately the same number of elementary operations
and use only integer arithmetic (no rational approximations of � in
(7) are computed). Furthermore, the conditions on our parameters
are easier to satisfy than their counterparts in these other methods.
The parallel nature of RNS arithmetic can also offer potential
advantage in the resistance to side channel attacks. This is
currently a work in progress for our team [2].

ACKNOWLEDGMENTS

This work was supported by the French Ministry of Education and
Research under the ACI 2002, “OpAC, Opérateurs arithmétiques
pour la Cryptographie,” grant number C03-02. The authors would
like to thank the anonymous reviewers for their very careful
reading and useful comments.

REFERENCES

[1] J.-C. Bajard, L.-S. Didier, and P. Kornerup, “Modular Multiplication and
Base Extension in Residue Number Systems,” Proc. 15th IEEE Symp.
Computer Arithmetic, N. Burgess, ed., pp. 59-65, June 2001.

[2] J.-C. Bajard, L. Imbert, and P.-Y. Liardet, “Leak Resistant Arithmetic,”
LIRMM, Research Report 03021, Oct. 2003.

[3] E.F. Brickell, “A Survey of Hardware Implementation of RSA,” Advances in
Cryptology, Proc. CRYPTO ’89, pp. 368-370, 1990.

[4] Ç.K. Koç, T. Acar, and B.S. Kaliski Jr., “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3,
pp. 26-33, June 1996.

[5] S.E. Eldridge and C.D. Walter, “Hardware Implementation of Montgo-
mery’s Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 42,
no. 6, pp. 693-699, June 1993.

[6] H.L. Garner, “The Residue Number System,” IRE Trans. Electronic
Computers, vol. 8, pp. 140-147, June 1959.

[7] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-Rower Architecture
for Fast Parallel Montgomery Multiplication,” Advances in Cryptology, Proc.
EUROCRYPT 2000, pp. 523-538, May 2000.

[8] D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, third ed. Addison-Wesley, 1997.

[9] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone, Handbook of Applied
Cryptography. Boca Raton, Fla.: CRC Press, 1997.

[10] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math.
Computation, vol. 44, no. 170, pp. 519-521, Apr. 1985.

[11] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura, “Implementation
of RSA Algorithm Based on RNS Montgomery Multiplication,” Proc.
Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 364-376,
Sept. 2001.

[12] K.C. Posch and R. Posch, “Modulo Reduction in Residue Number
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 5,
pp. 449-454, May 1995.

[13] J.-J. Quisquater and C. Couvreur, “Fast Decipherment Algorithm for RSA
Public-Key Cryptosystem,” IEE Electronics Letters, vol. 18, no. 21, pp. 905-
907, Oct. 1982.

[14] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems,” Comm. ACM, vol. 21, no. 2,
pp. 120-126, Feb. 1978.

[15] M. Shand and J. Vuillemin, “Fast Implementation of RSA Cryptography,”
Proc. 11th IEEE Symp. Computer Arithmetic, E.E. Swartzlander, M.J. Irwin,
and G.A. Jullien, eds., pp. 252-259, June 1993.

[16] A.P. Shenoy and R. Kumaresan, “Fast Base Extension Using a Redundant
Modulus in RNS,” IEEE Trans. Computers, vol. 38, no. 2, pp. 292-297, Feb.
1989.

[17] N. Szabo and R.I. Tanaka, Residue Arithmetic and Its Application to Computer
Technology, 1967.

[18] F.J. Taylor, “Residue Arithmetic: A Tutorial with Examples,” Computer,
vol. 17, no. 5, pp. 50-62, May 1984.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

