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Motivations

Fast exponentiation: Given (G ,×), g ∈ G and n ≥ 0, compute gn.

Elliptic curve scalar multiplication: Given P on an elliptic curve, and
k ≥ 0, compute [k]P = P + P + · · ·+ P (k times).

This operation is the most time consuming in elliptic curve protocols
(ECDH, ECDSA, etc).

How quickly can we do this?

Important variant of the problem, multi-scalar multiplication:
k1, k2,P,Q → k1P + k2Q, important operation in elliptic curve signature
verification.
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Point multiplication algorithms & addition chains

Double-and-add: k =
∑n−1

i=0 ki2
i , with ki ∈ {0, 1}

n − 1 DBL, n/2 ADD on average
1717 = 11010110101
1 2 3 6 12 13 26 52 53 106 107 214 428 429 858 1716 1717

Signed digits: Canonic SD, NAF, ki ∈ {1̄, 0, 1}
n DBL, n/3 ADD on average
NAF(1717) = 1001̄01̄01̄0101
1 2 4 8 7 14 28 27 54 108 107 214 428 429 858 1716 1717

Window methods: wNAF, |ki | < 2w−1 (processes w digits at a time)
n DBL, n/(w + 1) ADD on average + precomp.
3NAF(1717) = 3003001̄003̄
3 6 12 24 27 54 108 216 215 430 860 1720 1717

4NAF(1717) = 70005̄0005
7 14 28 56 112 107 214 428 856 1712 1717
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Double-base numbers and chains

Given k > 0, a sequence (Ci )i>0 of positive integers satisfying:

C1 = 1, Ci+1 = 2ui 3vi Ci + di , with di ∈ {−1, 1}

for some ui , vi ≥ 0, and such that Cn = k for some n > 0, is called a
double-base chain computing k.

1 2 4 8 16 48 144 143 286 572 1716 1717

1

20 21 22 23 24 25 26

30

31

32

33
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for some ui , vi ≥ 0, and such that Cn = k for some n > 0, is called a
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More formally:

k =
n∑

i=1

di2
ai 3bi , di ∈ {−1, 1}

with (ai , bi )↘
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Computing double-base chains

A greedy approach:

1: s ← 1
2: while k 6= 0 do
3: find the best approximation of k of the form z = 2a3b with 0 ≤ a ≤ A

and 0 ≤ b ≤ B
4: output term (s, a, b); A ← a; B ← b
5: if k < z then s ← −s
6: k ← |k − z |

21687 =

20736 (951)
+ 864 (87)
+ 96 (−9)
− 8 (−1)
− 1 (0)

20 21 22 23 24 25 26 27 28

30

31

32

33

34

Length a db-chain = # non-zero terms = # curve additions
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Computing double-base chains
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Length of a double-base chain

The greedy algorithm does not produce optimal chains. This approach,
however, has some interests for elliptic curves with fast tripling such as
ordinary curves (over Fp) or DIK3 curves.

We know how to compute the length of the shortest (unsigned) db-chain
for k.

Size of k greedy optimal
(in bits) unsigned signed unsigned signed

64 26.09 18.55 17.22 ?
128 54.52 34.88 33.27 ?
160 72.21 44.96 40.85 ?
256 119.26 75.78 64.35 ?

Average values for 10000 random integers

There is still room for improvements!
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Double-scalar multiplication

Given k1, k2 > 0 and points P,Q on an elliptic curve, compute
k1P + k2Q

Computing k1P and k2Q independently is not efficient. We use a
method known as “Shamir’s trick”.

Example: 37P + 22Q

37 = 1 0 0 1 0 1
22 = 0 1 0 1 1 0

P 9P+5Q

2P 18P+10Q

2P+Q 18P+11Q

4P + 2Q 36P + 22Q

8P + 4Q 37P + 22Q

Cost:

n − 1 DBL + # non-zero col. ADD

Precomputations: P,Q,P + Q
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Interleaving methods

How can we reduce the number of non-zero columns?

Using NAF representations for k1 and k2 cost n DBL and 5n/9 ADD on
average but it can result in no improvements!

1 0 1̄ 0 1 0 1̄
0 1 0 1 0 1̄ 0

The probability of a non-zero column decreases when using wNAF.

It is possible to use windows of different width for k1 and k2, as one
usually know either P or Q.

Precomputed points only involve one point: P, 3P, 5P, . . . , 2w1−1P,
Q, 3Q, 5Q, . . . , 2w2−1Q

Cost: n DBL and # non-zero digits ADD
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Joint-sparse form

In 2001, Solinas proposed a recoding technique to converts a pair (k1, k2)
into a so-called joint-sparse form. Out of any three consecutive columns,
at least one is a zero-column.

113 = (1 0 0 1̄ 0 0 0 1)
203 = (1 1 0 1 0 1̄ 0 1̄)

The JSF is computed using basic arithmetic operations (mod 8).

The JSF of a pair of integer is unique and optimal: every other recoding
in {−1, 0, 1} requires more non-zero column.

Cost: n DBL + n/2 ADD on average.

Precomputations: P,Q,P + Q,P − Q
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Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path,
with digits possibly appearing at different locations.
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Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path,
with digits possibly appearing at different locations.

How do we find such a path and digits?
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The hybrid binary-ternary joint sparse form

1225 = (3 0 1̄ 0 0 0 0 1)
723 = (2 0 2̄ 0 0 0 0 3)

base[] = (2 3 2 2 2 3 3 2)

Input: k1, k2 > 0
Output: hbt1[], hbt2[], base[]
1: i = 0
2: while k1 > 0 or k2 > 0 do
3: if k1 ≡ 0 (mod 3) and k2 ≡ 0 (mod 3) then
4: base[i] = 3; hbt1[i] = hbt2[i] = 0; k1 = k1/3; k2 = k2/3;
5: else if k1 ≡ 0 (mod 2) and k2 ≡ 0 (mod 2) then
6: base[i] = 2; hbt1[i] = hbt2[i] = 0; k1 = k1/2; k2 = k2/2;
7: else
8: base[i] = 2; hbt1[i] = k1 mods 6; hbt2[i] = k2 mods 6;
9: k1 = (k1 − hbt1[i])/2; k2 = (k2 − hbt2[i])/2;

10: i = i + 1
11: return hbt1[], hbt2[], base[]
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6: base[i] = 2; hbt1[i] = hbt2[i] = 0; k1 = k1/2; k2 = k2/2;
7: else
8: base[i] = 2; hbt1[i] = k1 mods 6; hbt2[i] = k2 mods 6;
9: k1 = (k1 − hbt1[i])/2; k2 = (k2 − hbt2[i])/2;

10: i = i + 1
11: return hbt1[], hbt2[], base[]
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Theoretical analysis

It is possible to analyze the algorithm by means of Markov chains. We
obtain the following probabilities:

p2 =
32

59
, p3 =

27

59
, pz =

35

59
, pnz =

24

59
.

Now, using p2 and p3, we can evaluate the average base β = 2.4078 and
deduce the average number of columns

(logβ 2)× n ≈ 0.7888n.

Finally, we get that the expected number of elliptic curve additions per
bit is approximately

24

59
× 0.7888 ≈ 0.3209.
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Comparisons

Theoretical comparison of HBTJSF, JSF and interleaving w -NAF for a n-bit
pair of integers.

Parameters HBTJF JSF Interleaving w -NAF

Average base 2.41 2 2
Avg # base 2 col. 0.43n n + 1 n + 1
Avg # base 3 col. 0.36n 0 0
Avg # non-zero col. 0.32n 0.5n 2n/(w + 1)
Precomp. 14 2 2w−1 − 2

Implementation results confirm the advantage of db-chains for curves with fast
tripling such as DIK3 curves.

HBTJF Inter 5-NAF Inter. 4-NAF JSF

163-bit 2065443 2207935 2303874 2407781
Improvement (%) - 6.90 11.54 14.22
233-bit 3503081 3897876 3974763 4247352
Improvement (%) - 11.27 13.46 17.52
571-bit 19608811 22303921 23084231 24656049
Improvement (%) - 13.74 17.72 20.47

(Time in µs for 1000 experiments)
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The tree-based approach

Given (k1, k2), consider the pairs (k1 + i , k2 + j) with i , j ∈ {−1, 0, 1}.

(k1, k2)

(k1, k2 + 1)

(k1, k2 − 1)

(k1 + 1, k2)(k1 − 1, k2)

(k1 − 1, k2 − 1) (k1 + 1, k2 − 1)

(k1 − 1, k2 + 1) (k1 + 1, k2 + 1)

Idea: Clear common powers of 2 and 3 from each pair and reapply. Not
practical!

Only keep the branch with the largest common power of the form 2a3b.

Precomputations: P,Q,P + Q,P − Q

Complexity: Average joint density < 0.3945
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Conclusions

Our last results on optimal db-chains suggest that there is still room for
improvements.

Open problem: length of an optimal signed double-base chain.

Finding (hyper)elliptic curves with fast tripling does make sense.

Other group-like structures with fast cubing operation can benefit from
those results. We are currently working on cubing over real quadratic
fields.
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Thanks!

Laurent.Imbert@ucalgary.ca

www.math.ucalgary.ca/~imbertl
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