The Double-Base Number System in Elliptic Curve Cryptograhy

Christophe Doche ${ }^{1} \quad$ Laurent Imbert ${ }^{2}$
${ }^{1}$ Macquarie University, Sydney, Australia
${ }^{2}$ CNRS-PIMS, University of Calgary, Canada

Asilomar Conference on Signal, Systems and Computers, 2008

From joint works with: Jithra Adikari, Vassil Dimitrov, Fabrice Philippe, David Kohel, Francesco Sica

Motivations

Fast exponentiation: Given $(G, \times), g \in G$ and $n \geq 0$, compute g^{n}.
Elliptic curve scalar multiplication: Given P on an elliptic curve, and $k \geq 0$, compute $[k] P=P+P+\cdots+P$ (k times).

This operation is the most time consuming in elliptic curve protocols (ECDH, ECDSA, etc).

How quickly can we do this?

Important variant of the problem, multi-scalar multiplication: $k_{1}, k_{2}, P, Q \rightarrow k_{1} P+k_{2} Q$, important operation in elliptic curve signature verification.

Point multiplication algorithms \& addition chains

Double-and-add: $k=\sum_{i=0}^{n-1} k_{i} 2^{i}$, with $k_{i} \in\{0,1\}$
$n-1$ DBL, $n / 2$ ADD on average
$1717=11010110101$
12361213265253106107121442842985817161717

Point multiplication algorithms \& addition chains

Double-and-add: $k=\sum_{i=0}^{n-1} k_{i} 2^{i}$, with $k_{i} \in\{0,1\}$
$n-1$ DBL, $n / 2$ ADD on average
$1717=11010110101$
12361213265253106107121442842985817161717
Signed digits: Canonic SD, NAF, $k_{i} \in\{\overline{1}, 0,1\}$
n DBL, n/3 ADD on average
$\operatorname{NAF}(1717)=100 \overline{1} 0 \overline{1} 0 \overline{1} 0101$
124871428275410810721442842985817161717

Point multiplication algorithms \& addition chains

Double-and-add: $k=\sum_{i=0}^{n-1} k_{i} 2^{i}$, with $k_{i} \in\{0,1\}$

$$
\begin{aligned}
& n-1 \\
& 1717=11010110101 \\
& 1 \\
& 1
\end{aligned} 23 \begin{array}{lllllllllll}
& 3 & 12 & 13 & 26 & 52 & 53 & 106 & 107 & 214 & 428 \\
429 & 858 & 1716 & 1717
\end{array}
$$

Signed digits: Canonic SD, NAF, $k_{i} \in\{\overline{1}, 0,1\}$
n DBL, $n / 3$ ADD on average
$\operatorname{NAF}(1717)=100 \overline{1} 0 \overline{1} 0 \overline{1} 0101$
$\begin{array}{llllllllllllllllllllll}1 & 2 & 4 & 8 & 7 & 14 & 28 & 27 & 54 & 108 & 107 & 214 & 428 & 429 & 858 & 1716 & 1717\end{array}$
Window methods: w NAF, $\quad\left|k_{i}\right|<2^{w-1}$ (processes w digits at a time) n DBL, $n /(w+1)$ ADD on average + precomp.
$3 \operatorname{NAF}(1717)=300300 \overline{1} 00 \overline{3}$
361224275410821621543086017201717
$4 \operatorname{NAF}(1717)=7000 \overline{5} 0005$
$\begin{array}{llllllllll}7 & 14 & 28 & 56 & 112 & 107 & 214 & 428 & 856 & 1712 \\ 1717\end{array}$

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

1						

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

	1					

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

		1				

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

			1			

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

				1		

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

-1						
				1		

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

	-1					
					1	

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

		-1				
						1

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

		-1				
						1

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.

1248164814414328657217161717

1						
		-1				
						1

Double-base numbers and chains

Given $k>0$, a sequence $\left(C_{i}\right)_{i>0}$ of positive integers satisfying:

$$
C_{1}=1, \quad C_{i+1}=2^{u_{i}} 3^{v_{i}} C_{i}+d_{i}, \text { with } d_{i} \in\{-1,1\}
$$

for some $u_{i}, v_{i} \geq 0$, and such that $C_{n}=k$ for some $n>0$, is called a double-base chain computing k.
$\begin{array}{llllllllll}1 & 2 & 4 & 8 & 16 & 48 & 144 & 143 & 286 & 572 \\ 1716 & 1717\end{array}$

	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}
3^{0}	1						
3^{1}	!		-1				
3^{2}			$!$				
3^{3}			+	--			-1

More formally:

$$
\begin{aligned}
& \qquad k=\sum_{i=1}^{n} d_{i} 2^{a_{i} 3^{b_{i}}}, \quad d_{i} \in\{-1,1\} \\
& \text { with }\left(a_{i}, b_{i}\right) \searrow
\end{aligned}
$$

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: \quad output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

$$
21687=
$$

	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}
3^{0}									
3^{1}									
3^{2}									
3^{3}									
3^{4}									

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

$$
21687=20736 \mid(951)
$$

| 2^{0} | | 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} | 2^{7} | 2^{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3^{0} | | | | | | | | | |
| 3^{1} | | | | | | | | | |
| 3^{2} | | | | | | | | | |
| 3^{3} | | | | | | | | | |
| 3^{4} | | | | | | | | | 1 |

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: \quad output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

21687	$=$	20736	(951)
	+	864	(87)

| | 2^{0} | 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} | 2^{7} | 2^{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3^{0} | | | | | | | | | |
| 3^{1} | | | | | | | | | |
| 3^{2} | | | | | | | | | |
| 3^{3} | | | | | | 1 | | | |
| 3^{4} | | | | | | | | | 1 |

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: \quad output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

21687	$=$	20736	(951)
	+	864	(87)
	+	96	(-9)

	2^{0}		2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
3^{0}	2^{8}								
3^{0}									
3^{1}						1			
3^{2}									
3^{3}						1			
3^{4}									1

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: \quad output term $(s, a, b) ; \quad \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

21687	$=$	20736	(951)
	+	864	(87)
+	96	(-9)	
	-	8	(-1)

| | 2^{0} | | 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} | 2^{7} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2^{8}.

Computing double-base chains

A greedy approach:
1: $s \leftarrow 1$
2: while $k \neq 0$ do
3: find the best approximation of k of the form $z=2^{a} 3^{b}$ with $0 \leq a \leq \mathcal{A}$ and $0 \leq b \leq \mathcal{B}$
4: output term $(s, a, b) ; \mathcal{A} \leftarrow a ; \mathcal{B} \leftarrow b$
5: if $k<z$ then $s \leftarrow-s$
6: $\quad k \leftarrow|k-z|$

21687					2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	$2^{7} \quad 2^{8}$
	$=$	20736	(951)	3^{0}	-1	-	--	-1				
	$+$	864	(87)	3^{1}						-1		
	$+$	96	(-9)	3^{2}						,		
	-	8	(-1)	3^{3}						1		
	-	1	(0)	3^{4}						$+$		-1

Length a db-chain $=\#$ non-zero terms $=\#$ curve additions

Length of a double-base chain

The greedy algorithm does not produce optimal chains. This approach, however, has some interests for elliptic curves with fast tripling such as ordinary curves (over \mathbb{F}_{p}) or DIK3 curves.

We know how to compute the length of the shortest (unsigned) db-chain for k.

Size of k	greedy		optimal	
(in bits)	unsigned	signed	unsigned	signed
64	26.09	18.55	17.22	$?$
128	54.52	34.88	33.27	$?$
160	72.21	44.96	40.85	$?$
256	119.26	75.78	64.35	$?$

Average values for 10000 random integers
There is still room for improvements!

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$
$\left.\begin{array}{lllllll}37 & = & 1 & 0 & 0 & 1 & 0 \\ & 1 \\ 22 & = & 0 & 1 & 0 & 1 & 1\end{array}\right]$

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$
$\left.\begin{array}{lllllll}37 & = & 1 & 0 & 0 & 1 & 0 \\ & 1 \\ 22 & = & 0 & 1 & 0 & 1 & 1\end{array}\right]$

P

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$
$\left.\begin{array}{lllllll}37 & = & 1 & 0 & 0 & 1 & 0 \\ & 1 \\ 22 & = & 0 & 1 & 0 & 1 & 1\end{array}\right]$

P
2P
$2 P+Q$

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$
$\left.\begin{array}{lllllll}37 & = & 1 & 0 & 0 & 1 & 0 \\ 1 \\ 22 & = & 0 & 1 & 0 & 1 & 1\end{array}\right)$

P
2P
$2 P+Q$
$4 P+2 Q$

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$
$\left.\begin{array}{l}37= \\ 22=\end{array} \begin{array}{cccccc}1 & 0 & 0 & 1 & 0 & 1 \\ P & & 1 & 0 & 1 & 1\end{array}\right)$

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$

$37=$	1	0	0	1	0	1
$22=$	0	1	0	1	1	0
P		$9 P+5 Q$				
$2 P$		$18 \mathrm{P}+10 \mathrm{Q}$				
$2 \mathrm{P}+\mathrm{Q}$		$18 \mathrm{P}+11 \mathrm{Q}$				
$4 \mathrm{P}+2 \mathrm{Q}$						
$8 \mathrm{P}+4 \mathrm{Q}$						

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$

Double-scalar multiplication

Given $k_{1}, k_{2}>0$ and points P, Q on an elliptic curve, compute $k_{1} P+k_{2} Q$

Computing $k_{1} P$ and $k_{2} Q$ independently is not efficient. We use a method known as "Shamir's trick".

Example: $37 P+22 Q$

$37=$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	
$22=$	010	
P	9P+5Q	
2P	18P+10Q	Cost:
$2 \mathrm{P}+\mathrm{Q}$	18P+11Q	$n-1 \mathrm{DBL}+\#$ non-zero col. ADD
$4 P+2 Q$	$36 P+22 Q$	Precomputations: $P, Q, P+Q$
$8 P+4 Q$	$37 P+22 Q$	

Interleaving methods

How can we reduce the number of non-zero columns?
Using NAF representations for k_{1} and k_{2} cost n DBL and $5 n / 9$ ADD on average but it can result in no improvements!

$$
\begin{array}{lllllll}
1 & 0 & \overline{1} & 0 & 1 & 0 & \overline{1} \\
0 & 1 & 0 & 1 & 0 & \overline{1} & 0
\end{array}
$$

The probability of a non-zero column decreases when using wNAF.
It is possible to use windows of different width for k_{1} and k_{2}, as one usually know either P or Q.

Precomputed points only involve one point: $P, 3 P, 5 P, \ldots, 2^{w_{1}-1} P$, $Q, 3 Q, 5 Q, \ldots, 2^{w_{2}-1} Q$

Cost: n DBL and \# non-zero digits ADD

Joint-sparse form

In 2001, Solinas proposed a recoding technique to converts a pair $\left(k_{1}, k_{2}\right)$ into a so-called joint-sparse form. Out of any three consecutive columns, at least one is a zero-column.

$$
\begin{aligned}
& 113=\left(\begin{array}{llllllll}
1 & 0 & 0 & \overline{1} & 0 & 0 & 0 & 1
\end{array}\right) \\
& 203=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & \overline{1} & 0 \\
\overline{1}
\end{array}\right)
\end{aligned}
$$

The JSF is computed using basic arithmetic operations (mod 8).
The JSF of a pair of integer is unique and optimal: every other recoding in $\{-1,0,1\}$ requires more non-zero column.

Cost: $n \mathrm{DBL}+n / 2$ ADD on average.
Precomputations: $P, Q, P+Q, P-Q$

Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

Double-scalar multiplication using double-base chains

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

How do we find such a path and digits?

The hybrid binary-ternary joint sparse form

$$
\begin{aligned}
1225 & =\left(\begin{array}{llllllll}
3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
723 & =\left(\begin{array}{llllllll}
2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { base[]} & =\left(\begin{array}{lllllll}
2 & 3 & 2 & 2 & 2 & 3 & 3
\end{array}\right.
\end{aligned}
$$

The hybrid binary-ternary joint sparse form

$$
\left.\begin{array}{rl}
1225 & =\left(\begin{array}{llllllll}
3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
723 & =\left(\begin{array}{llllllll}
2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { base [] } & =\left(\begin{array}{llllll}
2 & 3 & 2 & 2 & 2 & 3
\end{array}\right. \\
3 & 2
\end{array}\right)
$$

Input: $k_{1}, k_{2}>0$
Output: hbt1[], hbt2[], base[]

The hybrid binary-ternary joint sparse form

$$
\begin{aligned}
1225 & =\left(\begin{array}{llllllll}
3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
723 & =\left(\begin{array}{llllllll}
2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { base[]} & =\left(\begin{array}{lllllll}
2 & 3 & 2 & 2 & 2 & 3 & 3
\end{array}\right.
\end{aligned}
$$

Input: $k_{1}, k_{2}>0$
Output: hbt1[], hbt2[], base[]
1: $i=0$
2: while $k_{1}>0$ or $k_{2}>0$ do
3: if $k_{1} \equiv 0(\bmod 3)$ and $k_{2} \equiv 0(\bmod 3)$ then
4: \quad base $[i]=3 ; \operatorname{hbt} 1[i]=\operatorname{hbt} 2[i]=0 ; k_{1}=k_{1} / 3 ; k_{2}=k_{2} / 3$;

The hybrid binary-ternary joint sparse form

$$
\left.\begin{array}{rl}
1225 & =\left(\begin{array}{llllllll}
3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
723 & =\left(\begin{array}{llllllll}
2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { base[]} & =\left(\begin{array}{llllll}
2 & 3 & 2 & 2 & 2 & 3
\end{array}\right. \\
3 & 2
\end{array}\right)
$$

Input: $k_{1}, k_{2}>0$
Output: hbt1[], hbt2[], base[]
1: $i=0$
2: while $k_{1}>0$ or $k_{2}>0$ do
3: if $k_{1} \equiv 0(\bmod 3)$ and $k_{2} \equiv 0(\bmod 3)$ then
4: \quad base $[i]=3 ; \operatorname{hbt1}[i]=\operatorname{hbt2}[i]=0 ; k_{1}=k_{1} / 3 ; k_{2}=k_{2} / 3$;
5: else if $k_{1} \equiv 0(\bmod 2)$ and $k_{2} \equiv 0(\bmod 2)$ then
6: \quad base $[i]=2 ; \operatorname{hbt} 1[i]=\operatorname{hbt2}[i]=0 ; k_{1}=k_{1} / 2 ; k_{2}=k_{2} / 2$;

The hybrid binary-ternary joint sparse form

$$
\begin{aligned}
1225 & =\left(\begin{array}{llllllll}
3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
723 & =\left(\begin{array}{llllllll}
2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { base }[] & =\left(\begin{array}{lllllll}
2 & 3 & 2 & 2 & 3 & 3 & 2
\end{array}\right)
\end{aligned}
$$

Input: $k_{1}, k_{2}>0$
Output: hbt1[], hbt2[], base[]
1: $i=0$
2: while $k_{1}>0$ or $k_{2}>0$ do
3: if $k_{1} \equiv 0(\bmod 3)$ and $k_{2} \equiv 0(\bmod 3)$ then
4: base $[i]=3 ; \operatorname{hbt} 1[i]=\operatorname{hbt} 2[i]=0 ; k_{1}=k_{1} / 3 ; k_{2}=k_{2} / 3$;
5: else if $k_{1} \equiv 0(\bmod 2)$ and $k_{2} \equiv 0(\bmod 2)$ then
6: \quad base $[i]=2 ; \operatorname{hbt} 1[i]=\operatorname{hbt} 2[i]=0 ; k_{1}=k_{1} / 2 ; k_{2}=k_{2} / 2$;
7: else
8: \quad base $[i]=2 ; \operatorname{hbt} 1[i]=k_{1} \operatorname{mods} 6 ; \operatorname{hbt} 2[i]=k_{2} \operatorname{mods} 6 ;$
9: $\quad k_{1}=\left(k_{1}-\operatorname{hbt} 1[i]\right) / 2 ; k_{2}=\left(k_{2}-\operatorname{hbt} 2[i]\right) / 2$;
10: $\quad i=i+1$
11: return hbt1[], hbt2[], base[]

Theoretical analysis

It is possible to analyze the algorithm by means of Markov chains. We obtain the following probabilities:

$$
p_{2}=\frac{32}{59}, \quad p_{3}=\frac{27}{59}, \quad p_{z}=\frac{35}{59}, \quad p_{n z}=\frac{24}{59} .
$$

Now, using p_{2} and p_{3}, we can evaluate the average base $\beta=2.4078$ and deduce the average number of columns

$$
\left(\log _{\beta} 2\right) \times n \approx 0.7888 n
$$

Finally, we get that the expected number of elliptic curve additions per bit is approximately

$$
\frac{24}{59} \times 0.7888 \approx 0.3209
$$

Comparisons

Theoretical comparison of HBTJSF, JSF and interleaving w-NAF for a n-bit pair of integers.

Parameters	HBTJF	JSF	Interleaving w-NAF
Average base	2.41	2	2
Avg \# base 2 col.	$0.43 n$	$n+1$	$n+1$
Avg \# base 3 col.	$0.36 n$	0	0
Avg \# non-zero col.	$0.32 n$	$0.5 n$	$2 n /(w+1)$
Precomp.	14	2	$2^{w-1}-2$

Implementation results confirm the advantage of db -chains for curves with fast tripling such as DIK3 curves.

	HBTJF	Inter 5-NAF	Inter. 4-NAF	JSF
163-bit	2065443	2207935	2303874	2407781
Improvement (\%)	-	6.90	11.54	14.22
233-bit	-	3503081	3897876	3974763
Improvement (\%)	-	11247352		
571-bit	19608811	22303921	13.46	17.52
Improvement (\%)	-	13.74	17.72	20.47

(Time in μ s for 1000 experiments)

The tree-based approach

Given $\left(k_{1}, k_{2}\right)$, consider the pairs $\left(k_{1}+i, k_{2}+j\right)$ with $i, j \in\{-1,0,1\}$.

Idea: Clear common powers of 2 and 3 from each pair and reapply. Not practical!

Only keep the branch with the largest common power of the form $2^{a} 3^{b}$.
Precomputations: $P, Q, P+Q, P-Q$
Complexity: Average joint density <0.3945

Conclusions

Our last results on optimal db-chains suggest that there is still room for improvements.

Open problem: length of an optimal signed double-base chain.

Finding (hyper)elliptic curves with fast tripling does make sense.

Other group-like structures with fast cubing operation can benefit from those results. We are currently working on cubing over real quadratic fields.

Conclusions

Our last results on optimal db-chains suggest that there is still room for improvements.

Open problem: length of an optimal signed double-base chain.

Finding (hyper)elliptic curves with fast tripling does make sense.

Other group-like structures with fast cubing operation can benefit from those results. We are currently working on cubing over real quadratic fields.

> Thanks!
> Laurent.Imbert@ucalgary.ca www.math.ucalgary.ca/~imbertl

