The Double-Base Number System in Elliptic Curve Cryptograhy

Christophe Doche¹ Laurent Imbert²

¹Macquarie University, Sydney, Australia

²CNRS-PIMS, University of Calgary, Canada

Asilomar Conference on Signal, Systems and Computers, 2008

From joint works with: Jithra Adikari, Vassil Dimitrov, Fabrice Philippe, David Kohel, Francesco Sica

Motivations

Fast exponentiation: Given (G, \times) , $g \in G$ and $n \ge 0$, compute g^n .

Elliptic curve scalar multiplication: Given P on an elliptic curve, and $k \ge 0$, compute $[k]P = P + P + \cdots + P$ (k times).

This operation is the most time consuming in elliptic curve protocols (ECDH, ECDSA, etc).

How quickly can we do this?

Important variant of the problem, multi-scalar multiplication: $k_1, k_2, P, Q \rightarrow k_1P + k_2Q$, important operation in elliptic curve signature verification.

Point multiplication algorithms & addition chains

Double-and-add: $k = \sum_{i=0}^{n-1} k_i 2^i$, with $k_i \in \{0, 1\}$ n-1 DBL, n/2 ADD on average 1717 = 11010110101 1 2 3 6 12 13 26 52 53 106 107 214 428 429 858 1716 1717 Point multiplication algorithms & addition chains

Double-and-add: $k = \sum_{i=0}^{n-1} k_i 2^i$, with $k_i \in \{0, 1\}$ n-1 DBL, n/2 ADD on average 1717 = 11010110101 1 2 3 6 12 13 26 52 53 106 107 214 428 429 858 1716 1717

Signed digits: Canonic SD, NAF, $k_i \in \{\bar{1}, 0, 1\}$ n DBL, n/3 ADD on averageNAF(1717) = 100 $\bar{1}0\bar{1}0\bar{1}0\bar{1}0101$ 1 2 4 8 7 14 28 27 54 108 107 214 428 429 858 1716 1717 Point multiplication algorithms & addition chains

Double-and-add: $k = \sum_{i=0}^{n-1} k_i 2^i$, with $k_i \in \{0, 1\}$ n-1 DBL, n/2 ADD on average 1717 = 11010110101 1 2 3 6 12 13 26 52 53 106 107 214 428 429 858 1716 1717

Signed digits: Canonic SD, NAF, $k_i \in \{\overline{1}, 0, 1\}$ n DBL, n/3 ADD on averageNAF(1717) = 100 $\overline{1}0\overline{1}0\overline{1}0\overline{1}0101$ 1 2 4 8 7 14 28 27 54 108 107 214 428 429 858 1716 1717

Window methods: wNAF, $|k_i| < 2^{w-1}$ (processes w digits at a time) n DBL, n/(w + 1) ADD on average + precomp. 3NAF(1717) = 300300 $\overline{1}$ 00 $\overline{3}$ 3 6 12 24 27 54 108 216 215 430 860 1720 1717 4NAF(1717) = 7000 $\overline{5}$ 0005 7 14 28 56 112 107 214 428 856 1712 1717

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

1			

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

1			

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

	1		

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

	1		

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

		1	

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

		1	

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

		1	

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

-1			
		1	

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

	-1		
			1

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

Given k > 0, a sequence $(C_i)_{i>0}$ of positive integers satisfying:

$$C_1 = 1$$
, $C_{i+1} = 2^{u_i} 3^{v_i} C_i + d_i$, with $d_i \in \{-1, 1\}$

for some $u_i, v_i \ge 0$, and such that $C_n = k$ for some n > 0, is called a *double-base chain computing* k.

1 2 4 8 16 48 144 143 286 572 1716 1717

More formally:

$$k=\sum_{i=1}^n d_i 2^{a_i} 3^{b_i}, \quad d_i\in\{-1,1\}$$
 with $(a_i,b_i)\searrow$

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$
- 5: if k < z then $s \leftarrow -s$
- $6: \quad k \leftarrow |k z|$

A greedy approach:

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$
- 5: if k < z then $s \leftarrow -s$
- $6: \quad k \leftarrow |k z|$

21687 =

A greedy approach:

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$
- 5: if k < z then $s \leftarrow -s$
- $6: \quad k \leftarrow |k z|$

21687 = 20736 | (951)

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$
- 5: if k < z then $s \leftarrow -s$
- $6: \quad k \leftarrow |k z|$

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$

5: if
$$k < z$$
 then $s \leftarrow -s$

$$6: \quad k \leftarrow |k - z|$$

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$

5: if
$$k < z$$
 then $s \leftarrow -s$

$$6: \quad k \leftarrow |k - z|$$

A greedy approach:

- 1: $s \leftarrow 1$
- 2: while $k \neq 0$ do
- 3: find the best approximation of k of the form $z = 2^a 3^b$ with $0 \le a \le A$ and $0 \le b \le B$
- 4: output term (s, a, b); $\mathcal{A} \leftarrow a$; $\mathcal{B} \leftarrow b$

5: if
$$k < z$$
 then $s \leftarrow -s$

 $6: \quad k \leftarrow |k - z|$

Length a db-chain = # non-zero terms = # curve additions

Length of a double-base chain

The greedy algorithm does not produce optimal chains. This approach, however, has some interests for elliptic curves with fast tripling such as ordinary curves (over \mathbb{F}_p) or DIK3 curves.

We know how to compute the length of the shortest (unsigned) db-chain for k.

Size of k	gree	dy	optimal		
(in bits)	unsigned	signed	unsigned	signed	
64	26.09	18.55	17.22	?	
128	54.52	34.88	33.27	?	
160	72.21	44.96	40.85	?	
256	119.26	75.78	64.35	?	

Average values for 10000 random integers

There is still room for improvements!

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1	0	0	1	0	1

22 = 0 1 0 1 1 0

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1	0	0	1	0	1

22 = 0 1 0 1 1 0

Ρ

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

 $22 = 0 \ 1 \ 0 \ 1 \ 1 \ 0$

Ρ

2P

2P+Q

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1	0	0	1	0	1

22 = 0 1 0 1 1 0

Ρ

2P

2P+Q

4P + 2Q

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1	0	0	1	0	1
22 =	0	1	0	1	1	0
Р	9P-	⊦5Q				
2P						
2P+Q						
4P + 2Q						

8P + 4Q

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1	0	0	1	0	1
22 =	0	1	0	1	1	0
Ρ	9P-	⊦5Q				
2P	18P+10Q					
2P+Q	18P	+11	1Q			
4P + 2Q						

8P + 4Q

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	1 0 0 1 0 1				
22 =	0 1 0 1 1 0				
Р	9P+5Q				
2P	18P+10Q				
2P+Q	18P+11Q				
4P + 2Q	36P + 22Q				
8P + 4Q	37P + 22Q				

Given $k_1, k_2 > 0$ and points P, Q on an elliptic curve, compute $k_1P + k_2Q$

Computing k_1P and k_2Q independently is not efficient. We use a method known as "Shamir's trick".

Example: 37P + 22Q

37 =	$1 \ 0 \ 0 \ 1 \ 0 \ 1$	
22 =	0 1 0 1 1 0	
Р	9P+5Q	Cast
2P	18P+10Q	Cost:
2P+Q	18P+11Q	n-1 DBL + # non-zero col. ADD
4P + 2Q	36P + 22Q	Precomputations: $P, Q, P + Q$
8P + 4Q	37P + 22Q	

Interleaving methods

How can we reduce the number of non-zero columns?

Using NAF representations for k_1 and k_2 cost *n* DBL and 5n/9 ADD on average but it can result in no improvements!

1	0	ī	0	1	0	ī
0	1	0	1	0	ī	0

The probability of a non-zero column decreases when using wNAF.

It is possible to use windows of different width for k_1 and k_2 , as one usually know either P or Q.

Precomputed points only involve one point: $P, 3P, 5P, \ldots, 2^{w_1-1}P$, $Q, 3Q, 5Q, \ldots, 2^{w_2-1}Q$

Cost: n DBL and # non-zero **digits** ADD

Joint-sparse form

In 2001, Solinas proposed a recoding technique to converts a pair (k_1, k_2) into a so-called *joint-sparse form*. Out of any three consecutive columns, at least one is a zero-column.

The JSF is computed using basic arithmetic operations (mod 8).

The JSF of a pair of integer is **unique** and **optimal**: every other recoding in $\{-1, 0, 1\}$ requires more non-zero column.

Cost: n DBL + n/2 ADD on average.

Precomputations: P, Q, P + Q, P - Q

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

The idea is to find two double-base chains which share the same path, with digits possibly appearing at different locations.

How do we find such a path and digits?

$$1225 = (3 \ 0 \ \overline{1} \ 0 \ 0 \ 0 \ 0 \ 1)$$

$$723 = (2 \ 0 \ \overline{2} \ 0 \ 0 \ 0 \ 0 \ 3)$$

base[] = (2 \ 3 \ 2 \ 2 \ 3 \ 3 \ 2)

$$1225 = \begin{pmatrix} 3 & 0 & 1 & 0 & 0 & 0 & 1 \\ 723 = \begin{pmatrix} 2 & 0 & \overline{2} & 0 & 0 & 0 & 3 \\ 2 & 3 & 2 & 2 & 2 & 3 & 3 \end{pmatrix}$$

base[] = $\begin{pmatrix} 2 & 3 & 2 & 2 & 2 & 3 & 3 \\ 2 & 3 & 2 & 2 & 2 & 3 & 3 \end{pmatrix}$

Input: $k_1, k_2 > 0$ Output: hbt1[], hbt2[], base[]

 $1225 = \begin{pmatrix} 3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $723 = \begin{pmatrix} 2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$ $base[] = \begin{pmatrix} 2 & 3 & 2 & 2 & 2 & 3 & 3 & 2 \end{pmatrix}$ Input: $k_1, k_2 > 0$ Output: hbt1[], hbt2[], base[]
1: i = 02: while $k_1 > 0$ or $k_2 > 0$ do
3: if $k_1 \equiv 0 \pmod{3}$ and $k_2 \equiv 0 \pmod{3}$ then
4: base[i] = 3; hbt1[i] = hbt2[i] = 0; $k_1 = k_1/3$; $k_2 = k_2/3$;

 $1225 = \begin{pmatrix} 3 & 0 & \overline{1} & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $723 = \begin{pmatrix} 2 & 0 & \overline{2} & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$ $base[] = \begin{pmatrix} 2 & 3 & 2 & 2 & 2 & 3 & 3 & 2 \end{pmatrix}$ Input: $k_1, k_2 > 0$ Output: hbt1[], hbt2[], base[]1: i = 02: while $k_1 > 0$ or $k_2 > 0$ do
3: if $k_1 \equiv 0 \pmod{3}$ and $k_2 \equiv 0 \pmod{3}$ then
4: base[i] = 3; hbt1[i] = hbt2[i] = 0; $k_1 = k_1/3$; $k_2 = k_2/3$;
5: else if $k_1 \equiv 0 \pmod{2}$ and $k_2 \equiv 0 \pmod{2}$ then

6: base[i] = 2; hbt1[i] = hbt2[i] = 0; $k_1 = k_1/2$; $k_2 = k_2/2$;

$$1225 = (3 \ 0 \ \overline{1} \ 0 \ 0 \ 0 \ 0 \ 1)$$

$$723 = (2 \ 0 \ \overline{2} \ 0 \ 0 \ 0 \ 0 \ 3)$$

$$base[] = (2 \ 3 \ 2 \ 2 \ 2 \ 3 \ 3 \ 2)$$
Input: $k_1, k_2 > 0$
Output: hbt1[], hbt2[], base[]
1: $i = 0$
2: while $k_1 > 0$ or $k_2 > 0$ do
3: if $k_1 \equiv 0 \pmod{3}$ and $k_2 \equiv 0 \pmod{3}$ then
4: base[i] = 3; hbt1[i] = hbt2[i] = 0; $k_1 = k_1/3$; $k_2 = k_2/3$;
5: else if $k_1 \equiv 0 \pmod{2}$ and $k_2 \equiv 0 \pmod{2}$ then
6: base[i] = 2; hbt1[i] = hbt2[i] = 0; $k_1 = k_1/2$; $k_2 = k_2/2$;
7: else
8: base[i] = 2; hbt1[i] = $k_1 \mod{6}$; hbt2[i] = $k_2 \mod{6}$;
9: $k_1 = (k_1 - \text{hbt1}[i])/2$; $k_2 = (k_2 - \text{hbt2}[i])/2$;
10: $i = i + 1$
11: return hbt1[], hbt2[], base[]

Theoretical analysis

It is possible to analyze the algorithm by means of Markov chains. We obtain the following probabilities:

$$p_2 = \frac{32}{59}, \quad p_3 = \frac{27}{59}, \quad p_z = \frac{35}{59}, \quad p_{nz} = \frac{24}{59}.$$

Now, using p_2 and p_3 , we can evaluate the average base $\beta = 2.4078$ and deduce the average number of columns

$$(\log_{\beta} 2) \times n \approx 0.7888n.$$

Finally, we get that the expected number of elliptic curve additions per bit is approximately

$$\frac{24}{59} \times 0.7888 \approx 0.3209.$$

Comparisons

Theoretical comparison of HBTJSF, JSF and interleaving w-NAF for a n-bit pair of integers.

Parameters	HBTJF	JSF	Interleaving w-NAF
Average base	2.41	2	2
Avg $\#$ base 2 col.	0.43 <i>n</i>	n+1	n+1
Avg $\#$ base 3 col.	0.36 <i>n</i>	0	0
Avg $\#$ non-zero col.	0.32 <i>n</i>	0.5 <i>n</i>	2n/(w+1)
Precomp.	14	2	$2^{w-1} - 2$

Implementation results confirm the advantage of db-chains for curves with fast tripling such as DIK3 curves.

	HBTJF	Inter 5-NAF	Inter. 4-NAF	JSF
163-bit	2065443	2207935	2303874	2407781
Improvement (%)	-	6.90	11.54	14.22
233-bit	3503081	3897876	3974763	4247352
Improvement (%)	-	11.27	13.46	17.52
571-bit	19608811	22303921	23084231	24656049
Improvement (%)	-	13.74	17.72	20.47

(Time in μ s for 1000 experiments)

The tree-based approach

Given (k_1, k_2) , consider the pairs $(k_1 + i, k_2 + j)$ with $i, j \in \{-1, 0, 1\}$.

Idea: Clear common powers of 2 and 3 from each pair and reapply. Not practical!

Only keep the branch with the largest common power of the form $2^a 3^b$.

Precomputations: P, Q, P + Q, P - Q

Complexity: Average joint density < 0.3945

Conclusions

Our last results on optimal db-chains suggest that there is still room for improvements.

Open problem: length of an optimal **signed** double-base chain.

Finding (hyper)elliptic curves with fast tripling does make sense.

Other group-like structures with fast cubing operation can benefit from those results. We are currently working on cubing over real quadratic fields.

Conclusions

Our last results on optimal db-chains suggest that there is still room for improvements.

Open problem: length of an optimal **signed** double-base chain.

Finding (hyper)elliptic curves with fast tripling does make sense.

Other group-like structures with fast cubing operation can benefit from those results. We are currently working on cubing over real quadratic fields.

Thanks!

Laurent.Imbert@ucalgary.ca

www.math.ucalgary.ca/~imbertl