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Abstract Terminology extraction is an essential task in domain knowledge acquisition,

as well as for information retrieval. It is also a mandatory first step aimed at building/

enriching terminologies and ontologies. As often proposed in the literature, existing ter-

minology extraction methods feature linguistic and statistical aspects and solve some

problems related (but not completely) to term extraction, e.g. noise, silence, low frequency,

large-corpora, complexity of the multi-word term extraction process. In contrast, we

propose a cutting edge methodology to extract and to rank biomedical terms, covering all

the mentioned problems. This methodology offers several measures based on linguistic,

statistical, graphic and web aspects. These measures extract and rank candidate terms with

excellent precision: we demonstrate that they outperform previously reported precision

results for automatic term extraction, and work with different languages (English, French,

and Spanish). We also demonstrate how the use of graphs and the web to assess the

significance of a term candidate, enables us to outperform precision results. We evaluated

our methodology on the biomedical GENIA and LabTestsOnline corpora and compared it

with previously reported measures.
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1 Introduction

The huge amount of biomedical data available today often consists of plain text fields, e.g.

clinical trial descriptions, adverse event reports, electronic health records, emails or notes

expressed by patients within forums (Murdoch and Detsky 2013). These texts are often

written using a specific language (expressions and terms) of the associated community.

Therefore, there is a need for formalization and cataloging of these technical terms or

concepts via the construction of terminologies and ontologies (Rubin et al. 2008). These

technical terms are also important for information retrieval (IR), for instance when

indexing documents or formulating queries. However, as the task of manually extracting

terms of a domain is very long and cumbersome, researchers have striving to design

automatic methods to assist knowledge experts in the process of cataloging the terms and

concepts of a domain under the form of vocabularies, thesauri, terminologies or ontologies.

Automatic term extraction (ATE), or automatic term recognition (ATR), is a domain

which aims to automatically extract technical terminology from a given text corpus. We

define technical terminology as the set of terms used in a domain. Term extraction is an

essential task in domain knowledge acquisition because the technical terminology can be

used for lexicon updating, domain ontology construction, summarization, named entity

recognition or, as previously mentioned, IR.

In the biomedical domain, there is a substantial difference between existing resources

(hereafter called terminologies or ontologies) in English, French, and Spanish. In English,

there are about 9,919,000 terms associated with about 8,864,000 concepts such as those in

UMLS1 or BioPortal (Noy et al. 2009). Whereas in French there are only about 330,000

terms associated with about 160,000 concepts (Névéol et al. 2014), and in Spanish

1,172,000 terms associated with about 1,140,000 concepts. Note the strong difference in

the number of ontologies and terminologies available in French or Spanish. This makes

ATE even more important for these languages.

In biomedical ontologies, different terms may be linked to the same concept and are

semantically similar with different writing, for instance ‘‘neoplasm’’ and ‘‘cancer’’ in

MeSH or SNOMED-CT. Ontologies also contain terms with morphosyntaxic variants, for

instance plurals like ‘‘external fistula’’ and ‘‘external fistulas’’, and this group of variants is

linked to a preferred term. As one of our goals is to extract new terms to enrich ontologies,

our approach does not normalize variant terms, mainly because normalization would lead

to penalization in extracting new variant terms. Technical terms are useful to gain further

insight into the conceptual structure of a domain. These may be: (i) single-word terms

(simple), or (ii) multi-word terms (complex). The proposed study focuses on both cases.

Term extraction methods usually involve two main steps. The first step extracts can-

didate terms by unithood calculation to qualify a string as a valid term, while the second

step verifies them through termhood measures to validate their domain specificity. For-

mally, unithood refers to the degree of strength or stability of syntagmatic combinations

and collocations, and termhood is defined as the degree to which a linguistic unit is related

to domain-specific concepts (Kageura and Umino 1996). ATE has been applied to several

domains, e.g. biomedical (Lossio-Ventura et al. 2014c; Frantzi et al. 2000; Zhang et al.

2008; Newman et al. 2012), ecological (Conrado et al. 2013), mathematical (Stoykova and

Petkova 2012), social networks (Lossio-Ventura et al. 2012), banking (Dobrov and Lou-

kachevitch 2011), natural sciences (Dobrov and Loukachevitch 2011), information

1 http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html.
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technology (Newman et al. 2012; Yang et al. 2009), legal (Yang et al. 2009), as well as

post-graduate school websites (Qureshi et al. 2012).

The main issues in ATE are: (i) extraction of non-valid terms (noise) or omission of

terms with low frequency (silence), (ii) extraction of multi-word terms having various

complex various structures, (iii) manual validation efforts of the candidate terms (Conrado

et al. 2013), and (iv) management of large-scale corpora. Inspired by our previously

published results and in response to the above issues, we propose a cutting edge

methodology to extract biomedical terms. We propose new measures and some modifi-

cations of existing baseline measures. Those measures are divided into: (1) ranking

measures, and (2) re-ranking measures. Our ranking measures are statistical- and linguistic-

based and address issues (i), (ii) and (iv). Our two re-ranking measures the first one called

TeRGraph is a graph-based measure which deals with issues (i), (ii) and (iii). The second

one, called WAHI, is a web-based measure which also deals with issues (i), (ii) and (iii).

The novelty of the WAHI measure is that it is web-based which has, to the best of our

knowledge, never been applied within ATE approaches.

The main contributions of our article are: (1) enhanced consideration of the term

unithood, by computing a degree of quality for the term unithood, and, (2) consideration of

the term dependence in the ATE process. The quality of the proposed methodology is

highlighted by comparing the results obtained with the most commonly used baseline

measures. Our evaluation experiments were conducted despite difficulties in comparing

ATE measures, mainly because of the size of the corpora used and the lack of available

libraries associated with previous studies. Our three measures improve the process of

automatic extraction of domain-specific terms from text collections that do not offer

reliable statistical evidence (i.e. low frequency).

The paper is organized as follows. We first discuss related work in Sect. 2. Then the

methodology to extract biomedical terms is detailed in Sect. 3. The results are presented in

Sect. 4, followed by discussions in Sect. 5, and finally, the conclusions in Sect. 6.

2 Related work

Recent studies have focused on multi-word (n-grams) and single-word (unigrams) term

extraction. Term extraction techniques can be divided into four broad categories: (i) Lin-

guistic, (ii) Statistical, (iii) Machine Learning, and (iv) Hybrid. All of these techniques are

encompassed in Text Mining approaches. Graph-based approaches have not yet been

applied to ATE, although they have been successively adopted in other information

retrieval fields and could be suitable for our purpose. Existing web techniques have not

been applied to ATE but, as we will see, these techniques can be adapted for such

purposes.

2.1 Text mining approaches

2.1.1 Linguistic approaches

These techniques attempt to recover terms via linguistic pattern formation. This involves

building rules to describe naming structures for different classes based on orthographic,

lexical, or morphosyntactic characteristics, e.g. Gaizauskas et al. 2000. The main approach

is to develop rules (typically manually) describing common naming structures for certain
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term classes using orthographic or lexical clues, or more complex morpho-syntactic fea-

tures. Moreover, in many cases, dictionaries of typical term constituents (e.g. termino-

logical heads, affixes, and specific acronyms) are used to facilitate term recognition

(Krauthammer and Nenadic December 2004). A recent study on biomedical term extrac-

tion (Golik et al. 2013) is based on linguistic patterns plus additional context-based rules to

extract candidate terms, which are not scored and the authors leave the term relevance

decision to experts.

2.1.2 Statistical methods

Statistical techniques chiefly rely on external evidence presented through surrounding

(contextual) information. Such approaches are mainly focused on the recognition of

general terms (Eck et al. 2010). The most basic measures are based on frequency. For

instance, term frequency (tf) counts the frequency of a term in the corpus, document

frequency (df) counts the number of documents where a term occurs, and average term

frequency (atf), which is tf
df
.

A similar research topic, called automatic keyword extraction (AKE), proposes to

extract the most relevant words or phrases in a document using automatic indexation.

Keywords, which we define as a sequence of one or more words, provide a compact

representation of a document’s content. Such measures can be adapted to extract terms

from a corpus as well as ATE measures. We take two popular AKE measures as baselines

measures, i.e. Term Frequency Inverse Document Frequency (TF-IDF) (Salton and

Buckley 1988), and Okapi BM25 (Robertson et al. 1999) (hereafter Okapi), these weight

the word frequency according to their distribution along the corpus. Residual inverse

document frequency (RIDF) compares the document frequency to another chance model

where terms with a particular term frequency are distributed randomly throughout the

collection, while Chi-square (Matsuo and Ishizuka 2004) assesses how selectively words

and phrases co-occur within the same sentences as a particular subset of frequent terms in

the document text. This is applied to determine the bias of word co-occurrences in the

document text, which is then used to rank words and phrases as keywords of the document;

RAKE (Rose et al. 2010) hypothesises that keywords usually consist of multiple words and

do not contain punctuation or stop words. It uses word co-occurrence information to

determine the keywords.

2.1.3 Machine learning

Machine Learning (ML) systems are often designed for specific entity classes and thus

integrate term extraction and term classification. Machine Learning systems use training

data to learn features useful for term extraction and classification. But the availability of

reliable training resources is one of the main problems. Some proposed ATE approaches

use machine learning (Conrado et al. 2013; Zhang et al. 2010; Newman et al. 2012).

However, ML may also generate noise and silence. The main challenge is how to select a

set of discriminating features that can be used for accurate recognition (and classification)

of term instances. Another challenge concerns the detection of term boundaries, which are

the most difficult to learn.
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2.1.4 Hybrid methods

Most approaches combine several methods (typically linguistic and statistically based) for

the term extraction task. GlossEx (Kozakov et al. 2007) considers the probability of a word

in the domain corpus divided by the probability of the appearance of the same word in a

general corpus. Moreover, the importance of the word is increased according to its fre-

quency in the domain corpus. Weirdness (Ahmad et al. 1999) considers that the distri-

bution of words in a specific domain corpus differs from that in a general corpus. C/NC-

value (Frantzi et al. 2000) combines statistical and linguistic information for the extraction

of multi-word and nested terms. This is the most well-known measure in the literature.

While most studies address specific types of entities, C/NC-value is a domain-independent

method. It has also been used for recognizing terms in the biomedical literature (Hliaou-

takis et al. 2009; Hamon et al. 2014). In (Zhang et al. 2008), the authors showed that C-

value obtains the best results compared to the other measures cited above. C-value has

been also modified to extract single-word terms (Nakagawa and Mori 2002), and in this

work the authors extract only terms composed of nouns. Moreover, C-value has also been

applied to different languages other than English, e.g. Japanese, Serbian, Slovenian, Polish,

Chinese (Ji et al. 2007), Spanish (Barrón-Cedeño et al. 2009), Arabic, and French. We

have thus chosen C-value as one of our baseline measure. Those baseline measures will be

modified and evaluated with the new proposed measures.

Terminology extraction from parallel and comparable corpora Another kind of approach

suggests that terminology may be extracted from parallel and/or comparable corpora. Par-

allel corpora contain texts and their translation into one or more languages, but such corpora

are scarce (Bowker and Pearson 2002). Thus parallel corpora are scarce for specialized

domains. Comparable corpora are those which select similar texts in more than one language

or variety (Déjean and Gaussier 2002). Comparable corpora are built more easily than

parallel corpora. They are often used for machine translation and their approaches are based

on linguistics, statistics, machine learning, and hybrid methods. The main objective of these

approaches is to extract translation pairs from parallel/comparable corpora. Different studies

propose translation of biomedical terms for English-French by alignment techniques

(Deléger et al. 2009). English–Greek and English–Romanian bilingual medical dictionaries

are also constructed with a hybrid approach that combines semantic information and term

alignments (Kontonatsios et al. 2014b). Other approaches are applied for single- and multi-

word terms with English–French comparable corpora (Daille and Morin 2005). The authors

use statistical methods to align elements by exploiting contextual information. Another study

proposes to use graph-based label propagation (Tamura et al. 2012). This approach is based

on a graph for each language (English and Japanese) and the application of a similarity

calculus between twowords in each graph.Moreover, somemachine learning algorithms can

be used, e.g. the logistic regression classifier (Kontonatsios et al. 2014a). There are also

approaches that combine both corpora (Morin and Prochasson 2011) (i.e. parallel and

comparable) in an approach to reinforce extraction. Note that our corpora are not parallel and

are far of being comparable because of the difference in their size. Therefore these

approaches are not evaluated in our study.

2.1.5 Tools and applications for biomedical term extraction

There are several applications implementing some measures previously mentioned, espe-

cially C-value for biomedical term extraction. The study of related tools revealed that most
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existing systems that especially implement statistical methods are made to extract key-

words and, to a lesser extent, to extract terminology from a text corpus. Indeed, most

systems take a single text document as input, not a set of documents (as corpus), for which

the IDF can be computed. Most systems are available only in English and the most relevant

for the biomedical domain are:

• TerMine2, developed by the authors of the C-value method, only for English term

extraction;

• Java Automatic Term Extraction3 (Zhang et al. 2008), a toolkit which implements

several extraction methods including C-value, GlossEx, TermEx and offer other

measures such as frequency, average term frequency, IDF, TF-IDF, RIDF;

• FlexiTerm4 (Spasic et al. 2013), a tool explicitly evaluated on biomedical copora and

which offer more flexibility than C-value when comparing term candidates (treating

them as bag of words and ignoring the word order);

• BioYaTeA5 (Golik et al. 2013), is a version of the YaTeA term extractor (Aubin and

Hamon 2006), both are available as a Perl module. It is a biomedical term extractor.

The method used is based only on linguistic aspects.

• BioTex6 (Lossio-Ventura et al. 2014a), only for biomedical terminology extraction. It is

available for online testing and assessment but can also be used in any program as a

Java library (POS tagger not included). In contrast to other existing systems, this

system allows us to analyze French and Spanish corpora, manually validate extracted

terms and export the list of extracted terms.

2.2 Graph-based approaches

Graph modeling is an alternative for representing information, which clearly highlights

relationships of nodes among vertices. It also groups related information in a specific way,

and a centrality algorithm can be applied to enhance their efficiency. Centrality in a graph

is the identification of the most important vertices within a graph. A host of measures have

been proposed to analyze complex networks, especially in the social network domain

(Borgatti 2005; Borgatti et al. 2009; Banerjee et al. 2014). Freeman (1979), formalized

three different measures of node centrality: degree, closeness and betweenness. Degree is

the number of neighbors that a node is connected to. Closeness is the inverse sum of

shortest distances to all other neighbor nodes. Betweenness is the number of shortest paths

from all vertices to all others that pass through that node. One study proposes to take the

number of edges and their weights into account (Opsahl et al. 2010), since the three last

measures do not do this. Another well known measure is PageRank (Page et al. 1999),

which ranks websites. Boldi and Vigna (2014), evaluated the behavior of ten measures, and

associated the centrality to the node with largest degree. Our approach proposes the

opposite, i.e. we focus on nodes with a lower degree. An increasingly popular recent

application of graph approaches to IR concerns social or collaborative networks and rec-

ommender systems (Noh et al. 2009; Banerjee et al. 2014).

2 http://www.nactem.ac.uk/software/termine/.
3 https://code.google.com/p/jatetoolkit/.
4 http://users.cs.cf.ac.uk/I.Spasic/flexiterm/.
5 http://search.cpan.org/*bibliome/Lingua-BioYaTeA/.
6 http://tubo.lirmm.fr/biotex/.
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Graph representations of text and scoring function definition are two widely explored

research topics, but few studies have focused on graph-based IR in terms of both document

representation and weighting models (Rousseau and Vazirgiannis 2015). First, text is

modeled as a graph where nodes represent words and edges represent relations between

words, defined on the basis of any meaningful statistical or linguistic relation (Blanco and

Lioma 2012). In Blanco and Lioma (2012), the authors developed a graph-based word

weighting model that represents each document as a graph. The importance of a word

within a document is estimated by the number of related words and their importance, in the

same way that PageRank (Page et al. 1999) estimates the importance of a page via the

pages that are linked to it. Another study introduces a different representation of document

that captures relationships between words by using an unweighted directed graph of words

with a novel scoring function (Rousseau and Vazirgiannis 2015).

In the above approaches, graphs are used to measure the influence of words in docu-

ments like automatic keyword extraction methods (AKE), while ranking documents

against queries. These approaches differ from ours as they use graphs focused on the

extraction of relevant words in a document and computing relations between words. In our

proposal, a graph is built such that the vertices are multi-word terms and the edges are

relations between multi-word terms. Moreover, we focus especially on a scoring function

of relevant multi-word terms in a domain rather than in a document.

2.3 Web mining approaches

Different web mining studies focus on semantic similarity, semantic relatedness. This

means quantifying the degree to which some words are related, considering not only

similarity but also any possible semantic relationship among them. The word association

measures can be divided into three categories (Chaudhari et al. 2011): (i) co-occurrence

measures that rely on co-occurrence frequencies of both words in a corpus, (ii) distribu-

tional similarity-based measures that characterize a word by the distribution of other words

around it, and (iii) knowledge-based measures that use knowledge-sources like thesauri,

semantic networks, or taxonomies (Harispe et al. 2014). In this paper, we focus on co-

occurrence measures because our goal is to extract multi-word terms and we suggest

computing a degree of association between words composing a term. Word association

measures are used in several domains like ecology, psychology, medicine, and language

processing, and were recently studied in (Pantel et al. 2009; Zadeh and Goel 2013), such as

Dice, Jaccard, Overlap, Cosine. Another measure to compute the association between

words using web search engines results is the Normalized Google Distance (Cilibrasi and

Vitanyi 2007), which relies on the number of times words co-occur in the document

indexed by an information retrieval system. In this study, experimental results with our

web-based measure will be compared with the basic measures (Dice, Jaccard, Overlap,

Cosine).

3 Methodology

This section describes the baseline measures, their modifications as well as new measures

that we propose for the biomedical term extraction task. The principle of our approach is to

assign a weight to a term, which represents the appropriateness of being a relevant

biomedical term. This allows to give as output a list ranked by their appropriateness. Our
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methodology for automatic term extraction has three main steps plus an additional step (a),

described in Fig. 1, and in the sections hereafter:

(a) Pattern construction,

(1) Candidate term extraction,

(2) Ranking of candidate terms,

(3) Re-ranking.

3.1 Pattern construction (step a)

As previously cited, we supposed that biomedical terms have a similar syntactic structure

(linguistic aspect). Therefore, we built a list of the most common linguistic patterns

according to the syntactic structure of terms present in the UMLS7 (for English and

Spanish), and the French version of MeSH,8 SNOMED International and the rest of the

French content in the UMLS.

Part-of-Speech (POS) tagging is the process of assigning each word in a text to its

grammatical category (e.g. noun, adjective). This process is performed based on the def-

inition of the word or on the context in which it appears. This is highly time-consuming, so

we conducted automatic part-of-speech tagging.

Fig. 1 Workflow methodology for biomedical term extraction

7 http://www.nlm.nih.gov/research/umls.
8 http://mesh.inserm.fr/mesh/.
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We evaluated three tools (TreeTagger,9 Stanford Tagger,10 and Brill’s tagger11). This

evaluation was carried out throughout the entire workflow with the three tools and we

assessed the precision of the extracted terms. We noted that in general TreeTagger gave the

best results for Spanish and French. Meanwhile, for English, the Stanford tagger and

TreeTagger gave similar results. We finally chose TreeTagger, which gave better results

and may be used for English, French and Spanish. Moreover, our choice was validated with

regard to a recent comparison study (Tian and Lo 2015), wherein the authors showed that

TreeTagger generally gives the best results, particularly for nouns and verbs.

Therefore, we carried out automatic part-of-speech tagging of the biomedical terms

using TreeTagger, and then computed the frequency of the syntactic structures. Patterns

among the 200 highest frequencies were selected to build the list of patterns for each

language. From this list, we also computed the weight (probability) associated with each

pattern, i.e. the frequency of the pattern over the sum of frequencies (see Algorithm 1), but

this weight will only be used for one measure. The number of terms used to build these lists

of patterns was 3,000,000 for English, 300,000 for French, and 500,000 for Spanish, taken

from the previously mentioned terminologies. Table 1 illustrates the computation of the

linguistic patterns and their weights for English.

Different terminology extraction studies are based on the use of regular expressions to

extract candidate terms, for instance (Frantzi et al. 2000). Generally these regular

expressions are manually built for a specific language and/or domain (Daille et al. 1994).

In our setting, we prefer to (i) construct and (ii) apply patterns in order to extract terms in

texts. These patterns have the advantage of being generic because they are based on

defined PoS tags. Moreover, they are very specific because they are (automatically) built

with specialized biomedicine resources. Concerning this last point, we can consider we are

close to the use of regular expressions. There are two main reasons that we use specific

linguistic patterns. First, we would like to restrict the patterns to the biomedical domain.

For instance, biomedical terms often contain numbers in their syntactic structure, and this

is very specific to the biomedical domain, e.g. ‘‘epididymal protein 9’’, ‘‘pargyline 10 mg’’.

General patterns do not enable extraction of such terms. Our methodology is based on 200

significant patterns for English, French, or Spanish, yet different for each language. For

instance, there are 55 patterns for English that contain numbers in the linguistic structure.

Thus, this kind of pattern seems quite relevant for this domain. The second reason for using

lexical patterns is that we assign a probability of occurrence to each pattern, which would

not be possible with classical patterns and regular expressions.

Table 1 Example of pattern construction (where NN is a noun, IN a preposition or subordinating con-
junction, JJ an adjective, and CD a cardinal number)

Pattern Frequency Probability

NN IN JJ NN IN JJ NN 3006 3006/4113 = 0.73

NN CD NN NN NN 1107 1107/4113 = 0.27

4113 1.00

9 http://www.cis.uni-muenchen.de/*schmid/tools/TreeTagger/.
10 http://nlp.stanford.edu/software/tagger.shtml.
11 http://en.wikipedia.org/wiki/Brill_tagger.
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Algorithm 1: ComputePatterns (Dictionary, np)
Data: Dictionary = dictionary of a domain, np = number of patterns to use
Result: HTpatterns(pattern, probability) = Hashtable of the first np linguistic

patterns with its probability
begin

HTpatterns ←− ∅;
HTaux(tag, freq) ←− ∅ // Hashtable of the tag of each term with its frequency ;
sizeHT ←− number of terms in Dictionary;
freqtotal ←− 0 ;
probability ←− 0.0 ;
Tag of the Dictionary;
for tag of each term ∈ Dictionary do

if tag ∈ HTaux then
update HTaux(tag, freq + 1);

else
add HTaux(tag, 1);

end
end
Rank HTaux(tag, freq) by the freq;
freqtotal ←− np

i=1 freq(HTaux(i));
for i = 1; i ≤ np; i++ do

probability ←− freq(HTaux(i))
freqtotal

;

add HTpatterns(tag(HTaux(i)), probability);
end

end

3.2 Candidate term extraction (step 1)

The first main step is to extract the candidate terms. So we apply part-of-speech to the

whole corpus using TreeTagger. Then we filter out the content of our input corpus using

previously computed patterns. We select only terms whose syntactic structure is in the

patterns list. The pattern filtering is specifically done on a per-language basis (i.e. when the

text is in French, only the French list of patterns is used).

3.3 Ranking of candidate terms (step 2)

We need to select the most appropriate terms for the biomedical domain. Candidate term

ranking is therefore essential. For this purpose, several measures are proposed and

Fig. 1(2) shows the set of available measures. We propose some modifications of the most

known measures in the literature (i.e. C-value, TF-IDF, Okapi), and propose new ones (i.e.

F-TFIDF-C, F-OCapi, LIDF-value, L-value). Those measures are linguistic- and statistic-

based, they are also not very time-consuming. In this step, only one measure will be

selected to perform the ranking. The measures of this section take a list of candidate terms

previously filtered by linguistic patterns as input, which makes it possible to assess less

invalid terms while dealing with the noise problem. In addition to the use of linguistic

patterns to alleviate the problem of the extraction of multi-word terms having various

complex structures. Moreover, the frequency decreases the number of invalid terms to

evaluate (noise). The measures mentioned above are effective on large amounts of data (Lv

and Zhai 2011a, b; Singhal et al. 1996), which overcomes the problem of large-scale

corpora. Hereafter we describe all measures.
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3.3.1 C-value

The C-value method combines linguistic and statistical information (Frantzi et al. 2000).

Linguistic information is the use of a general regular expression as linguistic patterns, and

the statistical information is the value assigned with the C-value measure based on the

frequency of terms to compute the termhood (i.e. the association strength of a term to

domain concepts). The C-value method aims to improve the extraction of long terms, and it

was specially built for extracting multi-word terms.

C�valueðAÞ ¼
wðAÞ � fðAÞ if A 62 nested

wðAÞ � fðAÞ � 1

jSAj
�
X

b2SA
fðbÞ

 !
otherwise

8
><

>:
ð1Þ

where A is the candidate term, wðAÞ ¼ log2ðjAjÞ, |A| the number of words in A, f(A) the

frequency of A in the unique document, SA the set of terms that contain A and jSAj the
number of terms in SA. In a nutshell, C-value uses either the frequency of the term if the

term is not included in other terms (first line), or decreases this frequency if the term

appears in other terms, based on the frequency of those other terms (second line).

We modified the measure in order to extract all terms (single-word ? multi-words

terms), as also suggested in (Barrón-Cedeño et al. 2009), but in a different manner.

The original C-value defines wðAÞ ¼ log2ðjAjÞ, and we modified wðAÞ ¼ log2ðjAj þ 1Þ
in order to avoid null values for single-word terms, as illustrated in Table 2. Note that we

do not use a stop word list or a frequency threshold as was originally proposed.

3.3.2 TF-IDF and Okapi

These measures are used to associate a weight to each term in a document (Salton and

Buckley 1988). This weight represents the term relevance for the document. The output is a

ranked list of terms for each document, which is often used in information retrieval so as to

order documents by their importance for a given query (Robertson et al. 1999). Okapi can

be seen as an improvement of the TF-IDF measure, while taking the document length into

account.

TF�IDFðA; d;DÞ ¼ tfðA; dÞ � idfðA; dÞ ð2Þ

tf ðA; dÞ ¼ f ðA; dÞ
maxff ðA; dÞ : w 2 dg

idf ðA; dÞ ¼ log
jDj

jfd 2 D : A 2 dgj
OkapiðA; d;DÞ ¼ tf BM25ðA; dÞ � idfBM25ðA; dÞ

tf BM25ðA; dÞ ¼
tf ðA; dÞ � ðk1 þ 1Þ

tf ðA; dÞ þ k1 � ð1� b þ b � dlðdÞ
dlavg

Þ

idfBM25ðA; dÞ ¼ log
jDj � dcðAÞ þ 0:5

dcðAÞ þ 0:5

ð3Þ

where A is a term, considering d a document, D the collection of documents, f(A, d) the

frequency of A in d, tf(A, d) the term frequency of A in d, idf(A, D) the inverse document

frequency of A in D, dc(t) the number of documents containing term A, this means:
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jfd 2 D : t 2 dgj, dl(d) the length of the document d in number of words, dlavg the average

document length of the collection.

As the output is a ranked list of terms per document, we could find the same term in

different documents, with different weights in each document. So we need to merge the

term into a single list. For this, we propose to merge them according to three functions,

which respectively calculate the sum(S), max(M) and average(A) of the weights of a term.

At the end of this task, we have three lists from Okapi and three lists from TF-IDF. The

notation for these lists are OkapiXðAÞ and TF�IDFXðAÞ, where A is the term, and X the

factor 2 fM; S;Ag. For example, OkapiMðAÞ is the value obtained by taking the maximum

Okapi value for a term A in the whole corpus. Figure 2 shows the merging process.

With aim of improving the term extraction precision, we designed two new combined

measures, while taking the values obtained in the above steps into account. Both are based

on harmonic means of two values.

3.3.3 Combinations: F-OCapi and F-TFIDF-C

Considered as the harmonic mean of the two used values, this method has the advantage of

using all values of the distribution.

Table 2 Calculation of w(A)

Original C-value Modified C-value

wðAÞ ¼ log2ðjAjÞ wðAÞ ¼ log2ðjAj þ 1Þ
antiphospholipid antibodies log2ð2Þ ¼ 1 log2ð2þ 1Þ ¼ 1; 6

white blood log2ð2Þ ¼ 1 log2ð2þ 1Þ ¼ 1; 6

platelet log2ð1Þ ¼ 0 log2ð1þ 1Þ ¼ 1

Fig. 2 Merging lists
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F�OCapiXðAÞ ¼ 2� OkapiXðAÞ � C�valueðAÞ
OkapiXðAÞ þ C�valueðAÞ ð4Þ

F�TFIDF�CXðAÞ ¼ 2� TFIDFXðAÞ � C�valueðAÞ
TFIDFXðAÞ þ C�valueðAÞ ð5Þ

3.3.4 LIDF-value and L-value

In this section we present two new measures. The first one, called LIDF-value (Linguisitic
patterns, IDF, and C-value information). LIDF-value is partially presented in Lossio-

Ventura et al. (2014c). This is a new ranking measure based on linguistic and statistical

information.

Our method LIDF-value is aimed at computing the termhood for each term, using the

linguistic information calculated as described below, the idf, and the C-value of each term.

The linguistic information gives greater importance to the term unithood in order to detect

low frequency terms. So we associate the pattern weight (see Table 1) with the candidate

term probability. That means the probability of a candidate term of being a relevant

biomedical term. The probability is associated only if the syntactic structure of the term

appears in the linguistic pattern list.

The inverse document frequency (idf) is a measure indicating the extent to which a

term is common or rare across all documents. It is obtained by dividing the total number

of documents by the number of documents containing the term, and then by taking the

logarithm of that quotient. The probability and idf improve low frequency term

extraction. The objective of these two components is to tackle the silence problem,

allowing extraction of discriminant terms, for instance, in a biomedical corpus, ‘‘virus

production’’ with low frequency being better ranked than ‘‘human monocytic cell’’,

which has a higher frequency. This means that for a low frequency candidate term, its

score can be favored if its linguistic pattern is associated with a high probability and/or

its idf value is also high. The C-value measure is based on the term frequency. The C-

value (see formula 1) measure favors a candidate term that does not often appear in a

longer term. For instance, in a specialized corpus (ophthalmology), the authors of Frantzi

et al. (2000) found the irrelevant term ‘‘soft contact’’ while the frequent and longer term

‘‘soft contact lens’’ is relevant.

As an example, we implement the Algorithm 2, which describes the applied process.

These different statistical information items (i.e. probability of linguistic patterns, C-

value, idf) are combined to define the global ranking measure LIDF-value (see formula

6); where PðALPÞ is the probability of a term A which has the same linguistic structure

pattern LP, i.e. the weight of the linguistic pattern LP computed in Subsection Pattern

Construction.

LIDF�valueðAÞ ¼ PðALPÞ � idfðAÞ � C�valueðAÞ ð6Þ
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Algorithm 2: ComputeLIDF-value (Corpus, Patterns, minfreq,
numterms)
Data: Corpus = set of documents of a specific-domain;
Patterns = HTpatterns(pattern, probability) //Hashtable of linguistic patterns with
its probability;
minfreq = frequency threshold for candidate terms;
numterms = number of terms to take as output
Result: Lterms = List of ranked terms
begin

Tag the Corpus;
Take the lemma of each tagged word;
Extract candidate terms A by filtering with Patterns;
Remove candidate terms A below minfreq ;
for each candidate term A ∈ Corpus do

LIDF -value(A) = P(ALP ) × idf(A) × C-value(A);
add A to Lterms;

end
Rank Lterms by the value obtained with LIDF -value;
Select the first numterms terms of Lterms ;

end

Note that LIDF-value works only for a set of documents, mainly because the idf

measure can only be computed on a set of documents (see formula 2). Therefore, for

datasets composed of one document, we propose a new measure, L-value, as explained in

the following paragraphs.

L-value is a variant of LIDF-value, focused on one document with the goal of benefiting

from the probability of linguistic patterns computed for LIDF-value. This measure does not

contain the idf (see formula 7). L-value is interesting to highlight the more representative

terms of a single corpus without considering the discriminative aspects, e.g. idf. This

measure gives another point of view and is complementary to those based on the idf

weighting.

A single document can be considered as a free text without delimitation. For instance, a

scientist article, a book, a document created with titles/abstracts from a library database. L-

value becomes interesting when it does not exist a considerable amount of data for a new

subject, i.e. an emergent term in the community. For instance, the ‘‘Ataxia Neuropathy

Spectrum’’ term appears only in four titles/abstracts of scientist articles from PubMed12

between 2009 and 2015. PubMed is a free search engine accessing primarily the MED-

LINE database of references and abstracts on life sciences and biomedical topics.

L�valueðAÞ ¼ PðALPÞ � C�valueðAÞ ð7Þ

3.4 Re-ranking (step 3)

After the term extraction, we propose new measures to re-rank the candidate terms in order

to increase the top k term precision. The re-ranking measures aim to improve the term

extraction results of ranking measures. This involves positioning the most relevant

12 http://www.ncbi.nlm.nih.gov/pubmed.
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biomedical terms at the top of the list. That provides more confidence that the terms

appearing at the top of this list are true biomedical terms.

These re-ranking functions represent an extension of the measures presented in Lossio-

Ventura et al. (2014b). Therefore, as improvements, we propose to take graph-theoretic

information into account to highlight relevant terms, as well as web information, as

explained in the following subsections. These measures can be executed separately, but the

graph construction is time consuming, and the number of search engine queries is limited.

Therefore, we just apply these measures for a group of selected terms given by a ranking

measure. Because the ranking measures have proved to be more efficient applied before

than TeRGraph and web-based measures.

As these measures are applied to the list of terms obtained with a ranking measure,

which tackles noise, silence and multi-word term extraction problems, so they also take

into account those problems. As mentioned, the objective of re-raking measures is to re-

rank terms, so the manual validation efforts of the candidate terms decrease because the

relevant biomedical term is allocated at the top of the list.

3.4.1 A new graph-based ranking measure: ‘‘TeRGraph’’ (terminology ranking based
on graph information)

This approach aims to improve the ranking (and therefore the precision results) of

extracted terms. As mentioned above, in contrast to the above-cited study, the graph is built

with a list of terms obtained according to a measure described in Sect. 3.2, where vertices

denote terms linked by their co-occurrence in sentences in the corpus. Moreover, we make

the hypothesis that the term representativeness in a graph, for a specific-domain, depends

on its number of neighbors, and the number of neighbors of its neighbors. We assume that

a term with more neighbors is less representative of the specific domain. This means that

this term is used in the general domain. Figure 3 illustrates our hypothesis.

The graph-based approach is divided into two steps:

(i) Graph construction a graph (see Fig. 5) is built where vertices denote terms, and

edges denote co-occurrence relations between terms, co-occurrences between

terms are measured as the weight of the relation in the initial corpus. This approach

is statistical because it links all co-occurring terms without considering their

meaning or function in the text. This graph is undirected as the edges imply that

Fig. 3 Importance of a term in a
domain
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terms simply co-occur, without any further distinction regarding their role. We

take the Dice coefficient, a basic measure to compute the co-occurrence between

two terms x and y, as defined by the following formula:

Dðx; yÞ ¼ 2� Pðx; yÞ
PðxÞ þ PðyÞ ð8Þ

(ii) Representativeness computations on the term graph a principled graph-based

measure to compute term weights (representativeness) is defined. The aim of this

new graph-based ranking measure, TeRGraph, see Eq. 9, is to derive these weights

for each vertex, (i.e. multi-word term weight), in order to re-rank the list of

extracted terms.

TeRGraphðAÞ ¼ log2 k þ 1

1þ jNðAÞj þ
P

Ti2NðAÞ jNðTiÞj

 !
ð9Þ

where A represents a vertex (term), NðAÞ the neighborhood of A, jNðAÞj the number of

neighbors ofA,Ti the neighbor i ofA, and k a constant. The intuition for Eq. 9 is as follows: the

more a term A has neighbors (directly with NðAÞ or by transitivity with NðTiÞ), the more the

weight decreases. Indeed, a term A having a lot of neighbors is considered too general for the

domain (i.e. this term is not salient), so it has to be penalized via the associated score.

The k constant affects the TeRGraph value, i.e. the set of values that TeRGraph takes

when k changes. For instance, when k ¼ 0:5, the set of values for TeRGraph is between -1

Fig. 4 TeRGrpah’s value for k ¼ f0:5; 1; 1:5; 2g
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and 0, (i.e. TeRGraph 2 ½�1; 0�), and when k ¼ 1, TeRGraph 2 ½0; 0:6�. As the values

taken by TeRGraph are different, then the slope of the curve is also different. Figure 4

shows the behavior of TeRGraph when k changes. According the experiments, we have

chosen k ¼ 1:5. The main reason is that the slope of the curve is low, and the set of values

for TeRGraph ranges from 0.6 to 1.

See Algorithm 3 for more details, it describes the entire process: (1) co-occurrence

graph construction, (2) computation of the representativeness of each vertex.

Algorithm 3: ComputeTeRGraph (Lterms, numterms, δ, k)
Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
δ = threshold to create an edge between two terms;
k = constant;
Result: RRLterms = Re-Ranked List of terms
begin

Select all possible pairs of terms of Lterms to compute D(x, y) // in total
C2

numterms
= numterms!

2! (numterms−2)! possibilities ;

Select pairs which D(x, y) ≥ δ for creating an edge ;
Select all terms of Lterms to compute TeRGraph ;
for each term A ∈ Lterms do

N(A) ←− neighborhood of A;
|N(A)| ←− number of neighbors of A;

TeRGraph(A) = log2

⎛
⎜⎜⎜⎝k + 1

1+|N(A)|+
Ti∈N(A)

|N(Ti)|

⎞
⎟⎟⎟⎠;

add A to RRLterms;
end
Rank RRLterms by the value obtained with TeRGraph;

end

Figure 5 shows an example to calculate the value of TeRGraph for a term in different

graphs. These graphs are built with different co-occurrence thresholds (i.e. Dice’s value

between two terms). In this example, A1 and A2 represent the term chloramphenicol

acetyltransferase reporter in Graphs 1 and 2, respectively.

Fig. 5 TeRGraph’s value for chloramphenicol acetyltransferase reporter
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3.4.2 WebR

The aim of our web-based measure, to predict with a better confidence if a candidate term

is a valid biomedical term or not. It is appropriated for multi-word terms, as it computes the

dependence between the words of a term. In our case, we compute a ‘‘strict’’ dependence,

which means the proximity of words of terms (i.e. neighboring words) is calculated with a

strict restriction. In comparison to other web-based measures (Cilibrasi and Vitanyi 2007),

WebR reduces the number of pages to consider by taking only web pages containing all

words of the terms into account. In addition, our measure can be easily adopted for all

types of multi-word terms.

WebRðAÞ ¼ nbð‘‘A’’Þ
nbðAÞ ð10Þ

where A ¼ multi-word term, ai 2 A and ai ¼ fnoun;adjective, foreign wordg. Where A is

the candidate term, nbð‘‘A’’Þ the number of hits returned by a web search engine with

exact match only with multi-word term A (query with quotation marks ‘‘A’’), nb(A) the

number of documents returned by the search engine, including not exact matches (query A

without quotation marks), i.e. whole documents containing words of the multi-word term

A. For example, the multi-word term treponema pallidum, will generate two queries, the

first nbð‘‘treponema pallidum’’Þ which returns with Yahoo 1,100,000 documents, and the

second query nbðtreponema pallidumÞ which returns 1,300,000 documents, then

WebRðtreponemapallidumÞ ¼ 1100000
1300000

¼ 0:85.

In our workflow, we tested Yahoo and Bing. WebR re-rank the list of candidate terms

returned by the combined measures.

3.4.3 A new web ranking measure: WAHI (Web Association based on Hits
Information)

Previous studies of web mining approaches query the web via search engines to measure

word associations. This enables measurement of the association of words composing a

term (e.g. soft, contact, and lens that compose the relevant term soft contact lens). To

measure this association, our web-mining approach takes the number of pages provided by

search engines into account (i.e. number of hits).

Our web-based measure re-ranks the list obtained previously with TeRGraph. We will

show that this improves the precision of the k first terms extracted (see Sect. 4) and that it

is specially appropriate for multi-word term extraction.

Formula 8 leads directly to formula 11.13 The nb function used in formula 11 represents

the number of pages returned by search engines (i.e. Yahoo and Bing). With this measure,

we compute a strict dependence (i.e. neighboring words by using the operator ’ ’’ ’ of

search engines). For instance, x might represent the word soft and y the word contact in

order to calculate the association measure of the soft contact term.

Diceðx; yÞ ¼ 2� nbð‘‘x y’’Þ
nbðxÞ þ nbðyÞ ð11Þ

Then we extend this formula to n elements as follows:

13 by writing PðxÞ ¼ nbðxÞ
nb total

, PðyÞ ¼ nbðyÞ
nb total

, Pðx; yÞ ¼ nbðx;yÞ
nb total

.
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Diceða1; . . .; anÞ ¼
n � nbð‘‘a1 � � � an’’Þ

nbða1Þ þ � � � þ nbðanÞ
¼ n � nbð‘‘A’’ÞPn

i¼1 nbðaiÞ
ð12Þ

This measure enables us to calculate a score for all multi-word terms, such as soft

contact lens.

To obtain WAHI, we propose to associate Dice criteria with WebR (see formula 10).

This only takes the number of web pages containing all the words of the terms into account

by using operators ‘‘ ’’ and AND.

For example, soft contact lens, the numerator corresponds to the number of web pages

with the query ‘‘soft contact lens’’, and for the denominator, we consider the query soft

AND contact AND lens.

Finally, the global ranking approach combining Dice and WebR is given by WAHI

measure (Web Association based on Hits Information):

WAHIðAÞ ¼ n � nbð‘‘A’’ÞPn
i¼1 nbðaiÞ

� nbð‘‘A’’Þ
nbðAÞ ð13Þ

Algorithm 4 details the global web mining process to rank terms. We show in the next

section that open-domain (general) resources, such as the web, can be tapped to support

domain-specific term extraction. They can thus be used to compensate for the unavail-

ability of domain-specific resources.

Algorithm 4: ComputeWAHI (Lterms, numterms, LC)
Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
LC = {noun, adjective, foreign word} // linguistic categories
Result: RRLterms = Re-Ranked List of terms
begin

Select the first numterms terms of Lterms to compute WAHI;
for each term A ∈ Lterms do

for all words ai of A ∈ LC do
n ←− number of words in A;

WAHI(A) ←− n × num-hits(“A”)
n∑

i=1

num-hits(ai)
× num-hits(“A”)

num-hits(A) ;

end
add A to RRLterms;

end
Rank RRLterms by the value obtained with WAHI;

end

4 Experiments and results

4.1 Data, protocol, and validation

4.1.1 Data

We used two corpora for our experiments. The first one is a set of biological laboratory

tests, extracted from LabTestsOnline.14 This website provides information in several

14 http://labtestsonline.org/.

Inf Retrieval J

123

http://labtestsonline.org/


languages to patients or family caregivers about clinical lab tests. Each test that forms a

document in our corpus includes the formal lab test name, some synonyms and possible

alternate names as well as a description of the test. The LabTestsOnline website was

extracted totally for English, French, and Spanish with a crawler created specifically for

this purpose. These documents are available online.15 Table 3 shows the details of

LabTestsOnline corpus for different languages.

The second corpus is GENIA,16 which is made up of 2000 titles and abstracts of journal

articles that were culled from the Medline database, with more than 400,000 words in

English. The GENIA corpus contains linguistic expressions referring to entities of interest

in molecular biology, such as proteins, genes and cells. GENIA is an annotated dataset, in

which technical term annotation covers the identification of physical biological entities as

well as other important terms. This is our gold standard corpus. Whereas the Medline

indexes a broad range of academic articles covering the general or specific domains of life

sciences, GENIA is intended to cover a smaller subject domain: biological reactions

concerning transcription factors in human blood cells.

4.1.2 Protocol

As the measures described in step 2 of our workflow (i.e. Ranking the Candidate Terms)

are not very time-consuming, and as they are easily applicable for large corpora, they were

evaluated over the LabTestsOnline corpus for English, French, and Spanish, and over the

gold standard corpus, GENIA. In contrast, as the measures described in step 3 (i.e. Re-

ranking) are highly time-consuming, and they are used at the end of the process, to enhance

the performance of the results, we evaluate them only over the GENIA corpus.

4.1.3 Validation

In order to automatically validate and cover medical terms, we use UMLS for English and

Spanish, and the French version of MeSH, SNOMED International and the rest of the

French content in the UMLS. For instance, if an extracted candidate term is found in the

UMLS dictionary, this term will be automatically validated. The results are evaluated in

terms of precision obtained over the top k extracted terms (P@k).

Biomedical terminologies or ontologies (e.g. UMLS, SNOMED, MeSH), contain terms

composed of signs. Therefore, we cleaned these terminologies by eliminating all terms

containing (; , ? ! : { } [ ]), and we only took terms without signs. Table 4 shows the

distribution in n-gram (i.e. n-gram is a term of n words, with n� 1) of biomedical resources

for three languages, as well as the number of terms that we took after the cleaning task. For

instance, the first cell means that 13.73 % of terms are composed of one word (1-gram) in

UMLS for English.

Table 3 Details of
LabTestsOnline corpus

Number of clinical tests Number of words

English 235 377,000 words

French 137 174,000 words

Spanish 238 396,000 words

15 www.lirmm.fr/*lossio/labtestsonline.zip.
16 http://www.nactem.ac.uk/genia/genia-corpus/term-corpus.

Inf Retrieval J

123

http://www.lirmm.fr/~lossio/labtestsonline.zip
http://www.nactem.ac.uk/genia/genia-corpus/term-corpus


4.2 Multilingual comparison (LabTestsOnline)

In this section, we show results obtained only with all the ranking measures, i.e. step 2

(ranking) in Fig. 1. In addition, we tested the measures for single- plus multi-word terms,

or just for multi-word terms in English, French and Spanish. Tables 5, 6 and 7 show the

results in English, French and Spanish, respectively. At the top of each table, the

single-wordþmulti-word term extraction results are presented, while the multi-word term

extraction results are presented at the bottom of the table.

These tables show that LIDF-value and L-value obtain the best results for both

extraction cases and for the three languages. The combined measures based on the har-

monic mean, and on the SUM and MAX (i.e. F�TFIDF�CM, F�TFIDF�CS), also give

interesting results.

The single-wordþmulti-word term extraction results are better than just the multi-word

term extraction results. The main reason for this is that the extraction of single-word terms

is more efficient due to their syntactic structure (linguistic structure), i.e. usually a noun. In

addition, this syntactic structure has fewer variations. The results are lower as compared to

multi-word term extraction, which is more complicated and involves more variations.

We observe that LIDF-value and L-value obtain very close results. In most cases LIDF-

value performs better than L-value. These two measures show that the probability asso-

ciated with the linguistic patterns helps to improve the term extraction results. Note that the

idf influences LIDF-value, for this reason LIDF-value has better results than L-value.

4.3 Evaluation of the global process (GENIA)

Since GENIA is the gold standard corpus, we conduct a detailed assessment of the

experiments in this subsection. We evaluated the entire workflow of our methodology, i.e.

steps 2 (ranking) and 3 (re-ranking) in Fig. 1. As noted earlier, the multi-word term

extraction results are influenced by the syntactic structure and their variations. So our

experimentation in this subsection is focused only on multi-word term extraction.

In the following paragraphs, we also narrow down the presented results by keeping only

the first 8000 extracted terms for the graph-based measure and the first 1000 extracted

terms for the web-based measure.

4.3.1 Ranking results (step 2 in Fig. 1)

Table 8 presents and compares the multi-word term extraction results with the best ranking

measures, as shown earlier, i.e. C-value, F�TFIDF�CM, and LIDF-value. The best results

were obtained with LIDF-value with an 11 % improvement in precision for the first

hundred extracted multi-word terms. These precision results are also shown in Fig. 6. The

precision of LIDF-value will be further improved with TeRGraph.

Table 4 Details of available resources for validation

1-gram (%) 2-gram (%) 3-gram (%) 4þ gram (%) Number of terms

English 13.73 27.65 14.44 44.18 3,006,946

French 13.17 25.82 17.08 43.93 304,644

Spanish 8.39 19.31 16.33 55.97 534,110
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4.3.2 Results of n-gram terms

We also evaluated C-value, F�TFIDF�CM, and LIDF-value in a sequence of n-gram

terms (i.e. n-gram term is a multi-word term of n words), for this we require an index term

Table 8 Precision comparison
of LIDF-value with baseline
measures

The bold values correspond to the
best precision

C-value F-TFIDF-CM LIDF-value

P@100 0.690 0.715 0.820

P@200 0.690 0.715 0.770

P@300 0.697 0.710 0.750

P@400 0.665 0.690 0.738

P@500 0.642 0.678 0.718

P@600 0.638 0.668 0.723

P@700 0.627 0.669 0.717

P@800 0.611 0.650 0.710

P@900 0.612 0.629 0.714

P@1000 0.605 0.618 0.697

P@2000 0.570 0.557 0.662

P@5000 0.498 0.482 0.575

P@10000 0.428 0.412 0.526

P@20000 0.353 0.314 0.377

Fig. 6 Precision comparison with LIDF-value and baseline measures
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to be a n-gram terms of length n� 2. We tested the performance of LIDF-value on the n-

gram term extraction taking the first 1000 n-g terms (n� 2).

Table 9 shows the precision comparison for the 2-gram, 3-gram and 4þ gram term

extracted with C-value, F�TFIDF�CM, and LIDF-value. We can see that LIDF-value

obtains the best results for all intervals for any n� 2. These precision results are also

shown in Fig. 7 for the 2-gram terms, Fig. 8 for the 3-gram terms, and finally Fig. 9 for the

4þ gram terms.

Table 10 shows the top-20 ranked 2-gram terms extracted with the baseline measures

and LIDF-value. C-value obtained three irrelevant terms, F-TFIDF-C obtained five

Table 9 Precision comparison
of 2-gram terms, 3-gram terms,
and 4þ gram terms

The bold values correspond to the
best precision

C-value F-TFIDF-C LIDF-value

2-gram terms

P@100 0.770 0.760 0.830

P@200 0.755 0.755 0.805

P@300 0.710 0.743 0.790

P@400 0.695 0.725 0.768

P@500 0.692 0.736 0.752

P@600 0.683 0.733 0.763

P@700 0.670 0.714 0.757

P@800 0.669 0.703 0.749

P@900 0.654 0.692 0.749

P@1000 0.648 0.684 0.743

3-gram terms

P@100 0.670 0.530 0.820

P@200 0.590 0.450 0.795

P@300 0.577 0.430 0.777

P@400 0.560 0.425 0.755

P@500 0.548 0.398 0.744

P@600 0.520 0.378 0.720

P@700 0.499 0.370 0.706

P@800 0.488 0.379 0.691

P@900 0.482 0.399 0.667

P@1000 0.475 0.401 0.660

4 þ gram terms

P@100 0.510 0.370 0.640

P@200 0.455 0.330 0.520

P@300 0.387 0.273 0.477

P@400 0.393 0.270 0.463

P@500 0.378 0.266 0.418

P@600 0.348 0.253 0.419

P@700 0.346 0.249 0.390

P@800 0.323 0.248 0.395

P@900 0.323 0.240 0.364

P@1000 0.312 0.232 0.354
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irrelevant terms while LIDF-value obtained only two irrelevant terms for the top-20 ranked

2-gram terms.

Similarly, Table 11 shows top-10 ranked 3-gram terms extracted with the baseline

measures and LIDF-value. Finally, Table 12 shows the top-10 ranked 4þ gram terms

extracted with the baseline measures and LIDF-value.

Note that in this context, ‘‘irrelevant’’ means that the terms are not in the above

mentioned resources. These candidate terms might be interesting for ontology extension or

population, however they must pass through polysemy detection in order to identify the

possible meanings.

Fig. 7 Precision comparison of 2-gram terms

Fig. 8 Precision comparison of 3-gram terms
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4.3.3 Re-ranking results (step 3 in Fig. 1)

Graph-based results our graph-based approach is applied to the first 8000 terms extracted by

the best ranking measure. The objective is to re-rank the 8000 terms while trying to improve

Fig. 9 Precision comparison of 4þ gram terms

Table 10 Comparison of top-20 ranked 2-gram terms (irrelevant terms are italicized and marked with *).

C-value F-TFIDF-C LIDF-value

1 t cell t cell t cell

2 nf-kappa b nf-kappa b Transcription factor

3 Transcription factor kappa b nf-kappa b

4 Gene expression b cell cell line

5 kappa b Class ii b cell

6 Cell line Glucocorticoid receptor Gene expression

7 b cell b activation * kappa b

8 Peripheral blood b alpha * t lymphocyte

9 t lymphocyte Reporter gene Dna binding

10 Nuclear factor Endothelial cell i kappa *

11 Protein kinase Cell cycle Binding site

12 Class ii b lymphocyte Protein kinase

13 b activation * nf kappa * Glucocorticoid receptor

14 Human t nf-kappab activation Tumor necrosis

15 Tyrosine phosphorylation u937 cell Binding activity

16 dna binding mhc class * Tyrosine phosphorylation

17 Human immunodeficiency * c ebp* Shift assay *

18 Binding site il-2 promoter Immunodeficiency virus

19 Necrosis factor * Monocytic cell Signal transduction

20 Mobility shift t-cell leukemia Mobility shift
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the precision by intervals. One parameter is involved in the computation of graph-based

term weights, i.e. the threshold of Dice value which represents the relation when building

the term graph. This involves linking terms whose Dice value of the relation is higher than

threshold. We vary threshold (d) within d ¼ ½0:25; 0:35; 0:50; 0:60; 0:70� and report the

precision performance for each of these values. Table 13 gives the precision performance

obtained by TeRGraph and shows that it is well adapted for ATE.

Web-based results Our web-based approach is applied at the end of the process, with

only the first 1000 terms extracted during the previous linguistic, statistic and graph

measures. For space reasons, we show only the results obtained with WAHI, which are

higher than WebR.

Table 11 Comparison of the top-10 ranked 3-gram terms (irrelevant terms are italicized and marked with *)

C-value F-TFIDF-C LIDF-value

1 Human immunodeficiency virus kappa b alpha * i kappa b

2 kappa b alpha * nf kappa b Human immunodeficiency virus

3 Tumor necrosis factor Jurkat t cell Electrophoretic mobility shift

4 Electrophoretic mobility shift Human t cell Human t cell

5 nf-kappa b activation mhc class ii Mobility shift assay

6 Virus type 1 * cd4þ t cell kappa b alpha *

7 Protein kinase c c-fos and c-jun * Tumor necrosis factor

8 Long terminal repeat Peripheral blood monocyte nf-kappa b activation

9 nf kappa b t cell proliferation Protein kinase c

10 Jurkat t cell Transcription factor nf-kappa * Jurkat t cell

Table 12 Comparison of the top-10 ranked 4þ gram terms (irrelevant terms are italicized and marked
with *)

C-value F-TFIDF-C LIDF-value

1 Human immunodeficiency virus
type 1

Transcription factor nf-
kappa b

i kappa b alpha

2 Human immunodeficiency virus
type *

Expression of nf-kappa b * Electrophoretic mobility shift
assay

3 Immunodeficiency virus type 1 * Tumor necrosis factor alpha Human immunodeficiency virus
type *

4 Activation of nf-kappa b Normal human t cell Human t-cell leukemia virus

5 Nuclear factor kappa b Primary human t cell Nuclear factor kappa b

6 Tumor necrosis factor alpha Germline c epsilon
transcription

Tumor necrosis factor alpha

7 Human t-cell leukemia viru * gm-csf receptor alpha
promoter

t-cell leukemia virus type *

8 Human t-cell leukemia virus type
*

il-2 receptor alpha chain Activation of nf-kappa b

9 t-cell leukemia virus type * Transcription from the gm-
csf *

Peripheral blood t cell

10 Electrophoretic mobility shift
assay

Translocation of nf-kappa b
*

Major histocompatibility complex
class
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We took the list obtained with TeRGraph and d� 0:60. The main reason for this

limitation is the limited number of automatic queries possible in search engines. At this

step, the aim is to re-rank the 1000 terms to try to improve the precision by intervals. Each

measure listed in Table 14 and Table 15 shows the precision obtained after re-ranking. We

tested WAHI with Yahoo and Bing search engines.

Table 14 and Table 15 prove that WAHI (either using Yahoo or Bing) is well adapted for

ATE and this measure obtains better precision results than the baselines measures for word

association. So our measures obtain real terms of our dictionary with a better ranking.

Table 13 Precision performance
of TeRGraph when varying d
(threshold parameter for Dice)

The values in bold correspond to
the best obtained results

TeRGraph

d� 0:25 d� 0:35 d� 0:50 d� 0:60 d� 0:70

P@100 0.840 0.860 0.910 0.930 0.900

P@200 0.800 0.790 0.850 0.855 0.855

P@300 0.803 0.773 0.833 0.830 0.820

P@400 0.780 0.732 0.820 0.820 0.815

P@500 0.774 0.712 0.798 0.810 0.806

P@600 0.773 0.675 0.797 0.807 0.792

P@700 0.760 0.647 0.769 0.796 0.787

P@800 0.756 0.619 0.748 0.784 0.779

P@900 0.748 0.584 0.724 0.773 0.777

P@1000 0.751 0.578 0.720 0.766 0.769

P@2000 0.689 0.476 0.601 0.657 0.694

P@3000 0.642 0.522 0.535 0.605 0.644

P@4000 0.612 0.540 0.543 0.559 0.593

P@5000 0.574 0.546 0.544 0.554 0.562

P@6000 0.558 0.539 0.540 0.549 0.561

P@7000 0.556 0.540 0.540 0.545 0.552

P@8000 0.546 0.546 0.546 0.546 0.546

Table 14 Precision comparison
of WAHI with YAHOO and word
association measures

WAHI Dice Jaccard Cosine Overlap

P@100 0.960 0.720 0.720 0.760 0.730

P@200 0.950 0.785 0.770 0.740 0.765

P@300 0.900 0.783 0.780 0.767 0.753

P@400 0.900 0.770 0.765 0.770 0.740

P@500 0.920 0.764 0.754 0.762 0.738

P@600 0.850 0.748 0.740 0.765 0.748

P@700 0.817 0.747 0.744 0.747 0.757

P@800 0.875 0.752 0.746 0.740 0.760

P@900 0.870 0.749 0.747 0.749 0.747

P@1000 0.766 0.766 0.766 0.766 0.766
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4.3.4 Summary

LIDF-value obtains the best precision results for multi-word term extraction, for each

index term extraction (n-gram) and for intervals.

Table 16 presents a precision comparison of LIDF-value and TeRGraph measures. In

terms of overall precision, our experiments produce consistent results from the GENIA

corpus. In most cases, TeRGraph obtains better precision with a d of 0.60 and 0.70 (i.e.

better precision in most P@k intervals), which is very good because it helps alleviate the

problem of manual validation of candidate terms. These precisions are also illustrated in

Fig. 10.

The performance of our graph-based measure somewhat depends on the value of the co-

occurrence relation between terms. Specifically, the value of the co-occurrence relation

Table 15 Precision comparison
of WAHI with BING and word
association measures

The values in bold correspond to
the best obtained results

WAHI Dice Jaccard Cosine Overlap

P@100 0.900 0.740 0.730 0.680 0.650

P@200 0.900 0.775 0.775 0.735 0.705

P@300 0.900 0.770 0.763 0.740 0.713

P@400 0.900 0.765 0.765 0.752 0.712

P@500 0.900 0.760 0.762 0.758 0.726

P@600 0.917 0.753 0.752 0.753 0.743

P@700 0.914 0.751 0.751 0.733 0.749

P@800 0.875 0.745 0.747 0.741 0.754

P@900 0.878 0.747 0.748 0.742 0.748

P@1000 0.766 0.766 0.766 0.766 0.766

Table 16 Precision comparison
of LIDF-value and TeRGraph

The values in bold correspond to
the best obtained results

LIDF-value TeRGraph TeRGraph
(d� 0:60) (d� 0:70)

P@100 0.820 0.930 0.900

P@200 0.770 0.855 0.855

P@300 0.750 0.830 0.820

P@400 0.738 0.820 0.815

P@500 0.718 0.810 0.806

P@600 0.723 0.807 0.792

P@700 0.717 0.796 0.787

P@800 0.710 0.784 0.779

P@900 0.714 0.773 0.777

P@1000 0.697 0.766 0.769

P@2000 0.662 0.657 0.694

P@3000 0.627 0.605 0.644

P@4000 0.608 0.5585 0.593

P@5000 0.575 0.5538 0.562

P@6000 0.550 0.549 0.561

P@7000 0.547 0.545 0.552

P@8000 0.546 0.546 0.546
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affects how the graph is built (whose edges are taken), and hence it is critical for com-

putation of the graph-based term weight. Another performance factor of our graph-based

measure is the quality of the results obtained with LIDF-value due to the fact that the list of

terms extracted with LIDF-value is required as input to re-rank TeRGraph in order to

construct the graph, where nodes denote terms, and edges denote co-occurrence relations.

Table 17 presents the precision comparison of our three measures.

WAHI based on Yahoo obtains better precision for the first P@100 extracted terms with

96 % precision whereas, in comparison, WAHI based on Bing obtains 90 precision. For the

other interval, Table 17 shows that WAHI based on Bing generally gives the best results.

This is very encouraging because it also helps alleviate the problem of manual validation

of candidate terms.

The performance of WAHI depends on the search engine because algorithms designed

for searching information on the web are different, so the number of hits returned will

Fig. 10 Precision comparison of LIDF-value and TeRGraph

Table 17 Precision comparison
LIDF-value, TeRGraph, and
WAHI

The values in bold correspond to
the best obtained results

LIDF-value TeRGraph WAHI WAHI
(d� 0:60) (Bing) (Yahoo)

P@100 0.820 0.930 0.900 0.960

P@200 0.770 0.855 0.900 0.950

P@300 0.750 0.830 0.900 0.900

P@400 0.738 0.820 0.900 0.900

P@500 0.718 0.810 0.900 0.920

P@600 0.723 0.807 0.917 0.850

P@700 0.717 0.796 0.914 0.817

P@800 0.710 0.784 0.875 0.875

P@900 0.714 0.773 0.878 0.870

P@1000 0.697 0.766 0.766 0.766

Inf Retrieval J

123



differ in all cases. Another performance factor is the quality of the re-ranked list obtained

with TeRGraph, because this list is required as input.

Moreover, Table 17 highlights that re-ranking with WAHI enables us to increase the

precision of TeRGraph. For all cases, our re-ranking methods improve the precision

obtained with LIDF-value. The purpose for which this web-mining measure was designed

has thus been fulfilled.

Note that these measures do not normalize the possible variants. This could be a

limitation for researchers looking for a preferred term for a group of variants.

Table 18 Details of Cirad corpus

Number of Titles/Abstracts Number of Words

English 156 29,740 words

French 84 14,850 words

Table 19 Precision comparison of term extraction with agronomic and biomedical Patterns

With agronomic patterns With biomedical patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000

English (single- and multi-word terms)

C-value 0.910 0.825 0.631 0.255 0.870 0.790 0.527 0.223

TF�IDFS 0.900 0.830 0.667 0.335 0.810 0.845 0.587 0.284

OkapiS 0.910 0.865 0.680 0.331 0.870 0.845 0.625 0.281

F�OCapiM 0.640 0.600 0.419 0.273 0.660 0.605 0.403 0.252

F�OCapiS 0.900 0.845 0.672 0.304 0.870 0.840 0.612 0.260

F�TFIDF�CM 0.740 0.610 0.412 0.261 0.760 0.610 0.402 0.270

F�TFIDF�CS 0.900 0.835 0.664 0.323 0.810 0.845 0.600 0.272

L-value 0.700 0.660 0.542 0.338 0.840 0.795 0.688 0.320

LIDF-value 0.920 0.875 0.766 0.340 0.880 0.855 0.682 0.320

French (single- and multi-word terms)

C-value 0.400 0.360 0.210 0.086 0.450 0.455 0.223 0.084

TF�IDFS 0.430 0.380 0.248 0.114 0.500 0.450 0.293 0.119

OkapiS 0.390 0.360 0.256 0.115 0.490 0.450 0.300 0.120

F�OCapiM 0.310 0.225 0.154 0.100 0.340 0.245 0.167 0.115

F�OCapiS 0.400 0.355 0.248 0.106 0.480 0.465 0.269 0.115

F�TFIDF�CM 0.350 0.240 0.163 0.099 0.380 0.295 0.170 0.118

F�TFIDF�CS 0.350 0.240 0.163 0.099 0.500 0.475 0.268 0.119

L-value 0.550 0.510 0.367 0.135 0.520 0.480 0.333 0.130

LIDF-value 0.560 0.535 0.367 0.135 0.510 0.510 0.336 0.130

The values in bold correspond to the best obtained results

Inf Retrieval J

123



5 Discussion

We discuss the effects of some parameters of our workflow. In the next sections, we

explain the impacts of biomedical pattern lists, size of dictionaries, and the extraction

errors.

5.1 Impact of pattern list

In our methodology, we have shown that biomedical patterns directly affect the term

extraction results. For instance, we can see that L-value, which is a combination of C-value

and the probability of pattern lists, gives better results than C-value for the three languages,

and LIDF-value outperforms L-value in major cases. These pattern lists work specifically

for the biomedical domain. If we use these biomedical patterns in another domain instead

of using specific patterns of that domain, they will impact the term extraction results. To

prove this, we have extracted terms from an agronomic corpus for English and French

while taking biomedical patterns and agronomic patterns into account. We built the

agronomic patterns using AGROVOC,17 which is an agronomic dictionary. AGROVOC

contains 39,542 and 37,382 English and French terms, respectively. Our corpus consists of

titles plus abstracts extracted from the list of Cirad publications (French Agricultural

Research Centre for International Development). Table 18 shows the details of the corpus

formed for this comparison.

Table 19 presents a term extraction comparison while taking patterns built from two

different domains into account. Again we note that LIDF-value obtains the best results. We

also see that the results of terms extracted with agronomic patterns give better results than

when using biomedical patterns for English and French.

Note that even if the term extraction results obtained using agronomic patterns are

higher than using biomedical patterns, these results are a bit close. The main reason is that

the biomedical and agronomic terms overlap. It means that identical patterns exist in both

domains. The results could be improved by using patterns of two completely different

domains.

5.2 Effect of dictionary size

Dictionaries play an important role in term extraction, specifically during the construction

of pattern lists. Table 19 shows that a reduction in dictionary size degrades the perfor-

mance of the precision results in comparison to Tables 5, 6, and 8. For instance, for the

agronomic and biomedical domain, Tables 19 and 5 show the P@100 of 0.92 and 1.00

respectively, and this difference increases as the number of extracted terms increases (i.e.

P@k).

5.3 Term extraction errors

As explained in Sect. 3 (step a), the term extraction results are influenced by the Part-of-

Speech (PoS) tagging tools, which have different results for different languages. Briefly,

the tool ‘‘A’’ can perform very well for English, while for French the tool ‘‘B’’ gives the

best results. For instance, the sentence ‘‘Red blood cells increase with ...’’ was tagged with

17 http://aims.fao.org/agrovoc.
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the Stanford tool as ‘‘adjective noun noun verb preposition ...’’, whereas the TreeTagger

tool tagged it as ‘‘adjective noun noun noun preposition ...’’. Therefore, in order to show

the generality of our approach, we choose a uniform PoS tool, i.e. TreeTagger, as a trade-

off for three languages (English, French, and Spanish), while understanding that it will

penalize the results for the three languages.

6 Conclusions and future work

This paper defines and evaluates several measures for automatic multi-word term extrac-

tion. These measures are classified as ranking measures, and re-ranking measures. The

measures are based on the linguistic, statistical, graphic and web information. We modified

some baseline measures (i.e. C-value, TF-IDF, Okapi) and we proposed new measures.

All the ranking measures are linguistic- and statistic-based. The best ranking measure is

LIDF-value, which overcomes the lack of frequency information with the linguistic pattern

probability and idf values.

We experimentally showed that LIDF-value applied in the biomedical domain, over two

corpora (i.e. LabTestsOnline, GENIA), outperformed a state-of-the-art baseline for

extracting terms (i.e. C-value), while obtaining the best precision results in all intervals

(i.e. P@k). And with three languages the LIDF-value trends were similar.

We have shown that multi-word term extraction is more complex than single-word term

extraction. We detailed an evaluation over the GENIA corpus for multi-word term

extraction. Moreover, in that case, LIDF-value improved the automatic term extraction

precision in comparison to the most popular term extraction measure.

We also evaluated the re-ranking measures. The first re-ranking measure, TeRGraph, is

a graph-based measure. It decreases the human effort required to validate candidate terms.

The graph-based measure has never been applied for automatic term extraction. TeRGraph

takes the neighborhood to compute the term representativeness in a specific domain into

account.

The other re-ranking measures are web-based. The best one, called WAHI, takes the list

of terms obtained with TeRGraph as input. WAHI enables us to further reduce the huge

human effort required for validating candidate terms.

Our experimental evaluations revealed that TeRGraph had better precision than LIDF-

value for all intervals. Moreover, our experimental assessments revealed that WAHI

improved the results given with TeRGraph for all intervals.

As a future extension of this work, we intend to use the relation value within TeRGraph.

We plan to include the use of other graph ranking computations, e.g. PageRank, adapted

for automatic term extraction. Moreover, a future work consists of using the web to extract

more terms than those extracted.

One prospect could be the creation of a regular expression for the biomedical domain

from the linguistic pattern list. We plan to modify our measures in order to normalize the

possible variants, looking towards for a preferred term for those variants.
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Daille, B., Gaussier, E., & Langé, J.-M. (1994). Towards automatic extraction of monolingual and bilingual
terminology. In Proceedings of the 15th conference on computational linguistics—Volume 1, COL-
ING’94, pages 515–521, Stroudsburg, PA, USA. Association for Computational Linguistics.

Daille, B., & Morin, E. (2005). French-english terminology extraction from comparable corpora. In Pro-
ceedings of the 2nd international joint conference natural language processing (pp. 707–718).
IJCNLP’05. Springer.
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