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Abstract Terminology extraction is an essential task in domain knowledge acquisition,
as well as for information retrieval. It is also a mandatory first step aimed at building/
enriching terminologies and ontologies. As often proposed in the literature, existing ter-
minology extraction methods feature linguistic and statistical aspects and solve some
problems related (but not completely) to term extraction, e.g. noise, silence, low frequency,
large-corpora, complexity of the multi-word term extraction process. In contrast, we
propose a cutting edge methodology to extract and to rank biomedical terms, covering all
the mentioned problems. This methodology offers several measures based on linguistic,
statistical, graphic and web aspects. These measures extract and rank candidate terms with
excellent precision: we demonstrate that they outperform previously reported precision
results for automatic term extraction, and work with different languages (English, French,
and Spanish). We also demonstrate how the use of graphs and the web to assess the
significance of a term candidate, enables us to outperform precision results. We evaluated
our methodology on the biomedical GENIA and LabTestsOnline corpora and compared it
with previously reported measures.
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1 Introduction

The huge amount of biomedical data available today often consists of plain text fields, e.g.
clinical trial descriptions, adverse event reports, electronic health records, emails or notes
expressed by patients within forums (Murdoch and Detsky 2013). These texts are often
written using a specific language (expressions and terms) of the associated community.
Therefore, there is a need for formalization and cataloging of these technical terms or
concepts via the construction of terminologies and ontologies (Rubin et al. 2008). These
technical terms are also important for information retrieval (IR), for instance when
indexing documents or formulating queries. However, as the task of manually extracting
terms of a domain is very long and cumbersome, researchers have striving to design
automatic methods to assist knowledge experts in the process of cataloging the terms and
concepts of a domain under the form of vocabularies, thesauri, terminologies or ontologies.

Automatic term extraction (ATE), or automatic term recognition (ATR), is a domain
which aims to automatically extract technical terminology from a given text corpus. We
define technical terminology as the set of terms used in a domain. Term extraction is an
essential task in domain knowledge acquisition because the technical terminology can be
used for lexicon updating, domain ontology construction, summarization, named entity
recognition or, as previously mentioned, IR.

In the biomedical domain, there is a substantial difference between existing resources
(hereafter called ferminologies or ontologies) in English, French, and Spanish. In English,
there are about 9,919,000 terms associated with about 8,864,000 concepts such as those in
UMLS' or BioPortal (Noy et al. 2009). Whereas in French there are only about 330,000
terms associated with about 160,000 concepts (Névéol et al. 2014), and in Spanish
1,172,000 terms associated with about 1,140,000 concepts. Note the strong difference in
the number of ontologies and terminologies available in French or Spanish. This makes
ATE even more important for these languages.

In biomedical ontologies, different terms may be linked to the same concept and are
semantically similar with different writing, for instance “neoplasm” and “cancer” in
MeSH or SNOMED-CT. Ontologies also contain terms with morphosyntaxic variants, for
instance plurals like *‘external fistula” and “external fistulas”, and this group of variants is
linked to a preferred term. As one of our goals is to extract new terms to enrich ontologies,
our approach does not normalize variant terms, mainly because normalization would lead
to penalization in extracting new variant terms. Technical terms are useful to gain further
insight into the conceptual structure of a domain. These may be: (i) single-word terms
(simple), or (ii) multi-word terms (complex). The proposed study focuses on both cases.

Term extraction methods usually involve two main steps. The first step extracts can-
didate terms by unithood calculation to qualify a string as a valid term, while the second
step verifies them through termhood measures to validate their domain specificity. For-
mally, unithood refers to the degree of strength or stability of syntagmatic combinations
and collocations, and termhood is defined as the degree to which a linguistic unit is related
to domain-specific concepts (Kageura and Umino 1996). ATE has been applied to several
domains, e.g. biomedical (Lossio-Ventura et al. 2014c; Frantzi et al. 2000; Zhang et al.
2008; Newman et al. 2012), ecological (Conrado et al. 2013), mathematical (Stoykova and
Petkova 2012), social networks (Lossio-Ventura et al. 2012), banking (Dobrov and Lou-
kachevitch 2011), natural sciences (Dobrov and Loukachevitch 2011), information

! http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html.
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technology (Newman et al. 2012; Yang et al. 2009), legal (Yang et al. 2009), as well as
post-graduate school websites (Qureshi et al. 2012).

The main issues in ATE are: (i) extraction of non-valid terms (noise) or omission of
terms with low frequency (silence), (ii) extraction of multi-word terms having various
complex various structures, (iii) manual validation efforts of the candidate terms (Conrado
et al. 2013), and (iv) management of large-scale corpora. Inspired by our previously
published results and in response to the above issues, we propose a cutting edge
methodology to extract biomedical terms. We propose new measures and some modifi-
cations of existing baseline measures. Those measures are divided into: (1) ranking
measures, and (2) re-ranking measures. Our ranking measures are statistical- and linguistic-
based and address issues (i), (ii) and (iv). Our two re-ranking measures the first one called
TeRGraph is a graph-based measure which deals with issues (i), (ii) and (iii). The second
one, called WAHI, is a web-based measure which also deals with issues (i), (ii) and (iii).
The novelty of the WAHI measure is that it is web-based which has, to the best of our
knowledge, never been applied within ATE approaches.

The main contributions of our article are: (1) enhanced consideration of the term
unithood, by computing a degree of quality for the term unithood, and, (2) consideration of
the term dependence in the ATE process. The quality of the proposed methodology is
highlighted by comparing the results obtained with the most commonly used baseline
measures. Our evaluation experiments were conducted despite difficulties in comparing
ATE measures, mainly because of the size of the corpora used and the lack of available
libraries associated with previous studies. Our three measures improve the process of
automatic extraction of domain-specific terms from text collections that do not offer
reliable statistical evidence (i.e. low frequency).

The paper is organized as follows. We first discuss related work in Sect. 2. Then the
methodology to extract biomedical terms is detailed in Sect. 3. The results are presented in
Sect. 4, followed by discussions in Sect. 5, and finally, the conclusions in Sect. 6.

2 Related work

Recent studies have focused on multi-word (n-grams) and single-word (unigrams) term
extraction. Term extraction techniques can be divided into four broad categories: (i) Lin-
guistic, (ii) Statistical, (iii) Machine Learning, and (iv) Hybrid. All of these techniques are
encompassed in Text Mining approaches. Graph-based approaches have not yet been
applied to ATE, although they have been successively adopted in other information
retrieval fields and could be suitable for our purpose. Existing web techniques have not
been applied to ATE but, as we will see, these techniques can be adapted for such
purposes.

2.1 Text mining approaches

2.1.1 Linguistic approaches

These techniques attempt to recover terms via linguistic pattern formation. This involves
building rules to describe naming structures for different classes based on orthographic,

lexical, or morphosyntactic characteristics, e.g. Gaizauskas et al. 2000. The main approach
is to develop rules (typically manually) describing common naming structures for certain
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term classes using orthographic or lexical clues, or more complex morpho-syntactic fea-
tures. Moreover, in many cases, dictionaries of typical term constituents (e.g. termino-
logical heads, affixes, and specific acronyms) are used to facilitate term recognition
(Krauthammer and Nenadic December 2004). A recent study on biomedical term extrac-
tion (Golik et al. 2013) is based on linguistic patterns plus additional context-based rules to
extract candidate terms, which are not scored and the authors leave the term relevance
decision to experts.

2.1.2 Statistical methods

Statistical techniques chiefly rely on external evidence presented through surrounding
(contextual) information. Such approaches are mainly focused on the recognition of
general terms (Eck et al. 2010). The most basic measures are based on frequency. For
instance, term frequency (tf) counts the frequency of a term in the corpus, document
frequency (df) counts the number of documents where a term occurs, and average term
frequency (atf), which is l%.

A similar research topic, called automatic keyword extraction (AKE), proposes to
extract the most relevant words or phrases in a document using automatic indexation.
Keywords, which we define as a sequence of one or more words, provide a compact
representation of a document’s content. Such measures can be adapted to extract terms
from a corpus as well as ATE measures. We take two popular AKE measures as baselines
measures, i.e. Term Frequency Inverse Document Frequency (TF-IDF) (Salton and
Buckley 1988), and Okapi BM25 (Robertson et al. 1999) (hereafter Okapi), these weight
the word frequency according to their distribution along the corpus. Residual inverse
document frequency (RIDF) compares the document frequency to another chance model
where terms with a particular term frequency are distributed randomly throughout the
collection, while Chi-square (Matsuo and Ishizuka 2004) assesses how selectively words
and phrases co-occur within the same sentences as a particular subset of frequent terms in
the document text. This is applied to determine the bias of word co-occurrences in the
document text, which is then used to rank words and phrases as keywords of the document;
RAKE (Rose et al. 2010) hypothesises that keywords usually consist of multiple words and
do not contain punctuation or stop words. It uses word co-occurrence information to
determine the keywords.

2.1.3 Machine learning

Machine Learning (ML) systems are often designed for specific entity classes and thus
integrate term extraction and term classification. Machine Learning systems use training
data to learn features useful for term extraction and classification. But the availability of
reliable training resources is one of the main problems. Some proposed ATE approaches
use machine learning (Conrado et al. 2013; Zhang et al. 2010; Newman et al. 2012).
However, ML may also generate noise and silence. The main challenge is how to select a
set of discriminating features that can be used for accurate recognition (and classification)
of term instances. Another challenge concerns the detection of term boundaries, which are
the most difficult to learn.
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2.1.4 Hybrid methods

Most approaches combine several methods (typically linguistic and statistically based) for
the term extraction task. GlossEx (Kozakov et al. 2007) considers the probability of a word
in the domain corpus divided by the probability of the appearance of the same word in a
general corpus. Moreover, the importance of the word is increased according to its fre-
quency in the domain corpus. Weirdness (Ahmad et al. 1999) considers that the distri-
bution of words in a specific domain corpus differs from that in a general corpus. C/NC-
value (Frantzi et al. 2000) combines statistical and linguistic information for the extraction
of multi-word and nested terms. This is the most well-known measure in the literature.
While most studies address specific types of entities, C/NC-value is a domain-independent
method. It has also been used for recognizing terms in the biomedical literature (Hliaou-
takis et al. 2009; Hamon et al. 2014). In (Zhang et al. 2008), the authors showed that C-
value obtains the best results compared to the other measures cited above. C-value has
been also modified to extract single-word terms (Nakagawa and Mori 2002), and in this
work the authors extract only terms composed of nouns. Moreover, C-value has also been
applied to different languages other than English, e.g. Japanese, Serbian, Slovenian, Polish,
Chinese (Ji et al. 2007), Spanish (Barron-Cedefo et al. 2009), Arabic, and French. We
have thus chosen C-value as one of our baseline measure. Those baseline measures will be
modified and evaluated with the new proposed measures.

Terminology extraction from parallel and comparable corpora Another kind of approach
suggests that terminology may be extracted from parallel and/or comparable corpora. Par-
allel corpora contain texts and their translation into one or more languages, but such corpora
are scarce (Bowker and Pearson 2002). Thus parallel corpora are scarce for specialized
domains. Comparable corpora are those which select similar texts in more than one language
or variety (Déjean and Gaussier 2002). Comparable corpora are built more easily than
parallel corpora. They are often used for machine translation and their approaches are based
on linguistics, statistics, machine learning, and hybrid methods. The main objective of these
approaches is to extract translation pairs from parallel/comparable corpora. Different studies
propose translation of biomedical terms for English-French by alignment techniques
(Deléger et al. 2009). English—Greek and English-Romanian bilingual medical dictionaries
are also constructed with a hybrid approach that combines semantic information and term
alignments (Kontonatsios et al. 2014b). Other approaches are applied for single- and multi-
word terms with English—French comparable corpora (Daille and Morin 2005). The authors
use statistical methods to align elements by exploiting contextual information. Another study
proposes to use graph-based label propagation (Tamura et al. 2012). This approach is based
on a graph for each language (English and Japanese) and the application of a similarity
calculus between two words in each graph. Moreover, some machine learning algorithms can
be used, e.g. the logistic regression classifier (Kontonatsios et al. 2014a). There are also
approaches that combine both corpora (Morin and Prochasson 2011) (i.e. parallel and
comparable) in an approach to reinforce extraction. Note that our corpora are not parallel and
are far of being comparable because of the difference in their size. Therefore these
approaches are not evaluated in our study.

2.1.5 Tools and applications for biomedical term extraction

There are several applications implementing some measures previously mentioned, espe-
cially C-value for biomedical term extraction. The study of related tools revealed that most
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existing systems that especially implement statistical methods are made to extract key-
words and, to a lesser extent, to extract terminology from a text corpus. Indeed, most
systems take a single text document as input, not a set of documents (as corpus), for which
the IDF can be computed. Most systems are available only in English and the most relevant
for the biomedical domain are:

e TerMine®, developed by the authors of the C-value method, only for English term
extraction;

e Java Automatic Term Extraction® (Zhang et al. 2008), a toolkit which implements
several extraction methods including C-value, GlossEx, TermEx and offer other
measures such as frequency, average term frequency, IDF, TF-IDF, RIDF;

e FlexiTerm* (Spasic et al. 2013), a tool explicitly evaluated on biomedical copora and
which offer more flexibility than C-value when comparing term candidates (treating
them as bag of words and ignoring the word order);

e BioYaTeA® (Golik et al. 2013), is a version of the YaTeA term extractor (Aubin and
Hamon 2006), both are available as a Perl module. It is a biomedical term extractor.
The method used is based only on linguistic aspects.

e BioTex® (Lossio-Ventura et al. 2014a), only for biomedical terminology extraction. It is
available for online testing and assessment but can also be used in any program as a
Java library (POS tagger not included). In contrast to other existing systems, this
system allows us to analyze French and Spanish corpora, manually validate extracted
terms and export the list of extracted terms.

2.2 Graph-based approaches

Graph modeling is an alternative for representing information, which clearly highlights
relationships of nodes among vertices. It also groups related information in a specific way,
and a centrality algorithm can be applied to enhance their efficiency. Centrality in a graph
is the identification of the most important vertices within a graph. A host of measures have
been proposed to analyze complex networks, especially in the social network domain
(Borgatti 2005; Borgatti et al. 2009; Banerjee et al. 2014). Freeman (1979), formalized
three different measures of node centrality: degree, closeness and betweenness. Degree is
the number of neighbors that a node is connected to. Closeness is the inverse sum of
shortest distances to all other neighbor nodes. Betweenness is the number of shortest paths
from all vertices to all others that pass through that node. One study proposes to take the
number of edges and their weights into account (Opsahl et al. 2010), since the three last
measures do not do this. Another well known measure is PageRank (Page et al. 1999),
which ranks websites. Boldi and Vigna (2014), evaluated the behavior of ten measures, and
associated the centrality to the node with largest degree. Our approach proposes the
opposite, i.e. we focus on nodes with a lower degree. An increasingly popular recent
application of graph approaches to IR concerns social or collaborative networks and rec-
ommender systems (Noh et al. 2009; Banerjee et al. 2014).

http://www.nactem.ac.uk/software/termine/.

3 https://code.google.com/p/jatetoolkit/.

4 http://users.cs.cf.ac.uk/I.Spasic/flexiterm/.
5 http://search.cpan.org/ ~ bibliome/Lingua-BioYaTeA/.

S http://tubo.lirmm.fr/biotex/.
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Graph representations of text and scoring function definition are two widely explored
research topics, but few studies have focused on graph-based IR in terms of both document
representation and weighting models (Rousseau and Vazirgiannis 2015). First, text is
modeled as a graph where nodes represent words and edges represent relations between
words, defined on the basis of any meaningful statistical or linguistic relation (Blanco and
Lioma 2012). In Blanco and Lioma (2012), the authors developed a graph-based word
weighting model that represents each document as a graph. The importance of a word
within a document is estimated by the number of related words and their importance, in the
same way that PageRank (Page et al. 1999) estimates the importance of a page via the
pages that are linked to it. Another study introduces a different representation of document
that captures relationships between words by using an unweighted directed graph of words
with a novel scoring function (Rousseau and Vazirgiannis 2015).

In the above approaches, graphs are used to measure the influence of words in docu-
ments like automatic keyword extraction methods (AKE), while ranking documents
against queries. These approaches differ from ours as they use graphs focused on the
extraction of relevant words in a document and computing relations between words. In our
proposal, a graph is built such that the vertices are multi-word terms and the edges are
relations between multi-word terms. Moreover, we focus especially on a scoring function
of relevant multi-word terms in a domain rather than in a document.

2.3 Web mining approaches

Different web mining studies focus on semantic similarity, semantic relatedness. This
means quantifying the degree to which some words are related, considering not only
similarity but also any possible semantic relationship among them. The word association
measures can be divided into three categories (Chaudhari et al. 2011): (i) co-occurrence
measures that rely on co-occurrence frequencies of both words in a corpus, (ii) distribu-
tional similarity-based measures that characterize a word by the distribution of other words
around it, and (iii) knowledge-based measures that use knowledge-sources like thesauri,
semantic networks, or taxonomies (Harispe et al. 2014). In this paper, we focus on co-
occurrence measures because our goal is to extract multi-word terms and we suggest
computing a degree of association between words composing a term. Word association
measures are used in several domains like ecology, psychology, medicine, and language
processing, and were recently studied in (Pantel et al. 2009; Zadeh and Goel 2013), such as
Dice, Jaccard, Overlap, Cosine. Another measure to compute the association between
words using web search engines results is the Normalized Google Distance (Cilibrasi and
Vitanyi 2007), which relies on the number of times words co-occur in the document
indexed by an information retrieval system. In this study, experimental results with our
web-based measure will be compared with the basic measures (Dice, Jaccard, Overlap,
Cosine).

3 Methodology

This section describes the baseline measures, their modifications as well as new measures
that we propose for the biomedical term extraction task. The principle of our approach is to
assign a weight to a term, which represents the appropriateness of being a relevant
biomedical term. This allows to give as output a list ranked by their appropriateness. Our
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Fig. 1 Workflow methodology for biomedical term extraction

methodology for automatic term extraction has three main steps plus an additional step (a),
described in Fig. 1, and in the sections hereafter:

(a) Pattern construction,

(1) Candidate term extraction,

(2) Ranking of candidate terms,

(3) Re-ranking.

3.1 Pattern construction (step a)

As previously cited, we supposed that biomedical terms have a similar syntactic structure
(linguistic aspect). Therefore, we built a list of the most common linguistic patterns
according to the syntactic structure of terms present in the UMLS’ (for English and
Spanish), and the French version of MeSH,® SNOMED International and the rest of the
French content in the UMLS.

Part-of-Speech (POS) tagging is the process of assigning each word in a text to its
grammatical category (e.g. noun, adjective). This process is performed based on the def-
inition of the word or on the context in which it appears. This is highly time-consuming, so
we conducted automatic part-of-speech tagging.

7 http://www.nlm.nih.gov/research/umls.
8 http://mesh.inserm.fr/mesh/.
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Table 1 Example of pattern construction (where NN is a noun, IN a preposition or subordinating con-
junction, JJ an adjective, and CD a cardinal number)

Pattern Frequency Probability

NN IN JJ NN IN JJ NN 3006 3006/4113 = 0.73

NN CD NN NN NN 1107 1107/4113 = 0.27
4113 1.00

We evaluated three tools (TreeTagger,” Stanford Tagger,'® and Brill’s tagger'"). This
evaluation was carried out throughout the entire workflow with the three tools and we
assessed the precision of the extracted terms. We noted that in general TreeTagger gave the
best results for Spanish and French. Meanwhile, for English, the Stanford tagger and
TreeTagger gave similar results. We finally chose TreeTagger, which gave better results
and may be used for English, French and Spanish. Moreover, our choice was validated with
regard to a recent comparison study (Tian and Lo 2015), wherein the authors showed that
TreeTagger generally gives the best results, particularly for nouns and verbs.

Therefore, we carried out automatic part-of-speech tagging of the biomedical terms
using TreeTagger, and then computed the frequency of the syntactic structures. Patterns
among the 200 highest frequencies were selected to build the list of patterns for each
language. From this list, we also computed the weight (probability) associated with each
pattern, i.e. the frequency of the pattern over the sum of frequencies (see Algorithm 1), but
this weight will only be used for one measure. The number of terms used to build these lists
of patterns was 3,000,000 for English, 300,000 for French, and 500,000 for Spanish, taken
from the previously mentioned terminologies. Table 1 illustrates the computation of the
linguistic patterns and their weights for English.

Different terminology extraction studies are based on the use of regular expressions to
extract candidate terms, for instance (Frantzi et al. 2000). Generally these regular
expressions are manually built for a specific language and/or domain (Daille et al. 1994).
In our setting, we prefer to (i) construct and (ii) apply patterns in order to extract terms in
texts. These patterns have the advantage of being generic because they are based on
defined PoS tags. Moreover, they are very specific because they are (automatically) built
with specialized biomedicine resources. Concerning this last point, we can consider we are
close to the use of regular expressions. There are two main reasons that we use specific
linguistic patterns. First, we would like to restrict the patterns to the biomedical domain.
For instance, biomedical terms often contain numbers in their syntactic structure, and this
is very specific to the biomedical domain, e.g. “epididymal protein 9”, “pargyline 10 mg”.
General patterns do not enable extraction of such terms. Our methodology is based on 200
significant patterns for English, French, or Spanish, yet different for each language. For
instance, there are 55 patterns for English that contain numbers in the linguistic structure.
Thus, this kind of pattern seems quite relevant for this domain. The second reason for using
lexical patterns is that we assign a probability of occurrence to each pattern, which would
not be possible with classical patterns and regular expressions.

® http://www.cis.uni-muenchen.de/ ~ schmid/tools/Tree Tagger/.
10 hitp://mlp.stanford.edu/software/tagger.shtml.
" http://en.wikipedia.org/wiki/Brill_tagger.
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Algorithm 1: ComputePatterns (Dictionary, np)

Data: Dictionary = dictionary of a domain, np = number of patterns to use
Result: HTpatterns(pattern, probability) = Hashtable of the first np linguistic
patterns with its probability

begin
HTpa,tternS — @;
HTouz(tag, freq) < 0 // Hashtable of the tag of each term with its frequency ;
size HT «— number of terms in Dictionary;
freqiotar <— 0
probability «— 0.0 ;
Tag of the Dictionary;
for tag of each term € Dictionary do

if tag € HTquas then

‘ update HTyyuz(tag, freq+ 1);
else
‘ add HT guz(tag, 1);

end
end
Rank HTyuz(tag, freq) by the freg;
fTGQtoml — Z;Lﬁl freq(HTaUﬂ? (7’))7
fori=1;i<np; i++ do

probability «— fredqiotal

add HTpatterns(tag(HTauz (7)), probability);
end

end

3.2 Candidate term extraction (step 1)

The first main step is to extract the candidate terms. So we apply part-of-speech to the
whole corpus using TreeTagger. Then we filter out the content of our input corpus using
previously computed patterns. We select only terms whose syntactic structure is in the
patterns list. The pattern filtering is specifically done on a per-language basis (i.e. when the
text is in French, only the French list of patterns is used).

3.3 Ranking of candidate terms (step 2)

We need to select the most appropriate terms for the biomedical domain. Candidate term
ranking is therefore essential. For this purpose, several measures are proposed and
Fig. 1(2) shows the set of available measures. We propose some modifications of the most
known measures in the literature (i.e. C-value, TF-IDF, Okapi), and propose new ones (i.e.
F-TFIDF-C, F-OCapi, LIDF-value, L-value). Those measures are linguistic- and statistic-
based, they are also not very time-consuming. In this step, only one measure will be
selected to perform the ranking. The measures of this section take a list of candidate terms
previously filtered by linguistic patterns as input, which makes it possible to assess less
invalid terms while dealing with the noise problem. In addition to the use of linguistic
patterns to alleviate the problem of the extraction of multi-word terms having various
complex structures. Moreover, the frequency decreases the number of invalid terms to
evaluate (noise). The measures mentioned above are effective on large amounts of data (Lv
and Zhai 2011a, b; Singhal et al. 1996), which overcomes the problem of large-scale
corpora. Hereafter we describe all measures.
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3.3.1 C-value

The C-value method combines linguistic and statistical information (Frantzi et al. 2000).
Linguistic information is the use of a general regular expression as linguistic patterns, and
the statistical information is the value assigned with the C-value measure based on the
frequency of terms to compute the termhood (i.e. the association strength of a term to
domain concepts). The C-value method aims to improve the extraction of long terms, and it
was specially built for extracting multi-word terms.

w(A) x f(A) if A ¢ nested

C—value(A) = w(A) x <f(A) _ ﬁ % Z f(b)) otherwise (1)
A beSa

where A is the candidate term, w(A) = log,(JA|), |Al the number of words in A, f{A) the
frequency of A in the unique document, S, the set of terms that contain A and |S4| the
number of terms in S4. In a nutshell, C-value uses either the frequency of the term if the
term is not included in other terms (first line), or decreases this frequency if the term
appears in other terms, based on the frequency of those other terms (second line).

We modified the measure in order to extract all terms (single-word + multi-words
terms), as also suggested in (Barron-Cedefio et al. 2009), but in a different manner.

The original C-value defines w(A) = log,(|A]), and we modified w(A) = log,(JA| + 1)
in order to avoid null values for single-word terms, as illustrated in Table 2. Note that we
do not use a stop word list or a frequency threshold as was originally proposed.

3.3.2 TF-IDF and Okapi

These measures are used to associate a weight to each term in a document (Salton and
Buckley 1988). This weight represents the term relevance for the document. The output is a
ranked list of terms for each document, which is often used in information retrieval so as to
order documents by their importance for a given query (Robertson et al. 1999). Okapi can
be seen as an improvement of the 7F-IDF measure, while taking the document length into
account.

TF—IDF(A, d, D) = tf(A, d) x idf(A, d) 2)
_ f(A,d)
#(4,d) = max{f(A,d) : w € d}
. _ D|
df(A,d) = log A e ay
Okapi(A,d, D) = tf pupos (A, d) X idfsaps(A, d) 3)

f(A,d) x (k +1)
(A, d) 4y x (1= b+b x G2
ID| — dc(A) +0.5

de(A) 4+ 0.5

thMZS(Avd) =

)
ideM25 (A,d) = log
where A is a term, considering d a document, D the collection of documents, f(A, d) the

frequency of A in d, tf(A, d) the term frequency of A in d, idf(A, D) the inverse document
frequency of A in D, dc(f) the number of documents containing term A, this means:
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Table 2 Calculation of w(A)

Original C-value Modified C-value
w(A) = log,(|A]) w(A) = log, (|A] + 1)
antiphospholipid antibodies log,(2) =1 log,(2+1)=1,6
white blood log,(2) =1 log,(2+1)=1,6
platelet log,(1) =0 log,(1+1)=1
Text Text ’ Text
é Term2 frerms
Term2|[Terms Terms
= Sl -

sum(S), max(M) and average(A)

Okapix(a)
TFIDFx(a)

Term1
Term2

xe {M,S, A}

Fig. 2 Merging lists

|{d € D : t € d}|, di(d) the length of the document d in number of words, dl,,, the average
document length of the collection.

As the output is a ranked list of terms per document, we could find the same term in
different documents, with different weights in each document. So we need to merge the
term into a single list. For this, we propose to merge them according to three functions,
which respectively calculate the sum(S), max(M) and average(A) of the weights of a term.
At the end of this task, we have three lists from Okapi and three lists from TF-IDF. The
notation for these lists are Okapix(A) and TF—IDFx(A), where A is the term, and X the
factor € {M, S, A}. For example, Okapiy(A) is the value obtained by taking the maximum
Okapi value for a term A in the whole corpus. Figure 2 shows the merging process.

With aim of improving the term extraction precision, we designed two new combined
measures, while taking the values obtained in the above steps into account. Both are based
on harmonic means of two values.

3.3.3 Combinations: F-OCapi and F-TFIDF-C

Considered as the harmonic mean of the two used values, this method has the advantage of
using all values of the distribution.
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Okapix (A) x C—value(A)
Okapix(A) + C—value(A)

F—O0Capix(A) =2 x

TFIDFx (A) x C—value(A)
TFIDFx(A) + C—value(A)

F—TFIDF—Cx(A) = 2 x

3.3.4 LIDF-value and L-value

In this section we present two new measures. The first one, called LIDF-value (Linguisitic
patterns, IDF, and C-value information). LIDF-value is partially presented in Lossio-
Ventura et al. (2014c). This is a new ranking measure based on linguistic and statistical
information.

Our method LIDF-value is aimed at computing the termhood for each term, using the
linguistic information calculated as described below, the idf, and the C-value of each term.
The linguistic information gives greater importance to the term unithood in order to detect
low frequency terms. So we associate the pattern weight (see Table 1) with the candidate
term probability. That means the probability of a candidate term of being a relevant
biomedical term. The probability is associated only if the syntactic structure of the term
appears in the linguistic pattern list.

The inverse document frequency (idf) is a measure indicating the extent to which a
term is common or rare across all documents. It is obtained by dividing the total number
of documents by the number of documents containing the term, and then by taking the
logarithm of that quotient. The probability and idf improve low frequency term
extraction. The objective of these two components is to tackle the silence problem,
allowing extraction of discriminant terms, for instance, in a biomedical corpus, “virus
production” with low frequency being better ranked than “human monocytic cell”,
which has a higher frequency. This means that for a low frequency candidate term, its
score can be favored if its linguistic pattern is associated with a high probability and/or
its idf value is also high. The C-value measure is based on the term frequency. The C-
value (see formula 1) measure favors a candidate term that does not often appear in a
longer term. For instance, in a specialized corpus (ophthalmology), the authors of Frantzi
et al. (2000) found the irrelevant term “soft contact” while the frequent and longer term
“soft contact lens” is relevant.

As an example, we implement the Algorithm 2, which describes the applied process.
These different statistical information items (i.e. probability of linguistic patterns, C-
value, idf) are combined to define the global ranking measure LIDF-value (see formula
6); where P(A;p) is the probability of a term A which has the same linguistic structure
pattern LP, i.e. the weight of the linguistic pattern LP computed in Subsection Pattern
Construction.

LIDF—value(A) = P(Arp) x idf(A) x C—value(A) (6)
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Algorithm 2: ComputeLIDF-value (Corpus, Patterns, ming q,
numterms)

Data: Corpus = set of documents of a specific-domain;

Patterns = HTpatterns(pattern, probability) //Hashtable of linguistic patterns with

its probability;

min req = frequency threshold for candidate terms;

nuMterms = number of terms to take as output

Result: Licrms = List of ranked terms

begin

Tag the Corpus;

Take the lemma of each tagged word;

Extract candidate terms A by filtering with Patterns;

Remove candidate terms A below minf,.cq;

for each candidate term A € Corpus do
LIDF-value(A) = P(ALp) X idf (A) x C-value(A);
add A to Lterms;

end

Rank Lterms by the value obtained with LID F-value;

Select the first numierms terms of Lierms ;

end

Note that LIDF-value works only for a set of documents, mainly because the idf
measure can only be computed on a set of documents (see formula 2). Therefore, for
datasets composed of one document, we propose a new measure, L-value, as explained in
the following paragraphs.

L-value is a variant of LIDF-value, focused on one document with the goal of benefiting
from the probability of linguistic patterns computed for LIDF-value. This measure does not
contain the idf (see formula 7). L-value is interesting to highlight the more representative
terms of a single corpus without considering the discriminative aspects, e.g. idf. This
measure gives another point of view and is complementary to those based on the idf
weighting.

A single document can be considered as a free text without delimitation. For instance, a
scientist article, a book, a document created with titles/abstracts from a library database. L-
value becomes interesting when it does not exist a considerable amount of data for a new
subject, i.e. an emergent term in the community. For instance, the “Ataxia Neuropathy
Spectrum” term appears only in four titles/abstracts of scientist articles from PubMed'?
between 2009 and 2015. PubMed is a free search engine accessing primarily the MED-
LINE database of references and abstracts on life sciences and biomedical topics.

L—value(A) = P(Arp) x C—value(A) (7
3.4 Re-ranking (step 3)
After the term extraction, we propose new measures to re-rank the candidate terms in order

to increase the top k term precision. The re-ranking measures aim to improve the term
extraction results of ranking measures. This involves positioning the most relevant

12" http://www.ncbi.nlm.nih.gov/pubmed.
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biomedical terms at the top of the list. That provides more confidence that the terms
appearing at the top of this list are true biomedical terms.

These re-ranking functions represent an extension of the measures presented in Lossio-
Ventura et al. (2014b). Therefore, as improvements, we propose to take graph-theoretic
information into account to highlight relevant terms, as well as web information, as
explained in the following subsections. These measures can be executed separately, but the
graph construction is time consuming, and the number of search engine queries is limited.
Therefore, we just apply these measures for a group of selected terms given by a ranking
measure. Because the ranking measures have proved to be more efficient applied before
than TeRGraph and web-based measures.

As these measures are applied to the list of terms obtained with a ranking measure,
which tackles noise, silence and multi-word term extraction problems, so they also take
into account those problems. As mentioned, the objective of re-raking measures is to re-
rank terms, so the manual validation efforts of the candidate terms decrease because the
relevant biomedical term is allocated at the top of the list.

3.4.1 A new graph-based ranking measure: “TeRGraph” (terminology ranking based
on graph information)

This approach aims to improve the ranking (and therefore the precision results) of
extracted terms. As mentioned above, in contrast to the above-cited study, the graph is built
with a list of terms obtained according to a measure described in Sect. 3.2, where vertices
denote terms linked by their co-occurrence in sentences in the corpus. Moreover, we make
the hypothesis that the term representativeness in a graph, for a specific-domain, depends
on its number of neighbors, and the number of neighbors of its neighbors. We assume that
a term with more neighbors is less representative of the specific domain. This means that
this term is used in the general domain. Figure 3 illustrates our hypothesis.
The graph-based approach is divided into two steps:

(1)  Graph construction a graph (see Fig. 5) is built where vertices denote terms, and
edges denote co-occurrence relations between terms, co-occurrences between
terms are measured as the weight of the relation in the initial corpus. This approach
is statistical because it links all co-occurring terms without considering their
meaning or function in the text. This graph is undirected as the edges imply that

Fig. 3 Importance of a term in a
domain

Importance in a Domain

Number of Neighbors >
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terms simply co-occur, without any further distinction regarding their role. We
take the Dice coefficient, a basic measure to compute the co-occurrence between
two terms x and y, as defined by the following formula:

2 x P(x,y)

PG+ P(Y) ®)

D(x,y) =

(ii)  Representativeness computations on the term graph a principled graph-based

measure to compute term weights (representativeness) is defined. The aim of this

new graph-based ranking measure, TeRGraph, see Eq. 9, is to derive these weights

for each vertex, (i.e. multi-word term weight), in order to re-rank the list of
extracted terms.

1
TeRGraph(A) = log, (k + 1+ [N+ X renv |N(Ti)|> ¥

where A represents a vertex (term), N(A) the neighborhood of A, |[N(A)| the number of
neighbors of A, T; the neighbor i of A, and k a constant. The intuition for Eq. 9 is as follows: the
more a term A has neighbors (directly with N(A) or by transitivity with N(77;)), the more the
weight decreases. Indeed, a term A having a lot of neighbors is considered too general for the
domain (i.e. this term is not salient), so it has to be penalized via the associated score.

The k constant affects the TeRGraph value, i.e. the set of values that TeRGraph takes
when k changes. For instance, when k = 0.5, the set of values for TeRGraph is between —1

X = N(4)], Y

Z IN(T3)|, Z = TeRGraph(A)
TiGN(A)

Fig. 4 TeRGrpah’s value for k = {0.5;1; 1.5;2}
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and 0, (i.e. TeRGraph € [—1,0]), and when k = 1, TeRGraph € [0,0.6]. As the values
taken by TeRGraph are different, then the slope of the curve is also different. Figure 4
shows the behavior of TeRGraph when k changes. According the experiments, we have
chosen k = 1.5. The main reason is that the slope of the curve is low, and the set of values
for TeRGraph ranges from 0.6 to 1.

See Algorithm 3 for more details, it describes the entire process: (1) co-occurrence
graph construction, (2) computation of the representativeness of each vertex.

Algorithm 3: ComputeTeRGraph (Licrms, nuMicrms, 0, k)

Data: Lterms = List of ranked terms;

nuMterms = number of terms to be evaluated;

6 = threshold to create an edge between two terms;
k = constant;

Result: RRL;erms = Re-Ranked List of terms

begin
Select all possible pairs of terms of Licrms to compute D(z,y) // in total
2 — erms! i T e .
Crvmaarms = m possibilities ;

Select pairs which D(z,y) > 6 for creating an edge ;
Select all terms of Lierms to compute Te RGraph ;
for each term A € Lierms do

N(A) «— neighborhood of A;

IN(A)| «— number of neighbors of A;

TeRGraph(A) =log, | k+ L ;
: N+ > IN(T))
T;eN(A)

add A to RRLterms;

end
Rank RRL¢crms by the value obtained with T'e RGraph,;

end

Figure 5 shows an example to calculate the value of TeRGraph for a term in different
graphs. These graphs are built with different co-occurrence thresholds (i.e. Dice’s value
between two terms). In this example, A; and A, represent the term chloramphenicol
acetyltransferase reporter in Graphs 1 and 2, respectively.

Graph 1, threshold (Dice) = 0.5 Graph 2, threshold (Dice) = 0.6

acetyltransferase
reporter
reporter

Y. IN@I[INAI] DS INT)
T; EN(A1) T;EN(A2)
16 2 8

TeRGraph(Ai1) = 0.632||TeRGraph(As2) = 0.670

chloramphenicol
acetyltransfera

Fig. 5 TeRGraph’s value for chloramphenicol acetyltransferase reporter
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3.4.2 WebR

The aim of our web-based measure, to predict with a better confidence if a candidate term
is a valid biomedical term or not. It is appropriated for multi-word terms, as it computes the
dependence between the words of a term. In our case, we compute a “strict” dependence,
which means the proximity of words of terms (i.e. neighboring words) is calculated with a
strict restriction. In comparison to other web-based measures (Cilibrasi and Vitanyi 2007),
WebR reduces the number of pages to consider by taking only web pages containing all
words of the terms into account. In addition, our measure can be easily adopted for all
types of multi-word terms.
nb(“‘A’)

WebR(A) = nb(A) (10)
where A = multi-word term, a; € A and a; = {noun,adjective, foreign word}. Where A is
the candidate term, nb(‘‘A’’) the number of hits returned by a web search engine with
exact match only with multi-word term A (query with quotation marks “A”), nb(A) the
number of documents returned by the search engine, including not exact matches (query A
without quotation marks), i.e. whole documents containing words of the multi-word term
A. For example, the multi-word term treponema pallidum, will generate two queries, the
first nb(*‘treponema pallidum’) which returns with Yahoo 1,100,000 documents, and the
second query nb(treponemapallidum) which returns 1,300,000 documents, then
WebR (treponemapallidum) = H35030 = 0.85.

In our workflow, we tested Yahoo and Bing. WebR re-rank the list of candidate terms
returned by the combined measures.

3.4.3 A new web ranking measure: WAHI (Web Association based on Hits
Information)

Previous studies of web mining approaches query the web via search engines to measure
word associations. This enables measurement of the association of words composing a
term (e.g. soft, contact, and lens that compose the relevant term soft contact lens). To
measure this association, our web-mining approach takes the number of pages provided by
search engines into account (i.e. number of hits).

Our web-based measure re-ranks the list obtained previously with TeRGraph. We will
show that this improves the precision of the k first terms extracted (see Sect. 4) and that it
is specially appropriate for multi-word term extraction.

Formula 8 leads directly to formula 11."* The nb function used in formula 11 represents
the number of pages returned by search engines (i.e. Yahoo and Bing). With this measure,
we compute a strict dependence (i.e. neighboring words by using the operator * ” ° of
search engines). For instance, x might represent the word soft and y the word contact in
order to calculate the association measure of the soft contact term.

2 xnb(““xy’)

Dice(x,y) = Wb () £ b0 (11)

Then we extend this formula to n elements as follows:

" by writing P(x) = ni:lig’;?‘al’ P(y) = ni:li(tii?‘a[’ P(x7y) = n’;yli:()‘n)ﬂ
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nxnb(*‘ay---a,”’)  nxnb(*A”)
nb(ay) + - +nb(a,) i nb(a;)

Dice(ay, .. .,a,) = (12)

This measure enables us to calculate a score for all multi-word terms, such as soft
contact lens.

To obtain WAHI, we propose to associate Dice criteria with WebR (see formula 10).
This only takes the number of web pages containing all the words of the terms into account
by using operators “ ” and AND.

For example, soft contact lens, the numerator corresponds to the number of web pages
with the query “soft contact lens”, and for the denominator, we consider the query soft
AND contact AND lens.

Finally, the global ranking approach combining Dice and WebR is given by WAHI
measure (Web Association based on Hits Information):

nXxnb(“A”) nb(““A”)
WAHI(A) = ST e wb(A) (13)

Algorithm 4 details the global web mining process to rank terms. We show in the next
section that open-domain (general) resources, such as the web, can be tapped to support
domain-specific term extraction. They can thus be used to compensate for the unavail-
ability of domain-specific resources.

Algorithm 4: ComputeWAHI (Lierms, numierms, LC)

Data: Literms = List of ranked terms;
nuMterms = number of terms to be evaluated;
LC = {noun, adjective, foreign word} // linguistic categories
Result: RRLterms = Re-Ranked List of terms
begin
Select the first numeerms terms of Lierms to compute WAHI;
for each term A € Lierms do

for all words a; of A € LC do

n «— number of words in A;

WAHI(A) — nx mshitslan) o e CA0,
Z num-hits(a;)

=1

end
add A to RRLterms;
end
Rank RRLterms by the value obtained with WAHT;

end

4 Experiments and results
4.1 Data, protocol, and validation
4.1.1 Data

We used two corpora for our experiments. The first one is a set of biological laboratory
tests, extracted from LabTestsOnline.'* This website provides information in several

' http://labtestsonline.org/.
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Table 3 Details of

LabTestsOnline corpus Number of clinical tests Number of words
English 235 377,000 words
French 137 174,000 words
Spanish 238 396,000 words

languages to patients or family caregivers about clinical lab tests. Each test that forms a
document in our corpus includes the formal lab test name, some synonyms and possible
alternate names as well as a description of the test. The LabTestsOnline website was
extracted totally for English, French, and Spanish with a crawler created specifically for
this purpose. These documents are available online."” Table 3 shows the details of
LabTestsOnline corpus for different languages.

The second corpus is GENIA,'® which is made up of 2000 titles and abstracts of journal
articles that were culled from the Medline database, with more than 400,000 words in
English. The GENIA corpus contains linguistic expressions referring to entities of interest
in molecular biology, such as proteins, genes and cells. GENIA is an annotated dataset, in
which technical term annotation covers the identification of physical biological entities as
well as other important terms. This is our gold standard corpus. Whereas the Medline
indexes a broad range of academic articles covering the general or specific domains of life
sciences, GENIA is intended to cover a smaller subject domain: biological reactions
concerning transcription factors in human blood cells.

4.1.2 Protocol

As the measures described in step 2 of our workflow (i.e. Ranking the Candidate Terms)
are not very time-consuming, and as they are easily applicable for large corpora, they were
evaluated over the LabTestsOnline corpus for English, French, and Spanish, and over the
gold standard corpus, GENIA. In contrast, as the measures described in step 3 (i.e. Re-
ranking) are highly time-consuming, and they are used at the end of the process, to enhance
the performance of the results, we evaluate them only over the GENIA corpus.

4.1.3 Validation

In order to automatically validate and cover medical terms, we use UMLS for English and
Spanish, and the French version of MeSH, SNOMED International and the rest of the
French content in the UMLS. For instance, if an extracted candidate term is found in the
UMLS dictionary, this term will be automatically validated. The results are evaluated in
terms of precision obtained over the top k extracted terms (P@k).

Biomedical terminologies or ontologies (e.g. UMLS, SNOMED, MeSH), contain terms
composed of signs. Therefore, we cleaned these terminologies by eliminating all terms
containing (;, ?!: { } [ ]), and we only took terms without signs. Table 4 shows the
distribution in n-gram (i.e. n-gram is a term of n words, with n > 1) of biomedical resources
for three languages, as well as the number of terms that we took after the cleaning task. For
instance, the first cell means that 13.73 % of terms are composed of one word (1-gram) in
UMLS for English.

15 www.lirmm.ft/ ~ lossio/labtestsonline.zip.

16 http://www.nactem.ac.uk/genia/genia-corpus/term-corpus.
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Table 4 Details of available resources for validation

1-gram (%) 2-gram (%) 3-gram (%) 4+ gram (%) Number of terms
English 13.73 27.65 14.44 4418 3,006,946
French 13.17 25.82 17.08 43.93 304,644
Spanish 8.39 19.31 16.33 55.97 534,110

4.2 Multilingual comparison (LabTestsOnline)

In this section, we show results obtained only with all the ranking measures, i.e. step 2
(ranking) in Fig. 1. In addition, we tested the measures for single- plus multi-word terms,
or just for multi-word terms in English, French and Spanish. Tables 5, 6 and 7 show the
results in English, French and Spanish, respectively. At the top of each table, the
single-word + multi-word term extraction results are presented, while the multi-word term
extraction results are presented at the bottom of the table.

These tables show that LIDF-value and L-value obtain the best results for both
extraction cases and for the three languages. The combined measures based on the har-
monic mean, and on the SUM and MAX (i.e. F—TFIDF—Cy, F—TFIDF—Cy), also give
interesting results.

The single-word + multi-word term extraction results are better than just the multi-word
term extraction results. The main reason for this is that the extraction of single-word terms
is more efficient due to their syntactic structure (linguistic structure), i.e. usually a noun. In
addition, this syntactic structure has fewer variations. The results are lower as compared to
multi-word term extraction, which is more complicated and involves more variations.

We observe that LIDF-value and L-value obtain very close results. In most cases LIDF-
value performs better than L-value. These two measures show that the probability asso-
ciated with the linguistic patterns helps to improve the term extraction results. Note that the
idf influences LIDF-value, for this reason LIDF-value has better results than L-value.

4.3 Evaluation of the global process (GENIA)

Since GENIA is the gold standard corpus, we conduct a detailed assessment of the
experiments in this subsection. We evaluated the entire workflow of our methodology, i.e.
steps 2 (ranking) and 3 (re-ranking) in Fig. 1. As noted earlier, the multi-word term
extraction results are influenced by the syntactic structure and their variations. So our
experimentation in this subsection is focused only on multi-word term extraction.

In the following paragraphs, we also narrow down the presented results by keeping only
the first 8000 extracted terms for the graph-based measure and the first 1000 extracted
terms for the web-based measure.

4.3.1 Ranking results (step 2 in Fig. 1)

Table 8 presents and compares the multi-word term extraction results with the best ranking
measures, as shown earlier, i.e. C-value, F—TFIDF—Cy, and LIDF-value. The best results
were obtained with LIDF-value with an 11 % improvement in precision for the first
hundred extracted multi-word terms. These precision results are also shown in Fig. 6. The
precision of LIDF-value will be further improved with TeRGraph.
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Table 8 Precision comparison

of LIDF-value with baseline Cvalue F-TFIDF-Cy LIDF-value
THEASHTEs P@100 0.690 0.715 0.820
P@200 0.690 0.715 0.770
P@300 0.697 0.710 0.750
P@400 0.665 0.690 0.738
P@500 0.642 0.678 0.718
P@600 0.638 0.668 0.723
P@700 0.627 0.669 0.717
P@800 0.611 0.650 0.710
P@900 0.612 0.629 0.714
P@1000 0.605 0.618 0.697
P@2000 0.570 0.557 0.662
P@5000 0.498 0.482 0.575
P@10000 0.428 0.412 0.526
The bold values correspond to the  p@20000 0.353 0314 0377
best precision
0,900 7
— —#-C-value
~4—F-TFIDF-C
0,700 1
—*-LIDF-value
0,600 1
$
§ 0,500 1
a
0,400 1
0,300
0,200 1
0,100
0,000 —————————————————————
888588888888 ¢8§
By (%

# of Extracted Terms

Fig. 6 Precision comparison with LIDF-value and baseline measures

4.3.2 Results of n-gram terms

We also evaluated C-value, F—TFIDF—Cy;, and LIDF-value in a sequence of n-gram
terms (i.e. n-gram term is a multi-word term of n words), for this we require an index term

@ Springer
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Table 9 Precision comparison
of 2-gram terms, 3-gram terms,
and 44 gram terms

C-value F-TFIDF-C LIDF-value

2-gram terms

P@100 0.770 0.760 0.830
P@200 0.755 0.755 0.805
P@300 0.710 0.743 0.790
P@400 0.695 0.725 0.768
P@500 0.692 0.736 0.752
P@600 0.683 0.733 0.763
P@700 0.670 0.714 0.757
P@800 0.669 0.703 0.749
P@900 0.654 0.692 0.749
P@1000 0.648 0.684 0.743
3-gram terms
P@100 0.670 0.530 0.820
P@200 0.590 0.450 0.795
P@300 0.577 0.430 0.777
P@400 0.560 0.425 0.755
P@500 0.548 0.398 0.744
P@600 0.520 0.378 0.720
P@700 0.499 0.370 0.706
P@800 0.488 0.379 0.691
P@900 0.482 0.399 0.667
P@1000 0.475 0.401 0.660
4 + gram terms
P@100 0.510 0.370 0.640
P@200 0.455 0.330 0.520
P@300 0.387 0.273 0.477
P@400 0.393 0.270 0.463
P@500 0.378 0.266 0.418
P@600 0.348 0.253 0.419
P@700 0.346 0.249 0.390
P@800 0.323 0.248 0.395
P@900 0.323 0.240 0.364
The bold values correspond to the  p@1000 0312 0.232 0.354

best precision

to be a n-gram terms of length n >?2. We tested the performance of LIDF-value on the n-
gram term extraction taking the first 1000 n-g terms (n > 2).

Table 9 shows the precision comparison for the 2-gram, 3-gram and 4+ gram term
extracted with C-value, F—TFIDF—Cy, and LIDF-value. We can see that LIDF-value
obtains the best results for all intervals for any n > 2. These precision results are also
shown in Fig. 7 for the 2-gram terms, Fig. 8 for the 3-gram terms, and finally Fig. 9 for the
44 gram terms.

Table 10 shows the top-20 ranked 2-gram terms extracted with the baseline measures
and LIDF-value. C-value obtained three irrelevant terms, F-TFIDF-C obtained five
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0,900 1
0,800 1
0,700 1
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0,000 T . . . v ¥ T y v \
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Fig. 7 Precision comparison of 2-gram terms
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0,700
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0,000 . : . r . . : : . .

S L L 8 S 8
g & 5§ & 5 & F & 8 8

< & N LY
# of Extracted Terms

Fig. 8 Precision comparison of 3-gram terms

irrelevant terms while LIDF-value obtained only two irrelevant terms for the top-20 ranked
2-gram terms.

Similarly, Table 11 shows top-10 ranked 3-gram terms extracted with the baseline
measures and LIDF-value. Finally, Table 12 shows the top-10 ranked 4+ gram terms
extracted with the baseline measures and LIDF-value.

Note that in this context, “irrelevant” means that the terms are not in the above
mentioned resources. These candidate terms might be interesting for ontology extension or
population, however they must pass through polysemy detection in order to identify the
possible meanings.
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Fig. 9 Precision comparison of 44 gram terms

Table 10 Comparison of top-20 ranked 2-gram terms (irrelevant terms are italicized and marked with *).

C-value F-TFIDF-C LIDF-value
1 t cell t cell t cell
2 nf-kappa b nf-kappa b Transcription factor
3 Transcription factor kappa b nf-kappa b
4 Gene expression b cell cell line
5 kappa b Class ii b cell
6 Cell line Glucocorticoid receptor Gene expression
7 b cell b activation * kappa b
8 Peripheral blood b alpha * t lymphocyte
9 t lymphocyte Reporter gene Dna binding
10 Nuclear factor Endothelial cell i kappa *
11 Protein kinase Cell cycle Binding site
12 Class ii b lymphocyte Protein kinase
13 b activation * nf kappa * Glucocorticoid receptor
14 Human t nf-kappab activation Tumor necrosis
15 Tyrosine phosphorylation u937 cell Binding activity
16 dna binding mhc class * Tyrosine phosphorylation
17 Human immunodeficiency * c ebp* Shift assay *
18 Binding site il-2 promoter Immunodeficiency virus
19 Necrosis factor * Monocytic cell Signal transduction
20 Mobility shift t-cell leukemia Mobility shift

4.3.3 Re-ranking results (step 3 in Fig. 1)

Graph-based results our graph-based approach is applied to the first 8000 terms extracted by
the best ranking measure. The objective is to re-rank the 8000 terms while trying to improve
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Table 11 Comparison of the top-10 ranked 3-gram terms (irrelevant terms are italicized and marked with *)

C-value F-TFIDF-C LIDF-value
1 Human immunodeficiency virus kappa b alpha * i kappa b
2 kappa b alpha * nf kappa b Human immunodeficiency virus
3 Tumor necrosis factor Jurkat t cell Electrophoretic mobility shift
4 Electrophoretic mobility shift Human t cell Human t cell
5  nf-kappa b activation mhc class ii Mobility shift assay
6 Virus type 1 * cd4+ t cell kappa b alpha *
7  Protein kinase ¢ c-fos and c-jun * Tumor necrosis factor
8  Long terminal repeat Peripheral blood monocyte nf-kappa b activation
9  nf kappa b t cell proliferation Protein kinase ¢
10 Jurkat t cell Transcription factor nf-kappa *  Jurkat t cell

Table 12 Comparison of the top-10 ranked 44 gram terms (irrelevant terms are italicized and marked
with *)

C-value

F-TFIDF-C

LIDF-value

Human immunodeficiency virus
type 1

Transcription factor nf-
kappa b

i kappa b alpha

2 Human immunodeficiency virus Expression of nf-kappa b *  Electrophoretic mobility shift
type * assay
3 Immunodeficiency virus type 1 ¥  Tumor necrosis factor alpha Human immunodeficiency virus
type *
4 Activation of nf-kappa b Normal human t cell Human t-cell leukemia virus
5 Nuclear factor kappa b Primary human t cell Nuclear factor kappa b
6 Tumor necrosis factor alpha Germline ¢ epsilon Tumor necrosis factor alpha
transcription
7 Human t-cell leukemia viru * gm-csf receptor alpha t-cell leukemia virus type *
promoter
8  Human t-cell leukemia virus type il-2 receptor alpha chain Activation of nf-kappa b
9 t-cell leukemia virus type * Transcription from the gm-  Peripheral blood t cell
csf *
10  Electrophoretic mobility shift Major histocompatibility complex

assay

Translocation of nf-kappa b

class

the precision by intervals. One parameter is involved in the computation of graph-based
term weights, i.e. the threshold of Dice value which represents the relation when building
the term graph. This involves linking terms whose Dice value of the relation is higher than
threshold. We vary threshold (0) within 6 = [0.25,0.35,0.50,0.60,0.70] and report the
precision performance for each of these values. Table 13 gives the precision performance
obtained by TeRGraph and shows that it is well adapted for ATE.

Web-based results Our web-based approach is applied at the end of the process, with
only the first 1000 terms extracted during the previous linguistic, statistic and graph
measures. For space reasons, we show only the results obtained with WAHI, which are
higher than WebR.
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Table 13 Precision performance
of TeRGraph when varying o
(threshold parameter for Dice)

The values in bold correspond to
the best obtained results

Table 14 Precision comparison
of WAHI with YAHOO and word
association measures

TeRGraph
0>025 6>035 6>050 6>0.60 6>0.70
P@100 0.840 0.860 0.910 0.930 0.900
P@200 0.800 0.790 0.850 0.855 0.855
P@300 0.803 0.773 0.833 0.830 0.820
P@400 0.780 0.732 0.820 0.820 0.815
P@500 0.774 0.712 0.798 0.810 0.806
P@600 0.773 0.675 0.797 0.807 0.792
P@700 0.760 0.647 0.769 0.796 0.787
P@800 0.756 0.619 0.748 0.784 0.779
P@900 0.748 0.584 0.724 0.773 0.777
P@1000  0.751 0.578 0.720 0.766 0.769
P@2000  0.689 0.476 0.601 0.657 0.694
P@3000  0.642 0.522 0.535 0.605 0.644
P@4000 0.612 0.540 0.543 0.559 0.593
P@5000 0.574 0.546 0.544 0.554 0.562
P@6000  0.558 0.539 0.540 0.549 0.561
P@7000 0.556 0.540 0.540 0.545 0.552
P@8000  0.546 0.546 0.546 0.546 0.546
WAHI Dice Jaccard Cosine Overlap
P@100 0.960 0.720 0.720 0.760 0.730
P@200 0.950 0.785 0.770 0.740 0.765
P@300 0.900 0.783 0.780 0.767 0.753
P@400 0.900 0.770 0.765 0.770 0.740
P@500 0.920 0.764 0.754 0.762 0.738
P@600 0.850 0.748 0.740 0.765 0.748
P@700 0.817 0.747 0.744 0.747 0.757
P@800 0.875 0.752 0.746 0.740 0.760
P@900 0.870 0.749 0.747 0.749 0.747
P@1000 0.766 0.766 0.766 0.766 0.766

We took the list obtained with TeRGraph and 6 >0.60. The main reason for this
limitation is the limited number of automatic queries possible in search engines. At this
step, the aim is to re-rank the 1000 terms to try to improve the precision by intervals. Each
measure listed in Table 14 and Table 15 shows the precision obtained after re-ranking. We

tested WAHI with Yahoo and Bing search engines.

Table 14 and Table 15 prove that WAHI (either using Yahoo or Bing) is well adapted for
ATE and this measure obtains better precision results than the baselines measures for word
association. So our measures obtain real terms of our dictionary with a better ranking.
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Table 15 Precision comparison
of WAHI with BING and word
association measures

The values in bold correspond to
the best obtained results

Table 16 Precision comparison
of LIDF-value and TeRGraph

The values in bold correspond to
the best obtained results

4.3.4 Summary

WAHI Dice Jaccard Cosine Overlap
P@100 0.900 0.740 0.730 0.680 0.650
P@200 0.900 0.775 0.775 0.735 0.705
P@300 0.900 0.770 0.763 0.740 0.713
P@400 0.900 0.765 0.765 0.752 0.712
P@500 0.900 0.760 0.762 0.758 0.726
P@600 0.917 0.753 0.752 0.753 0.743
P@700 0.914 0.751 0.751 0.733 0.749
P@800 0.875 0.745 0.747 0.741 0.754
P@900 0.878 0.747 0.748 0.742 0.748
P@1000 0.766 0.766 0.766 0.766 0.766
LIDF-value TeRGraph TeRGraph
(6 >0.60) (6>0.70)
P@100 0.820 0.930 0.900
P@200 0.770 0.855 0.855
P@300 0.750 0.830 0.820
P@400 0.738 0.820 0.815
P@500 0.718 0.810 0.806
P@600 0.723 0.807 0.792
P@700 0.717 0.796 0.787
P@800 0.710 0.784 0.779
P@900 0.714 0.773 0.777
P@1000 0.697 0.766 0.769
P@2000 0.662 0.657 0.694
P@3000 0.627 0.605 0.644
P@4000 0.608 0.5585 0.593
P@5000 0.575 0.5538 0.562
P@6000 0.550 0.549 0.561
P@7000 0.547 0.545 0.552
P@8000 0.546 0.546 0.546

LIDF-value obtains the best precision results for multi-word term extraction, for each
index term extraction (n-gram) and for intervals.

Table 16 presents a precision comparison of LIDF-value and TeRGraph measures. In
terms of overall precision, our experiments produce consistent results from the GENIA
corpus. In most cases, TeRGraph obtains better precision with a § of 0.60 and 0.70 (i.e.
better precision in most P@k intervals), which is very good because it helps alleviate the
problem of manual validation of candidate terms. These precisions are also illustrated in

Fig. 10.

The performance of our graph-based measure somewhat depends on the value of the co-
occurrence relation between terms. Specifically, the value of the co-occurrence relation

@ Springer



Inf Retrieval J

1,000 1
—&#—LIDF-value

0,900 1
—4*—TeRGraph (0.6)
0,800 1

—*-TeRGraph (0,7)
0,700
0,600

0,500

Precision

0,400

0,300

0,200

0,100 1

0,000 T T T T T T T T T T T T T T T T
8] S S S S S S S S S ) S S S
S S S S S S S S S S S S S S S S S
~ N " ¥ © ) Y £ 9 S S @ u? Q? ,\Q q?

# of Extracted Terms

Fig. 10 Precision comparison of LIDF-value and TeRGraph

Table 17 Precision comparison

LIDF-value, TeRGraph, and LIDF-value TeRGraph WAHI WAHI

WAHI (0>0.60) (Bing) (Yahoo)
P@100 0.820 0.930 0.900 0.960
P@200 0.770 0.855 0.900 0.950
P@300 0.750 0.830 0.900 0.900
P@400 0.738 0.820 0.900 0.900
P@500 0.718 0.810 0.900 0.920
P@600 0.723 0.807 0.917 0.850
P@700 0.717 0.796 0.914 0.817
P@800 0.710 0.784 0.875 0.875
P@900 0.714 0.773 0.878 0.870

The values in bold correspond to  p@1000 0.697 0.766 0.766 0.766

the best obtained results

affects how the graph is built (whose edges are taken), and hence it is critical for com-
putation of the graph-based term weight. Another performance factor of our graph-based
measure is the quality of the results obtained with LIDF-value due to the fact that the list of
terms extracted with LIDF-value is required as input to re-rank TeRGraph in order to
construct the graph, where nodes denote terms, and edges denote co-occurrence relations.

Table 17 presents the precision comparison of our three measures.

WAHI based on Yahoo obtains better precision for the first P@100 extracted terms with
96 % precision whereas, in comparison, WAHI based on Bing obtains 90 precision. For the
other interval, Table 17 shows that WAHI based on Bing generally gives the best results.
This is very encouraging because it also helps alleviate the problem of manual validation
of candidate terms.

The performance of WAHI depends on the search engine because algorithms designed
for searching information on the web are different, so the number of hits returned will
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Table 18 Details of Cirad corpus

Number of Titles/Abstracts Number of Words
English 156 29,740 words
French 84 14,850 words

Table 19 Precision comparison of term extraction with agronomic and biomedical Patterns

With agronomic patterns With biomedical patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000

English (single- and multi-word terms)

C-value 0.910 0.825 0.631 0.255 0.870 0.790 0.527 0.223
TF—IDFg 0.900 0.830 0.667 0.335 0.810 0.845 0.587 0.284
Okapig 0.910 0.865 0.680 0.331 0.870 0.845 0.625 0.281
F—OCapiy 0.640 0.600 0.419 0.273 0.660 0.605 0.403 0.252
F—OCapis 0.900 0.845 0.672 0.304 0.870 0.840 0.612 0.260

F-TFIDF-Cy  0.740 0.610 0.412 0.261 0.760 0.610 0.402 0.270
F-TFIDF-Cs  0.900 0.835 0.664 0.323 0.810 0.845 0.600 0.272

L-value 0.700 0.660 0.542 0.338 0.840 0.795 0.688 0.320
LIDF-value 0.920 0.875 0.766 0.340 0.880 0.855 0.682 0.320
French (single- and multi-word terms)
C-value 0.400 0.360 0.210 0.086 0.450 0.455 0.223 0.084
TF—IDFg 0.430 0.380 0.248 0.114 0.500 0.450 0.293 0.119
Okapis 0.390 0.360 0.256 0.115 0.490 0.450 0.300 0.120
F—OCapiym 0.310 0.225 0.154 0.100 0.340 0.245 0.167 0.115
F—OCapis 0.400 0.355 0.248 0.106 0.480 0.465 0.269 0.115

F-TFIDF—Cy  0.350 0.240 0.163 0.099 0.380 0.295 0.170 0.118
F-TFIDF—-Cs  0.350 0.240 0.163 0.099 0.500 0.475 0.268 0.119
L-value 0.550 0.510 0.367 0.135 0.520 0.480 0.333 0.130
LIDF-value 0.560 0.535 0.367 0.135 0.510 0.510 0.336 0.130

The values in bold correspond to the best obtained results

differ in all cases. Another performance factor is the quality of the re-ranked list obtained
with TeRGraph, because this list is required as input.

Moreover, Table 17 highlights that re-ranking with WAHI enables us to increase the
precision of TeRGraph. For all cases, our re-ranking methods improve the precision
obtained with LIDF-value. The purpose for which this web-mining measure was designed
has thus been fulfilled.

Note that these measures do not normalize the possible variants. This could be a
limitation for researchers looking for a preferred term for a group of variants.
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5 Discussion

We discuss the effects of some parameters of our workflow. In the next sections, we
explain the impacts of biomedical pattern lists, size of dictionaries, and the extraction
errors.

5.1 Impact of pattern list

In our methodology, we have shown that biomedical patterns directly affect the term
extraction results. For instance, we can see that L-value, which is a combination of C-value
and the probability of pattern lists, gives better results than C-value for the three languages,
and LIDF-value outperforms L-value in major cases. These pattern lists work specifically
for the biomedical domain. If we use these biomedical patterns in another domain instead
of using specific patterns of that domain, they will impact the term extraction results. To
prove this, we have extracted terms from an agronomic corpus for English and French
while taking biomedical patterns and agronomic patterns into account. We built the
agronomic patterns using AGROVOC,"” which is an agronomic dictionary. AGROVOC
contains 39,542 and 37,382 English and French terms, respectively. Our corpus consists of
titles plus abstracts extracted from the list of Cirad publications (French Agricultural
Research Centre for International Development). Table 18 shows the details of the corpus
formed for this comparison.

Table 19 presents a term extraction comparison while taking patterns built from two
different domains into account. Again we note that LIDF-value obtains the best results. We
also see that the results of terms extracted with agronomic patterns give better results than
when using biomedical patterns for English and French.

Note that even if the term extraction results obtained using agronomic patterns are
higher than using biomedical patterns, these results are a bit close. The main reason is that
the biomedical and agronomic terms overlap. It means that identical patterns exist in both
domains. The results could be improved by using patterns of two completely different
domains.

5.2 Effect of dictionary size

Dictionaries play an important role in term extraction, specifically during the construction
of pattern lists. Table 19 shows that a reduction in dictionary size degrades the perfor-
mance of the precision results in comparison to Tables 5, 6, and 8. For instance, for the
agronomic and biomedical domain, Tables 19 and 5 show the P@100 of 0.92 and 1.00
respectively, and this difference increases as the number of extracted terms increases (i.e.
P@k).

5.3 Term extraction errors

As explained in Sect. 3 (step a), the term extraction results are influenced by the Part-of-
Speech (PoS) tagging tools, which have different results for different languages. Briefly,
the tool “A” can perform very well for English, while for French the tool “B” gives the
best results. For instance, the sentence “Red blood cells increase with ...” was tagged with

'7 http://aims.fao.org/agrovoc.
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the Stanford tool as “adjective noun noun verb preposition ...”, whereas the TreeTagger
tool tagged it as “adjective noun noun noun preposition ...”. Therefore, in order to show
the generality of our approach, we choose a uniform PoS tool, i.e. TreeTagger, as a trade-
off for three languages (English, French, and Spanish), while understanding that it will
penalize the results for the three languages.

6 Conclusions and future work

This paper defines and evaluates several measures for automatic multi-word term extrac-
tion. These measures are classified as ranking measures, and re-ranking measures. The
measures are based on the linguistic, statistical, graphic and web information. We modified
some baseline measures (i.e. C-value, TF-IDF, Okapi) and we proposed new measures.

All the ranking measures are linguistic- and statistic-based. The best ranking measure is
LIDF-value, which overcomes the lack of frequency information with the linguistic pattern
probability and idf values.

We experimentally showed that LIDF-value applied in the biomedical domain, over two
corpora (i.e. LabTestsOnline, GENIA), outperformed a state-of-the-art baseline for
extracting terms (i.e. C-value), while obtaining the best precision results in all intervals
(i.e. P@k). And with three languages the LIDF-value trends were similar.

We have shown that multi-word term extraction is more complex than single-word term
extraction. We detailed an evaluation over the GENIA corpus for multi-word term
extraction. Moreover, in that case, LIDF-value improved the automatic term extraction
precision in comparison to the most popular term extraction measure.

We also evaluated the re-ranking measures. The first re-ranking measure, TeRGraph, is
a graph-based measure. It decreases the human effort required to validate candidate terms.
The graph-based measure has never been applied for automatic term extraction. TeRGraph
takes the neighborhood to compute the term representativeness in a specific domain into
account.

The other re-ranking measures are web-based. The best one, called WAHI, takes the list
of terms obtained with TeRGraph as input. WAHI enables us to further reduce the huge
human effort required for validating candidate terms.

Our experimental evaluations revealed that TeRGraph had better precision than LIDF-
value for all intervals. Moreover, our experimental assessments revealed that WAHI
improved the results given with TeRGraph for all intervals.

As a future extension of this work, we intend to use the relation value within TeRGraph.
We plan to include the use of other graph ranking computations, e.g. PageRank, adapted
for automatic term extraction. Moreover, a future work consists of using the web to extract
more terms than those extracted.

One prospect could be the creation of a regular expression for the biomedical domain
from the linguistic pattern list. We plan to modify our measures in order to normalize the
possible variants, looking towards for a preferred term for those variants.
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