
 1

THE GRID SHARED DESKTOP: A
BOOTSTRAPPING ENVIRONMENT FOR

COLLABORATION

Pascal Dugénie*, Philippe Lemoisson*, Clement Jonquet*, Monica Crubézy

Abstract

The paradigm shift from an information sharing infrastructure (i.e., the Web)
to a resource sharing infrastructure (i.e., the Grid) has boosted the
development of a new generation of online services. In particular, Grid
services are stateful, dynamic and operate in a secure environment. Therefore
they offer capabilities that are essential to remote collaboration. In this paper,
we tackle the problem of bootstrapping and supporting a collaborative
environment over a Grid infrastructure. As we target communities of non
computer-literate people, we investigate easy-to-use and flexible solutions. As
a result, we developed the Grid Shared Desktop (GSD) - a Grid-based, Web-
accessible environment that provides members of a virtual community with a
set of desktops supporting collaboration in both synchronous and
asynchronous mode. A desktop is a familiar tool allowing users to interact
with graphical representations of concepts. Thus, the GSD is a powerful
interface to communicate these representations and build collaborative
knowledge. In this paper, we propose an overall architecture and an
implementation of the GSD including a bundled set of bootstrapping services
required to set up and maintain a collaboration activity among distant
participants. Finally, we summarise the results of recent experiments
conducted with the GSD deployed in the concrete context of collaborative
construction of a shared repository of knowledge.

Key Words: Collaboration, Collaborative learning environment, Computer
Supported Collaborative Learning, Grid, Grid service, shared desktop, virtual
community, ontology, collaborative ontology construction.

1. Introduction

The recent explosion of communication means and tools such
as email, Web forums, instant messaging, short messages,
videoconferencing and so on, shows the real growth of
computer-assisted human interactions. The use of these tools
has evolved, and nowadays, people interact all around the
world not just to exchange information but also to exchange
services. In fact, interactions and communication allow people
to collaborate and realise Aristotle’s adage “the whole is
greater than the sum of its parts:” Resolving interactively
common distributed problems is a real need for international
companies, governments, academies and world wide consortia

* LIRMM, CNRS & University Montpellier II, 161, rue Ada 34392
Montpellier Cedex 5, France; email: {dugenie, jonquet,
lemoisson}@lirmm.fr

 Stanford Medical Informatics, Stanford University, Stanford, CA
94305-5479, USA, crubezy@stanford.edu

(paper no.??-??)

(e.g., for distant tutoring, distributed problem solving, instant
cooperation, business process management, etc.). There is
hence now a genuine need for collaboration methods and tools
to address collaboration problems. In [11] we previously
presented an analysis for bootstrapping a collaboration which
led us to developping a new kind of tools for collaborative
environment. The work that we present in this paper offers a
solution to the core problems of remote collaboration among
humans. Our solution, called the Grid Shared Desktop, or
GSD provides the members of a virtual community with a
shared, online collaborative environment including protocols,
services and facilities for bootstrapping and supporting their
collaborative construction of shared knowledge. The GSD
framework was originally presented in [10].

The Grid Shared Desktop approach. Our approach to
human collaboration emerged from the concrete collaboration
needs that we experienced within the European research
project ELeGI [3]. This project is concerned with the use of
Grid technology [14,16] for enhancing collaboration and
learning in distant communities. Analysing and experimenting
collaboration among the participants of that project led us to a
set of requirements that a collaborative environment should
fulfil. We briefly present the results of our analysis in Section
2.1. This analysis further led us to the conceptualization and
implementation of an ubiquitous, dynamic and shared1
environment for collaboration.

We adopted a service-oriented approach over a Grid
infrastructure, in order to address generic needs and
requirements of collaborative work and collaborative
environments. We propose an architecture for the GSD as
well as an implementation of this architecture by means of
virtual desktops.

The GSD represents a typical example of what De Roure
et al. call a Live Information System for Collaboration [22].
With the GSD, members of communities can perform various
tasks, with other members, without being forced to specify
these tasks before they occur. The Grid infrastructure offers a
secure and reliable environment in which users may import
new services and introduce new users dynamically according

1 The term “shared” entails a one-for-many architecture.

 2

to the needs of the collaboration. Collaboration is
accomplished in two ways:

- Within a Virtual Community (VC) alone, by using
services that are mostly asynchronous, such as for
example file sharing, notifications mechanisms,
asynchronous edition of documents, etc.;

- Within multiple Collaboration Sessions (CS), by using
services that are mostly synchronous, such as
enhanced-presence services (chat, video
conferencing…), synchronous edition of documents,
etc.

More specifically, within a collaboration session,
collaboration is realised following two modes: (i) a screen
sharing mode, where each participant may alternatively
(according to a turn-taking mechanism) broadcast a part of
his/her own desktop to all the other participants of the
collaboration session; (ii) a common environment mode where
each participant may alternatively (according to a turn-taking
mechanism) act on a special desktop common to all
participants of the collaboration session.

Collaboration as a Grid services exchange. Service is the
central key concept underlying the GSD architecture. The
notion of service is now at the centre of the development,
implementation and success of distributed systems, such as
Service Oriented Architectures, Web/Grid services, Multi-
agent Systems and so on [23]. To provide a service means to
identify and offer a solution (among many possible ones) to
the problem of someone else. True service providing is not as
simple as product delivery: a service is unique, adapted and
customized by a special provider and for a special user in a
special context. Following this definition, the exchange of
services entails a kind of collaboration. One of the challenges
of this work is to provide a purely service-oriented,
collaborative architecture that enables developing an
environment that is easy to learn and to use and that supports
collaborative work. We will see how the Grid and Grid
services provide such a service oriented architecture solution
allowing the GSD to be itself a service and, in the same time,
a service exchange environment. The choice of Grid
technology is motivated by recent research on these topics
[5,21,24] that provides a significant contribution in
understanding the actual Grid potentialities related to distant
collaboration, and that promotes the development of service-
oriented usage (and expansion) of this technology in all
contexts and especially where human collaboration is required
(e-learning, e-government, e-health, e-business, e-science).

Collaborative construction of a shared ontology. One
frequent goal of human collaboration is to define a common
corpus of knowledge about a domain of expertise; when
formalised and computerised, this knowledge representation
artefact is known as an ontology. Our approach2 consists of

2 We did not develop this work following a classic software
engineering approach that completely specifies a well-identified

repeated short cycles of elicitation, specification,
implementation, evaluation steps within a scenario: the
collaborative construction of a shared ontology. Collaborative
ontology construction however presents a certain number of
challenges (such as explanation of viewpoints, negotiation of
terms and meaning, decision among modelling options) that
typically call for a set of interaction services. The objective of
this real-world scenario was to show how the GSD may
provide an engaging environment for helping users to
reconcile, formalise and capture knowledge that is initially
informal and distributed in the minds and documents of
several people, into a shared ontology that can be then used
within or outside of the GSD context (such as in an e-sciences
or e-learning context).

Paper overview. The rest of the paper is organised as
follows: In the following section we present the context of the
paper, including an overview of related work and an
identification of main requirements of collaborative
environments. In Section 3 we present the Grid Shared
Desktop, starting with the underlying Grid infrastructure;
followed by the GSD architecture and its implementation, the
GSD service, by means of virtual desktops. In Section 4 we
detail the problem of collaborative ontology construction and
explain how we addressed the problem within GSD
experiments. Finally, we give some perspectives and
conclusions in Section 5.

2. Collaborative environments

This section lays down the context of our study. First, we

derive requirements from some ELeGI theoretical results
about collaborative environment. Second, we provide a brief
technological state of the art about Grid and collaborative
tools.

2.1. Requirements for a collaborative environment

Informal learning. A crucial requirement of collaborative
environments consists in enhancing learning as a result of
communicating and exchanging services in a collaborative
perspective. Learning happens in the context of collaboration
and conversation as the side effect of activities and
observations that have not learning itself as their aim [8].
Laurillard [19] has outlined how knowledge acquisition can
be linked to guided concrete action in the context of a
conversational framework. Therefore collaboration can be
seen as a normal opportunity for learning, as it interweaves
individual experiences and exchange of concepts, in the
context of an interactive use of language: conversation.
Reversely, conversation establishes the necessary ingredient

problem before implementing it, but rather following an iterative
approach in which the GSD elements are designed step-by-step
according to the needs, constraints and requirements that emerge
from real experimental situations.

 3

for cooperative activities including the conversation itself:
trust. As a result, collaboration not only allows a community
to perform a set of joint activities effectively, but also allows
the members of that community to learn new knowledge and
skills and to improve shared understanding overall. Therefore,
a major goal of developing a general-purpose collaborative
environment is to allow informal learning to occur.

Synchronous and asynchronous collaboration. Considering
the timescale (duration) and the size (number of members,
amount of resources) of a collaborative group, we distinguish
between two modes of collaboration: synchronous and
asynchronous modes. The synchronous mode is more
appropriate to consider for short-lived collaboration sessions
that involves a small number of participants, whereas the
asynchronous mode fits better long-term collaboration
activities that involve many members. These two modes of
collaboration imply different requirements and characteristics
for the collaborative environment. For example: (i) in a
synchronous collaboration, users may inform others of their
presence, they should follow a turn-taking mechanism, they
may communicate by direct means supporting audio or video
channels (e.g., chat, videoconferencing, shared desktop); (ii)
in an asynchronous collaboration, users communicate with
indirect means (e.g., email, shared files) that entail delayed
responses, they should follow a different kind of turn-taking
mechanism (e.g., file locking). A flexible collaborative
environment should address the two modes of collaboration.

Trusted environment. Users need a trusted environment to
collaborate freely with others. One problem in remote
collaboration is the fact that people are not physically
interacting. Collaboration occurs via an environment in which
they exchange their knowledge. This environment requires
security to ensure privacy and reliability to ensure anytime
availability. Among other features, such a collaborative
environment needs to implement a simple user-authentication
mechanism and needs to manage both private user accounts
and displays as well as shared areas of collaboration.

Enhanced-presence. In a collaborative environment,
participants need to be aware at all times of the presence and
availability status of each of the other participants, and more
generally of the life of the community. Indeed, participants
need to be able to discover, locate and contact other
participants easily, to have access to public availability
information to schedule work sessions, to communicate
directly or indirectly, and so on. In recent years, several
network communication tools (such as videoconferencing or
chat software) have been developed to include simple, yet
powerful “enhanced-presence” features coupled to audio-
video devices such as webcams and headsets. Those tools not
only indicate the presence, location and availability of people,
but also instill a feeling of community belonging and
awareness that mimics the social dynamics of a local work
team. For example, BuddySpace, an enhanced-presence

environment with instant messaging functionalities [1,12],
allows for multiple views of collaborative workgroups.
Presence awareness increases emotional well-being [25], and
users benefit from knowing who else is around via presence
and messaging tools. Another tool is for example the
videoconferencing service Flashmeeting [2]. Incorporating
enhanced-presence at the heart of the collaborative
environment may improve the effectiveness of joint activities.

Persistent, searchable memory. The collaborative
environment should not only enable the conduct of
collaboration sessions, but also serve as a permanent, one-stop
repository of the virtual community’s work. The environment
hence needs to offer a structured space for creating, storing
and consulting shared documents and artefacts, as well as to
maintain a searchable, traceable history of collaboration
activities, with timestamps and provenance metadata.

Dynamicity. One can not know in advance precisely which
tool, service or pedagogical technique will be employed
within collaboration activities. Similarly, one cannot predict
which members are part of the community (members may join
or leave at any time). But, one can provide the means to
enable members to “do the right thing at the right time”. A
collaborative environment needs to bootstrap and support the
collaboration by enabling people to dynamically: (i) import or
remove services; (ii) discover and approach each other; (iii)
notice who is available at a given time; (iv) schedule
collaboration sessions; (v) communicate directly or indirectly;
(vi) trace and analyse the history of community life. The
notion of dynamically-generated, custom-tailored services
thus becomes central to the design of a collaborative
environment, that needs to be capable of instantiating and
providing appropriate services to participants based on
explicit requests, stored preferences or dynamically identified
collaboration patterns.

Usability. Accessing the collaboration environment must be
supported with just “one click” through a thin terminal and
without installation of any third-party application. We
consider this as a fully service-oriented approach.

2.2. Potentialities offered by Grid services

Of the available technologies for supporting and
implementing a collaborative environment, the Grid
technology offers many interesting aspects and ready-to-use
components that directly address the requirements identified
in the previous section. This section factually describes Grid
concepts and synthesises how Grid fits the needs of
collaborative environment.

Sharing resources among virtual organizations. The
essence of the Grid is nicely reflected by its original
metaphor: the mandate to the electricity network to offer us
the service of providing us with enough electric power as we

 4

need it, when we need it, even if we do not know where and
how that power is generated. At the end of the month, we pay
a bill that corresponds to our consumption. The Grid aims to
support “flexible, secure, coordinated resource sharing and
coordinated problem solving in dynamic, multi-institutional
virtual organizations” [14,16]. It was originally designed to be
an environment with a large number of networked computer
systems where computing (Grid computing) and storage (data
Grid) resources could be shared as needed and on demand;
therefore Grid provides the protocols, services and software
development kits needed to implement flexible, controlled
resource sharing on a large scale. Grid users are members of
virtual organizations. A virtual organization is a dynamic
collection of individuals, institutions and resources brought
together by common goals of sharing resources and services.

Grid services and Grid standardisation. Grid technologies
have evolved from ad-hoc solutions, and de facto standards
based on the Globus Toolkit, to Open Grid Services
Architecture (OGSA) [4] which adopts Web service standards
and extends services to all kinds of resources (not only
computing and storage). Foster et al. call “service” [15]: A
(potentially transient) stateful service instance supporting
reliable and secure invocation (when required), lifetime
management, notification, policy management, credential
management, and virtualization. OGSA introduces two major
characteristics in the so-called service-oriented architectures
by distinguishing service factory from service instance. In
other words, services are instantiated with their own dedicated
resources and for a certain amount of time. These
characteristics enable: (i) service state management: Grid
services can be either stateful or stateless; (ii) service lifetime
management: Grid services can be either transient or
persistent3. More recently, the Web Service Resource
Framework (WSRF) [13] defines uniform mechanisms for
defining, inspecting, and managing stateful resources in
Web/Grid services. For a recent precise overview of Grid
service concepts and standardisation see for example [9]. Grid
has now started to evolve toward the Semantic Grid [17,22]
and the Learning Grid [5,21,24].

Grid as a basis for collaborative environments. Grid has a
lot of interesting aspects for collaborative environments:

- Trusting the environment happens through Grid
security mechanisms (e.g., X509 certificate and
Community Authorisation Service);

- Trusting the environment also happens because of
enhanced reliability provided by the Grid
infrastructure;

- Synchronous and asynchronous modes of collaboration
are brought by the technical layers of OGSA, thanks to
stateful and dynamic services;

3 Whereas Web services have instances that are stateless and non-
transient.

- Persistent memory is brought by Grid services which
allow to integrate and capitalise upon the past thanks to
stateful resources;

- Service dynamicity is brought by transient aspect of
Grid services.

- Member dynamicty is brought by virtual organisation
management.

- Usability is improved by the fact that Grid services are
compliant with service-oriented architecture standards
(i.e., WSDL, SOAP, UDDI, etc.). Grid services
subscribe to the same logic of standardisation and
interoperability as that of Web services (e.g., Semantic
Web services, Business process management, XML,
etc.).

Adopting a Grid infrastructure as the backbone of a
collaborative environment therefore enables to benefit from
robust, ready-to-use infrastructural means that address many
of the implementation requirements identified earlier.

2.3. Current collaborative tools

The domain of distant collaboration is in real expansion both
in research and business. An important number of tools are
becoming available. We have evaluated some of them to
check whether they meet the requirements that we have
identified as crucial for collaboration. In particular, we
evaluated Goto Meeting (www.gotomeeting.com),
GatherPlace (www.gatherplace.net), Glance
(www.glance.net), Beam4Free (http://beam4free.com),
WorkSpace3D (www.tixeo.com), Groove Virtual Office
(www.groove.net), AccessGrid (www.accessgrid.org). The
idea of using desktops on the Grid was suggested in the
Entropia project [7]. A study of Computer Supported
Collaborative Learning (CSCL) applications in a Grid context
was also addressed in [11]. An example is Gridcole, a Grid
based system that enables easy integration of CSCL
application [6].

These solutions adopt various approaches to offer three
main types of functionalities:

- Screen sharing (or desktop broadcasting) that allows
users to share their screen display on a network for
other users to see exactly the same screen that they see.

- Desktop sharing that allows all the users to take a
remote control of the devices (mouse, keyboard…) of
the desktop owner. Screen/Desktop sharing
functionalities are traditionally used in collaborative
work sessions for slide shows or application
demonstration.

- Common environment that provides all users with a
virtual environment which can be a simple set of
windows or a complex 3D space with avatars for users’
representation. Users can interact and work together
through the applications available on the common
environment (chat, slide show, document edition,
browsing, etc.).

http://www.gotomeeting.com/
http://www.gatherplace.net/
http://www.glance.net/
http://beam4free.com/
http://www.tixeo.com/
http://www.groove.net/
http://www.accessgrid.org/

 5

However, it appeared through our evaluation that, first,
that none of these tools satisfies the totality of identified
requirements for collaboration. For example, the two first
functionalities are only suitable for a synchronous
collaboration mode. The last one is suitable for both
synchronous and asynchronous modes but lack the full
dynamicity required (e.g., none of them support dynamic
introduction of users). Second, we confirmed that only few of
them fully benefit from the totality of the potentialities offered
by Grid services.

2.4. Specifying the collaborative environment

As a result of identifying the requirements for a

collaborative environment and of assessing the Grid
specifications, we enunciate here the main functionalities that
specify a collaborative environment. We have identified six
important functionalities:

1) [Notification] to provide immediate awareness of the
life of the community;

2) [Membership] to manage (add or remove) members;
3) [Service] to manage (import or remove) new services;
4) [Activation] to activate new instances of services;
5) [Session] to initiate a collaboration session;4
6) [History] to trace the history of collaboration within

the community.
Section 3.2.2 shows how these six functionalities are

mapped into six bootstrapping services of the Grid Shared
Desktop architecture.

As we said in the introduction section, we distinguish two
kinds of groups: a virtual community (VC) and a collaboration
session (CS) (detailed in Section 3.2.1). We will further
explain how this distinction allows us to address the
synchronous and asynchronous modes of collaboration.

3. The Grid Shared Desktop

3.1. The Grid underlying infrastructure

As explained previously, the Grid provides the infrastructure
that meets the GSD’s core requirements. Figure 1 describes
the Grid model as it is defined by the Open Grid Service
Architecture (OGSA) [4,15]. At the very bottom are the Grid
resources (for computation and storage). These resources are
physically distributed anywhere and coupled in Grid hosts via
networks. The role of Grid core mechanisms is to virtualise
these resources and reify them in a secure and reliable manner:

Resource reification is achieved by Grid service containers.
A Grid service container is a hosting environment for the
service instances. It is allocated to (and created for) one and
only one group of Grid users, called a Virtual Organization;

4 Notice that within a collaboration session functionalities 1), 2), 3)
4) and 6) are required.

Secure and reliable access to service instances is ensured by
handles and the exchange of X509 certificates. Every user
must hold a valid X509 certificate in order to be a member of
a virtual organization and thus be granted access to services.
Grid hosts must also hold a X509 certificate to be recognised
as valid Grid resource. Furthermore, the Community
Authorisation Service (CAS) stores permissions (right levels)
between virtual organization members and services instances
in a service container.

According to Grid specifications, the unique service
present by default in a service container is the CAS.
Furthermore, our GSD architecture provides six additional
bootstrapping services described in the next sections.

Figure 1. The Grid underlying infrastructure.

3.2. The GSD architecture

3.2.1. Users, VC and CS

The GSD architecture is an organisational structure based on
three elements: users, VC and CS. A user who wishes to
collaborate with other users must hold a means of
authentication (following Grid security specification, e.g., a
X509 certificate). This certificate allows identifying this user
among others; it may be viewed as an electronic passport
substituting any login or password. It realises the simple sign-
on and identification needed to access the collaborative
environment. In the GSD architecture, a user can become
member of several groups. A group aims at sharing common
goals by assembling, collaborating, and communicating in a
loose, distant, virtual way, using network communication
facilities, services and resources. A user can be member of
more than one group. As mentioned before we distinguish two
kinds of groups in the GSD architecture:

- A Virtual Community (VC), which has a lifetime in the
order of months or years. We will further talk about
“members” to represent users in a VC. Because of the

 6

lifetime of a VC, members know and trust each other.
VC are composed of at least one member to dozen of
members;

- A Collaboration Session (CS), which has a lifetime in
the order of hours or days. We will further talk about
“participants” to represent users in a CS. A CS is
organised whenever a group of users of the same VC
decide to collaborate in a synchronous mode for some
time with some specific purpose like planning future
work, finalising a document, and brainstorming.
Participants share services and documents as well as
communication tools. A CS necessarily involves more
than one user but the number of participants cannot be
very large.

General VC collaboration is mainly in an asynchronous
mode whereas CS collaboration is most of the time in
synchronous mode. However, the real argument for our
distinction between a VC and a CS is related to the dynamics
of the collaboration: VCs may engender CSs, while CSs may
not engender CSs nor VCs. Resource virtualisation
mechanisms of Grid infrastructure further supports VC and
CS management. From a Grid point-of-view, VCs and CSs are
both virtual organizations and therefore they are each
associated to a Grid service container which will be destroyed
as soon as the group lifetime is over.

A typical scenario is the creation of a VC with many
members who interact asynchronously on various occasions
(e.g., using collaboratively a shared file system with a given
set of permissions for each member). For each required
synchronous interaction, a CS is set for a short time with a
subset of the members of that VC (and possibly external
invited members). The output of that CS (e.g., a synthesis of a
discussion or decision report that is relevant for the VC) can
be stored in a repository belonging to the VC.

Figure 2. UML class diagram of the GSD architecture.

The power of Grid partly lies in the fact that a Grid
service container is itself a Grid service instance that may be
instantiated by another service (see instantiation on Figure 1).
In the GSD architecture this allows a user to simply instantiate
a new service container each time he or she wants to initiate a
new VC or CS. The right part of Figure 2 (in white) shows a
UML class diagram of these concepts.

3.2.2. Bootstrapping services

The GSD architecture is based on the capability of Grid
services to be dynamic and stateful. The GSD architecture
models the environment where a set of services are available
within a Grid service container. A number of services are
persistent, in the sense that they are instantiated during the
initialisation of the service container. For this reason, we call
these services bootstrapping services (the same kind of
services is used both for VC and CS). They correspond to the
six functionalities presented in Section 2.4 plus the CAS (cf.
Figure 3).

Notification Service. This service enables VC members to be
immediately informed on everything concerning the VC life:
ready (online) members, available services, new members,
new services, new results etc. It is composed of a set of
notification mechanisms that inform a group that: a new
service was imported, a service was activated, a CS was just
initiated, a given member is online, a new member joined the
VC, a common document was updated, etc. The Notification
Service provides likewise a real time feedback on personal as
well as other members’ actions and work such as for example,
information about a current CS. The Notification Service is
tightly connected to the History Service which traces the
community history (past life). The Notification Service is a
pre-requisite to any interaction between VC members because
it offers awareness of the presence and availability of the
members.

Member Management Service. This service is responsible
for adding (introducing) or removing dynamically users in a
group. The Member Management Service plays an important
role in the ‘group dynamics’ of the GSD architecture.

Service Management Service. This service is responsible for
importing new services in the service container of a given
group. These services become accessible and can be activated.
It is also responsible for removing services. The Service
Management Service offers users the ability to bring new
tools as services for the group.

Service Activation Service. Any service available within a
group service container may be activated by the Service
Activation Service, generally requested by a user, for a given
duration and for certain users. The corresponding technical
term used in Grid specifications is “service instantiation:” a
Grid service instance has its own state, lifetime management

 7

and allocated resources. The Service Activation Service
allows using all of the other services in the GSD. The Service
Management Service and the Service Activation Service play
important roles in the ‘service dynamics’ of the GSD
architecture.

Collaboration Sessions Management Service. Each member
of a VC may decide to initiate a CS to address a specific
collaboration need (more often synchronous). The
Collaboration Sessions Management Service enables users to
create, manage and delete a CS. The life of this CS is then
managed by six local services (cf. Figure 3) which are created
as soon as the CS is created. The member initiating a CS, adds
into the CS’s service container the desired services using the
local Service Management Service. Then the member invites
participants to the CS with the local Member Management
Service and manages rights between these participants and
local services with the local CAS. The same member also
activates the local services when needed with the local Service
Activation Service. In the GSD architecture, the Collaboration
Sessions Management Service is the only service capable of
instantiating service containers.

History Service. An important aspect of collaboration is
history of past actions and interactions. Indeed, actions and
activities of group users may be traced and logged to keep a
history of the collaboration progress. The role of the History
Service is to capture all significant events coming from the use
of other services. It can for example log the access to a
specific resource, register user profile evolution, inventory
past services activation, trace CS history, realise a shared
document versioning, etc.

Community Authorisation Service. This service specifies
users’ service rights levels (including for bootstrapping
services). This services maintains a kind of members by
services matrix. Members of a given group do not all have the
same permissions over the services of that group. For example
only user “A” as a service manager may be allowed to import
new services for a group, while any user “B” would be
allowed to initialise a CS. The term CAS comes from Grid
specifications as explained previously.

CAS, Member Management Service, Service

Management Service and Service Activation Service are
needed as soon as we deal with new members, new services,
and privileges of members on these services. These
bootstrapping services, except for the Notification Service and
History Service, can be invoked directly by members
according to their own rights within a group. Notification
Service and History Service are managed by underlying
processes. The life of a CS has to be managed separately from
the life of the VC; for instance, a local Notification Service
might reflect the current turn-taking status of a CS. However,
some local events of a CS may be reported to the whole VC
by communication between Notification Services. In the same

Figure 3. VC and CS service containers.

sense, it is also necessary to manage the history of a CS
separately. But, when a CS is deleted the History Service of
the CS communicates its data to the History Service of the
parent VC.

The last elements of the GSD architecture are non-
bootstrapping services. All of them are imported in a group
service container by the Service Management Service and
activated by the Service Activation Service.

3.2.3. GSD processes

The bootstrapping services are of course implied in processes
that correspond to the structure that defines the logical and
temporal relations between these services and the interaction
that users have with them. We detail here some of these
processes. The service activation process is fundamental as it
occurs each time that a service is invoked (a previously
imported or a bootstrapped one). The service importation
process and user introduction process are quite similar and
simple but are essential for the group dynamics. The
collaboration session management process is more complex
as it implies sub-processes with local CS services.

Service activation process. A member wanting to activate a
service within a group inquires the Service Activation Service
with its user certificate and the service handle (and eventually
some other information such as: involved members, lifetime
expected etc.). Then the Service Activation Service checks
(by inquiring the CAS) the member’s permission level for this
service. Then, the Service Activation Service creates the
service instance with a specific state, lifetime and set of
allocated resources. Next, it requests from the Notification
Service to alert group members that a service was activated. In
parallel, the Service Activation Service activates the History
Service both for recording the service activation in the
community history and for logging/tracing the user-service
interactions until the end of the service’s life. The service is
activated and group users may interact with it during the
service’s life. At the end of the service’s life, the Service

 8

Activation Service requests from the History Service both to
stop recording and to store the service’s results (by versioning
past ones, etc.) and the Notification Service to inform the
community of the results of the ended service. Afterwards, the
Service Activation Service destroys the service instance and
frees the allocated resources.

Service importation process. A member wanting to import a
service in a group activates the Service Management Service
as any other service (cf. service activation process) by giving
it a service “external ID” and a table of rights levels for all
users. The Service Management Service first includes the
service in the group service container and gives it a handle.
Then, it requests from the CAS to add a row in the members
by services matrix. The Service Management Service has to
specify the rights level of all members for the added service.
Then, it requests from the History Service to add an entry in
its service database, and give it the trace/log mechanism for
the new service. Afterwards, the Service Management Service
asks the Notification Service to inform the group members
that a new service was imported and is now available
(according to their rights level).

User introduction process. A member wanting to introduce a
user in a group activates the Member Management Service as
any other service (cf. service activation process) by giving it a
user “external ID” and a table of rights levels for all services.
The Member Management Service first stores the new user
information such as status, name, address etc. Then, it requests
from the CAS to add a column in the members by services
matrix. The Member Management Service has to specify the
rights level of all services for the added user. Then, it requests
from the History Service to add an entry in its users list.
Afterwards, the Member Management Service asks the
Notification Service to notify other members, that a new
member was added in the group.

Collaboration session management process. A member
wanting to manage a CS within a VC activates the
Collaboration Sessions Management Service by giving it three
important elements: (i) the list of services that he wants the CS
to benefit from; (ii) the list of members that he wants to see
participate in the CS; (iii) the information necessary to build
the local CAS matrix of rights levels. The Collaboration
Sessions Management Service first instantiates a new CS
service container. Then, it requests from the local Service
Management Service to import each service desired by the CS
manager and requests from the local Member Management
Service to add each participants listed by the CS manager.
These sub-processes are the same as the service importation
process and the member introduction process specified before.
Afterwards, the local CAS is requested to build its rights
levels matrix. The Collaboration Sessions Management
Service also requests (i) the Notification Service to notify the

entire VC of the creation of a new CS5, (ii) the History
Service to register the CS creation in the VC’s history. The
CS is now created and may be started. Each time the CS
manager wants to activate a local service he requests the local
Service Activation Service (cf. service activation process).
The CS takes place with several services and their results. At
the end of the CS, the Collaboration Sessions Management
Service destroys the CS service container and frees the
allocated resources. Local History Service data are transferred
to the VC History Service. Finally, the Collaboration Sessions
Management Service asks the Notification Service to inform
the VC of the set of results of the ended CS.

3.3. The GSD service implementation

The GSD is composed of several active desktops that play
simultaneously the roles of service containers and graphical
user interface. The term desktop means a work environment
where users can dynamically activate services. A Grid service
available in a service container has a graphical metaphor on
the desktop called a “shortcut” (e.g., an icon, a window). A
desktop may be accessed in full control mode or in view-only
mode. This is analogous to the read/write (R/W) or read-only
(R) modes in a file system. In the former case, a user can both
see and act on any desktop elements, in the latter, a user can
only see actions performed by others on the desktop.

3.3.1. Collaboration virtual desktops

The GSD service is defined in Figure 4. We distinguish three
kinds of desktops:

- The Private Virtual Desktop (PVD)
- The Common Virtual Desktop (CVD)
- The Broadcasted Virtual Desktop (BVD)

Figure 4. The GSD service’s set of virtual desktops.

5 Notice that CS participants have received two notifications: the one
from the local Members Management Services, and this one.

 9

Table 1. Bootstrapping services used in each virtual desktop.

 Community
Autorisation

Service

Notification
Service

Member
Management

Service

Service
Management

Service

Service
Activation

Service

Collaboration
Sessions Management

Service

History
Service

PVD X X X X X

VC-CVD X X X X X X X

CS-CVD X X X X X X

BVD X X X X X

The Private Virtual Desktop could be also called the
ubiquitous desktop. It can be accessible from anywhere and
contains personal settings, documents, applications,
bookmarks. A user has full privileges to import and activate
any service here6, store and retrieve private documents,
/files/data, or even check an email account. A user may access
his PVD either directly from a thin terminal or via a host
desktop (e.g., Windows, Linux KDE, X, MacOS).

Via a PVD, a user has access to one Common Virtual
Desktop for each VC that this user is a member of. This kind
of CVD (“VC-CVD” in Figure 5) is a desktop which belongs
to everyone in the VC. It is not the PVD of one of its
members, but another desktop, shared, that everybody,
according to a specific turn-taking mechanism, can act upon
(see also Figure 4). The CVD contains the VC settings,
documents, applications, bookmarks etc. Any member of the
VC can import and activate services in the CVD.

The GSD bootstrapping collaboration context is
constituted, for a given user, of a set of desktops: one PVD
and a CVD for each VC that the user is a member of. In order
to address the question of CS, the GSD also uses desktops. For
each VC a user is a member of, he can activate the
Collaboration Sessions Management Service of the VC and
run two modes7 of collaboration within this community (cf.
section 2.3):

- Screen sharing mode. In this mode each CS participant
is owner of a (Pre-)Broadcasted Virtual Desktop. This
PreBVD can be broadcasted to all other participants.
The BVD is the desktop every participant see at the
same time. Notice, that a turn-taking mechanism
specific to this mode is mandatory.

- Common environment mode. In this mode all the CS
participants share a CVD dedicated to this CS. This
kind of CVD (“CS-CVD” in Figure 5) is the same as a
VC-CVD. Any CS participant can alternatively act
upon the CVD following a turn-taking mechanism.

6 It is important to notice that we do not talk about applications
anymore; functionalities available on the desktops are only services.
7 A desktop sharing mode is also possible (because a BVD can
technically be seen and acted upon by all CS participants) but it
presents some big drawbacks from a security and privacy point of
view. Moreover, all the benefits from this mode are included in the
common environment mode.

Consequently, we may distinguish four types of virtual
desktops: The CS-CVD implements the CS service container.
The VC-CVD, PVD and BVD implement the VC service
container. Nevertheless, some bootstrapping services are not
usable as Table 1 shows. For example, a member can not
introduce users in his own PVD and consequently he can not
create a CS alone.

Remark: The left part of Figure 2 (in grey) completes the
UML class diagram with these new concepts.

Figure 5. A PVD example in the GSD.

Figure 5 illustrates a user’s PVD: Jacques is a young

researcher at LIRMM. He is a member of the LIRMM VC and
of the “okprotege” VC. As a member of these VCs he has
access to their CVD from within his PVD. The LIRMM
director uses the LIRMM’s Collaboration Sessions
Management Service to start a one day CS in common
environment mode to allow young researchers (i.e., forming a
subgroup of all LIRMM members) to show demonstrations of
their work with a video replay service. The same day, the
okprotege team has a short (one hour) CS in screen sharing
mode to work on the problem of collaborative ontology
construction problem, using the Protégé ontology-
development service (further exposed in Section 4).

 10

3.3.2. Processes in the GSD service

General case. Using a service in the GSD means to activate
that service’s shortcut in the appropriate desktop. This action
starts the service activation process (hidden for the user) in the
corresponding service container and runs the service’s
interface (e.g., a window-based GUI) that allows the user to
interact with the service during the service’s life.

Specific cases. Bootstrapping services of the GSD architecture
have special implementations that we detail here:

- The Notification Service is realised by enhanced-
presence indicators, turn-taking, or other services
allowing immediate awareness of the life of the group
(for example email, instant messaging, sounds, etc.).
The Notification Service is very important in the GSD
service as it makes the real binding between a member
and a group.

- The Member Management Service, when called at a
VC level to introduce a new member, creates (if
necessary) a new PVD (i.e., a login/password/private
space set), and grants access to the VC-CVD in the
created PVD. When called at the CS level, to introduce
a new participant, the Member Management Service
simply includes access to the CS-CVD in the user’s
PVD.

- The Service Management Service adds the imported
service’s shortcut in the desktop corresponding to the
service container in which the Service Management
Service is called.

- The Service Activation Service is not directly
accessible, but called each time that a user activates a
service in a desktop.

- The Collaboration Sessions Management Service is
able to create a BVD or a CS-CVD according to the
collaboration mode that the CS manager chooses. In
screen sharing mode, a PreBVD is created for each
participant of the CS; in common environment mode, a
CVD is created for all the participants of the CS.
Services that the manager imports for a given CS are
available in the BVD or CVD as shortcuts.

- The History Service is realised by a set of scripts that
log and trace a group’s history. This history is, of
course, interfaced and available for group members.

4. Collaborative construction of a shared ontology

To demonstrate and validate our approach and implementation
of the GSD in a real-world setting, we conducted an
experimental scenario involving the development of a shared
ontology—a computerised representation of knowledge—
using a renowned ontology-building tool supported as a
service on the GSD, as well as additional human-
communication services.

4.1. The problem of collaborative ontology construction

A frequent goal of human collaboration is to define a shared,
agreed-upon corpus of knowledge about a domain of expertise
common to the members of the collaboration community.
When formalised and computerised, shared knowledge can
serve as the basis for better understanding among members of
the community, better communication with external people, as
well as for further development of common resources and for
many problem-solving activities. In recent years, the
representation of such shared knowledge has largely been
implemented by ontologies—formal, computerised
conceptualisation of the notions, properties and relationships
in a domain [18].

Building an ontology requires the use of a tool that
provides means for creating and organising concepts,
properties and relationships that are important in a given
domain of expertise. Adopting such a tool, however, requires
to understand the principles of ontology construction as well
as mastering the set of associated user-interface tasks.
Building an ontology collaboratively requires an additional
level of service that includes multi-user serving of the
ontology contents and user-interface views, user
authentication and rights management, provision of real-time
information on collaborators that are editing the ontology,
portions of the ontology that are being modified, history of
modifications, as well as provision of locking and
commitment mechanisms. The Protégé knowledge-modeling
environment (http://protege.stanford.edu) is a de facto
standard tool that supports single and multi-user construction
of ontologies.

Collaborative ontology construction presents a certain
number of challenges, that exercise well the different kinds of
interactions that can occur among the participants of a
collaboration session. Types of interactions include the
presentation/teaching of portions of the ontology, the
discussion and reconciliation of multiple viewpoints on
knowledge, the negotiation of vocabulary terms, their
meanings and their relationships, and the confrontation of
various knowledge-modelling options. Such interactions
typically are not supported by current ontology-building tools;
instead they need to be supported at a human-communication
level by the collaborative environment with help of additional
services. Specifically, by interacting through a multi-user
ontology-development service, augmented by presentation
services such as slide-presentation software, drawing and
annotation boards, and enhanced-presence services such as
chat and videoconferencing, in addition to using the GSD CS
modes (i.e., screen sharing mode and common environment
mode), members of the community are able to teach, learn,
share and model knowledge of mutual interest.

4.2. General scenario presentation and experimental setup

Our objective in this scenario is to show how the collaborative
environment created by a virtual community and supported by

http://protege.stanford.edu/

 11

the GSD service can foster the collaborative modelling of
shared knowledge in the form of an ontology.

4.2.1. A two steps experiment scenario

We argue that our scenario is typical of the process by which a
set of collaborators initiate and execute a joint piece of work.
At the start of a collaboration, participants present, discuss and
choose their goals and the tools and methods that they are
going to employ to achieve their goals. Methods and tools
might not be known by everyone in the community;
knowledgeable participants hence need to walk other
participants through the principles of the tools and methods
and their basic operation. This can be seen as a learning
phase. Once most participants feel confident with the tools
and methods, a productive phase can start in which the actual
collaborative work takes place and more learning can occur
along the way. Note that this is a typical context of informal
learning.

Collaborative ontology construction being no different
from other collaborative activity, we divided our experiment
scenario into two steps:

- A first, learning experiment in which the GSD service
supports participants in teaching and learning
principles of ontology development and the use of the
Protégé ontology editor;

- A second, production experiment in which the GSD
service supports participants in creating, explaining and
maintaining an ontology collaboratively.

Consequently, our scenario enables us to show how the
GSD service both (1) supports a typical e-learning setting with
added features of screen sharing and common environment
collaboration modes (in the first step experiment) and (2)
provides an engaging framework for helping participants to
reconcile, formalise and capture knowledge that is initially
informal and distributed into a shared ontology that then can
be used inside or outside of the GSD context (in the second
step experiment). Notice that the second step experiment
would not be possible without considering the results of the
first one.

4.2.2. Experimental setup of the GSD

For the purpose of our experiments, we created a small VC,
called “okprotege” denoting the fact that members are willing
to collaborate on a given task. First, we conducted four remote
sessions focused on testing technical aspects of the GSD, and
configuring the ontology-building and enhanced-presence
services supported. Then, we conducted three short-time (2
hours) CSs involving five participants each accessing the GSD
service by logging onto their PVD in a Web browser. The
chosen collaboration mode for these CSs was screen sharing
mode. Each PVD was equipped with necessary collaborative
and preference-setting services as well as a one-click toggle
granting full access to the member’s own PreBVD, and a read-
only access to the BVD. At any time, participants could

switch from operating the services on their PVD to visualizing
both the PreBVD and the BVD.

During the experiments, the Protégé service supported by
the GSD was available to each participant via their PVD as a
client to a central Protégé server. Participants accessed and
controlled shared ontology files on the server, following a
classical client/server approach with authentication
mechanisms allowing for parallel editing of the shared
ontology. At the same time, participants communicated in
private or joint conversations by audio, video or text chat
using the FlashMeeting [2] videoconferencing service and the
BuddySpace [1] chat service, both running on their private
desktop8. In addition, collaborative tools such as text and
document editors, a file system explorer and a Web browser
were all available as services to CS participants within the
GSD.

4.3. Prelimilary results

In our experiment, our main interest was to assess the use of
the different collaboration modes supported by the GSD. The
main collaboration mode that we adopted for this scenario
was screen sharing. Motivations behind this choice were: (i) at
any time during a CS, participants could make modifications
to the shared ontology in parallel, hence fostering
participants’ initiative; (ii) participants could work on their
own PreBVD when they needed to do isolated work or try out
ideas, either on the common ontology or on a local copy of
the files; (iii) according to a turn-taking mechanism,
participants could each broadcast their actions, ideas or work
to the community once they were ready to do so. This
collaboration mode was appropriate both for a learning and a
production phase.

Very interestingly, our experiments demonstrated the
gradual transition from a learning phase of collaboration to a
more productive phase, by which the role of participants
evolved. The first two experiments were very much organised
as an “instructor” remotely walking a small group of
“students” through the concepts and user-interface metaphors
underlying ontologies and ontology editing with the Protégé
tool (see Figure 6). In these sessions, the instructor was the
main participant broadcasting her desktop, demonstrating how
to use Protégé and explaining ontology-building principles
along the way. The instructor also guided other participants
into trying simple exercises in front of others, by taking their
turn on the BVD.

The third experiment revealed an evolution of
participants’ roles and actions by which more initiative was
taken by initial “students” and less direction was instilled by
the initial “instructor.” Although these early experiments did
not lead us to a full production phase in a newly-created
ontology of particular interest to the okprotege community,

8 For the sake of simplifying these first experiments, enhanced-
presence tools were used externally to the GSD, on each participant’s
host desktop.

 12

Figure 6. Screenshot of the Grid Shared Desktop in action, during our first collaboration session experiment.

they still demonstrated production-level creation of new
concepts and properties in the tutorial ontology.

Figure 6 shows a screenshot of the GSD during one
experiment. Left, the Web-accessible PVD of a participant is
shown (here a Linux KDE desktop), focused on that
participant’s Pre-BVD, displaying his Protégé client serving a
tutorial ontology about Wines. Center, a FlashMeeting
videoconferencing session is running in parallel, showing the
instructor explaining what she does with Protégé and other
participants listening and following instructions. Right,
another part of the participant’s PVD is shown, focused on the
BVD, broadcasting the PreBVD of the currently active
participant (as denoted by the orange tab) displaying her
Protégé client.

Conducting these initial experiments was crucial in
devising the right mode of operation of the GSD in a scenario
such as ontology building with Protégé. For instance, our
experiments enabled us to improve the configuration of
private and broadcasted desktops, to decide on a set of
available services, to experiment turn-taking policies and
moderator roles, as well as to study voice/video/screen
interactions from the points of view both of technological
interference and of each participant’s experience in managing
these collaboration modes simultaneously. In addition, we
were able to solve a number of infrastructural details, such as
providing a one-click Web-accessible interface for the GSD,
managing user accounts, groups and rights, implementing
efficient screen-broadcasting mechanisms and identifying
multi-user requirements for applications such as Protégé.

Studying the dynamics of turn-taking on the BVD, we
experimented with tasking the instructor with the role of
moderating the turn-taking queue (as would a teacher in a
classroom), as well as tasking any other participant with this
role, mimicking a more spontaneous setting. In our current
version of the GSD, we decided that spontaneity is most

appropriate, and the GSD allows anyone to switch the BVD to
any other participant. We still want to set-up safeguard and
privacy mechanisms by which participants could prevent their
PreBVD from being broadcasted at certain times, as well as a
turn-asking queuing mechanism that would organise the
dialogue among participants.

5. Conclusion and perspectives

In this paper, we have presented a novel approach to the
design and implementation of a collaborative environment for
virtual communities of practice. Our solution, the Grid Shared
Desktop, or GSD, enables the bootstrap and support of remote
collaboration among humans, by drawing from the powerful
Grid infrastructure to provide a set of virtual desktops
(private, broadcasted and common) to a community of users
logging in and interacting through their Web browser. The
main new aspect of our solution is a Grid service oriented
approach. Via the GSD, users access a context dedicated to
the collaboration within the different communities that they
form. Virtual desktops play the role of service containers
available for both of the two identified collaboration levels:
virtual community and collaboration session. Each
community member has his or her own Private Virtual
Desktop, and both screen sharing mode and common
environment mode of collaboration are possible thanks to a
(Pre)Broadcasted Virtual Desktop and a Common Virtual
Desktop. In this environment, an array of services are
available to community members and provide them with
means of communicating and working together in
collaborative activities, as well as working in isolation on
common documents and resources. We believe that
supporting mechanisms such as authentication, turn-taking
and enhanced-presence services allow users to feel at home in
a trusted environment.

 13

We conducted initial experiments using the GSD among
ourselves in the context of a common activity in collaboration:
constructing a shared understanding of knowledge as an
ontology, using a set of renowned, well-accepted tools. The
valuable results from the initial experiments provide an initial
validation of our GSD approach. These encouraging results
are now leading to a large scale experiment within a
community of Chemists and Computer scientists. This
community has started constructing collaboratively an
ontology of Organic Chemistry, using the full potential of the
GSD. This effort is part of the ambitious EnCOrE project
(Encyclopédie de Chimie Organique Electronique). A
preliminary assessment shows that this collaborative work is
following the same two-step process that we experienced in
our test experiments: from initially instructor-driven, the
collaboration is now becoming more spontaneous, allowing
for individual initiative as well as for small subgroup
formation.

Acknowledgements

Work partially supported by the European Community under
the Information Society Technologies (IST) programme of the
6th Framework Programme for RTD - project ELeGI, contract
IST-002205 [3]. This document does not represent the opinion
of the European Community, and the European Community is
not responsible for any use that might be made of data
appearing therein.

Work performed in 2005 was also supported as a France-
Stanford Development Project “Technology-Enhanced
Learning on the GRID.” by the France-Stanford Center for
Interdisciplinary Studies.

EnCOrE: Encyclopédie de Chimie Organique
Electronique (Computerised databases describing compounds
exist, but have the same conceptual organization as the
reference tomes from the 19th century, and are often misused;
EnCOrE aims to address this problem.)

Disclaimer

A current prototype of the GSD service was deployed on the
LIRMM Grid node (at http://agora.lirmm.fr/) and was used
within the scenario presented in this paper as well as in the
large scale scenario with Chemists. It is based on Remote
Frame Buffer Protocol (RFB) [20]. Virtual desktops are KDE
Linux desktops and only some services currently available in
the GSD are true standard Web/Grid services (the rest are ad-
hoc applications for now).

References

[1] BuddySpace - Instant Messaging + Maps + Semantics = Enhanced

Presence Management for Collaboration, Learning, and Gaming.
www.buddyspace.org.

[2] FlashMeeting - The One Click Videoconference.
www.flashmeeting.com.

[3] The European Learning Grid Infrastructure. www.elegi.org.

[4] The Open Grid Services Architecture. www.globus.org/ogsa.
[5] C. Allison, S. A. Cerri, P. Ritrovato, A. Gaeta, and M. Gaeta. Services,

Semantics and Standards: Elements of a Learning Grid Infrastructure.
Applied Artificial Intelligence Journal, Special issue on Learning Grid
Services, 19(9-10):861–879, November 2005.

[6] M. L. Bote-Lorenzo, D. Hern´andez-Leo, Y. A. Dimitriadis, J. I.
Asensio-P´erez, E. G´omez-S´anchez, G. Vega-Gorgojo, and L. M.
Vaquero-Gonz´alez. Towards Reusability and Tailorability in
Collaborative Learning Systems using IMS-LD and Grid Services.
Advanced Technology for Learning, 1(3):129–138, September 2004.

[7] B. Calder, A. A. Chien, J. Wang, and D. Yang. The Entropia Virtual
Machine for Desktop Grid. In International Conference on Virtual
Execution Environment, VEE’05, Chicago, IL, USA, June 2005.

[8] S. A. Cerri. Models and Systems for Collaborative Dialogues in
Distance Learning. In M. F. Verdejo and S. A. Cerri, editors,
Collaborative Dialogue Technologies in Distance Learning, volume
133 of ASI Series F: Computers and Systems Sciences, pages 119–125.
Springer-Verlag, Berlin, Germany, 1994.

[9] C. Comito, D. Talia, and P. Trunfio. Grid Services: Principles,
Implementations and Use. International Journal of Web and Grid
Services, 1(1):48–68, 2005.

[10] P. Dugenie. Orientation et usage de l’Architecture de Services Grille
OGSA. In MajecSTIC 2005, pages 283–290, Rennes, France, November
2005. IRISA - IETR - LTSI.

[11] P. Dugenie and P. Lemoisson. A bootstrapping scenario for elicitating
CSCL services within a GRID virtual community. In 1st European
Learning Grid Infrastructure Conference, ELeGI’05, Naples, Italy,
March 2005.

[12] M. Eisenstadt, J. Komzak, and M. Dzbor. Instant messaging + maps =
powerful collaboration tools for distance learning. In Simposio
internacional de Tele-Educaci´on y Formaci´on Continua, TelEduc’03,
Havana, Cuba, May 2003.

[13] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey,W. Vambenepe,
and S.Weerawarana. Modeling Stateful Resources withWeb Services.
Whitepaper Ver. 1.1, Web Services Resource Framework, May 2004.

[14] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, San Francisco, CA,
USA, 1999.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration. In Open Grid Service Infrastructure WG, Global Grid
Forum. The Globus Alliance, June 2002.

[16] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Supercomputer Applications,
15(3), 2001.

[17] M. Geldof. The Semantic Grid: will Semantic Web and Grid go hand in
hand? Technical report, European Commission DG Information Society
Unit ’Grid technologies’, June 2004.

[18] T. R. Gruber. A translation approach to portable ontologies. Knowledge
Acquisition, 5(2):199–220, 1993.

[19] D. Laurillard. A conversational framework for individual learning
applied to the ’learning organisation’ and the ’learning society’. Systems
Research and Behavioral Science, 16(2):113–122, March 1999.

[20] T. Richardson. Remote Frame Buffer Protocol. Technical Report
Version 3.8, RealVNC Ltd., July 2005.
www.realvnc.com/docs/rfbproto.pdf.

[21] P. Ritrovato, C. Allison, S. Cerri, T. Dimitrakos, M. Gaeta, and S.
Salerno, editors. Towards the Learning GRID: advances in Human
Learning Services, volume 127 of Frontiers in Artificial Intelligence
and Applications. IOS Press, November 2005.

[22] D. D. Roure, N. Jennings, and N. Shadbolt. Research Agenda for the
Semantic Grid: A Future e-Science Infrastructure. Technical report,
University of Southampton, UK, June 2001. Report commissioned for
EPSRC/DTI Core e-Science Programme.

[23] M. P. Singh and M. N. Huhns. Service-Oriented Computing Semantics,
Processes, Agents. John Wiley & Sons, Ltd, 2005.

[24] S. Wesner and K. Wulf. How GRID could improve E-Learning in the
environmental science domain. In 1st LeGE-WG International Workshop

http://agora.lirmm.fr/
http://www.buddyspace.org/
http://www.flashmeeting.com/
http://www.elegi.org/
http://www.globus.org/ogsa
http://www.realvnc.com/docs/rfbproto.pdf

 14

on Educational Models for Grid Based Services, Lausanne, Switzerland,
September 2002. Electronic Workshops in Computing (eWiC).

[25] D. Whitelock, D. Romano, A. Jelfs, and P. Brna. Perfect Presence: What
does this mean for the design of virtual learning environments?
Education and Information Technologies, 5(4):277–289, December
2000.

Biographies

Pascal Dugénie received his MSc. degree
in communication systems from the
University of Bristol, U.K., in 1993. He
has been involved in hardware and
software design of telecommunications
equipment. He began in radio systems
design and participated in network
planning for the French broadcasting
operator TDF. He has been involved in
research in networks, protocols and

systems for six years at the Centre for Communication
Research, Bristol, U.K. where his interests concerned analysis
of telecommunication traffic and performance of fixed and
mobile networks. Later he joined Motorola as a system
engineer where he improved a heuristic for the optimisation of
frequency plans for GSM infrastructure. He chaired an ACTS
Special Interest Group during 1997-98 and participated to
ETSI standardisation. He is main author of seven international
publications and co author of six articles. Since, June 2004, he
is research engineer at the LIRMM and prepares a PhD at
University of Montpellier in the area of Grid computing.

Philippe Lemoisson is a graduate of
“Ecole Polytechnique” (1977) and of
”Ecole Nationale des Ponts et
Chaussées” (1982). Throughout his
whole career as an engineer since 1980,
he has been working on information
management solutions and tools for a
better collaboration inside companies: (i)
as a senior consultant in the domain of
Information System Management; (ii) as

a research engineer in the area of telecommunications. Since
2000, he has been sharing his time between the management
of Industrial or European projects and Scientific Research in
the domain of Computer Science. He is currently working on a
conceptual framework for “human cooperation enabled by

formal systems”, including a protocol for a “conversational
calculus” in the context of a PhD to be achieved in 2006.

Clement Jonquet, obtained a BSc. and
a MSc. in Computer Science (CS)
from the University of Montpellier,
France. He is currently a PhD student
in CS at the same university, in the
Laboratory of Informatics, Robotics,
and Microelectronics of Montpellier
(LIRMM – www.lirmm.fr). At the
same time, he is training as a junior
lecturer and teaches CS to BSc

students at the University of Montpellier. At LIRMM, he is a
member of the Social Informatics/Kayou team, concerned
with topics such as agents and multi-agent systems,
distributed systems, Web and Grid infrastructures, intelligent
services, ontologies, collaborative learning, e-learning. He is a
member of the ELeGI project. Clement Jonquet’s home page
is www.lirmm.fr/~jonquet.

Monica Crubézy is a research
scientist in the Stanford Medical
Informatics Laboratory at Stanford
University. As part of the Protégé
research effort, her research focuses
on modeling libraries of problem-
solving methods and integrating them
with domain ontologies to achieve
knowledge-intensive tasks. She also
studies mapping and mediating
knowledge among ontology-based

system components, such as in the context of the Semantic
Web. Recently, she has been concentrating on the study of
ontology building as a central activity in human collaboration.
She holds a BS engineering degree from Ecole Polytechnique
Féminine, France and she received her PhD in Computer
Science from the Université de Nice-Sophia Antipolis and the
Institut National de Recherche en Informatique et
Automatique, on the subject ok knowledge-based program
supervision for medical image processing. http://smi-
web.stanford.edu/people/crubezy.

http://www.lirmm.fr/
http://www.lirmm.fr/~jonquet
http://smi-web.stanford.edu/people/crubezy
http://smi-web.stanford.edu/people/crubezy

	THE GRID SHARED DESKTOP: A BOOTSTRAPPING ENVIRONMENT FOR COL
	Abstract
	Introduction
	Collaborative environments
	Requirements for a collaborative environment
	Potentialities offered by Grid services
	Current collaborative tools
	Specifying the collaborative environment
	The Grid Shared Desktop
	The Grid underlying infrastructure
	The GSD architecture
	Users, VC and CS
	Bootstrapping services
	GSD processes
	The GSD service implementation
	Collaboration virtual desktops
	Processes in the GSD service
	Collaborative construction of a shared ontology
	The problem of collaborative ontology construction
	General scenario presentation and experimental setup
	A two steps experiment scenario
	Experimental setup of the GSD
	Prelimilary results
	Conclusion and perspectives
	Acknowledgements
	Disclaimer
	References
	Biographies

