Collecting and Evaluating Lexical Polarity with a Game With A Purpose

Mathieu Lafourcade – LIRMM, Montpellier, France
Nathalie Le Brun – Imagin@t, Lunel, France
Alain Joubert - LIRMM, Montpellier, France
Polarity ? What ?

- Polarization is defined as a 3-uple of numerical values that are polarities:
 \[
 \langle \text{Positive}, \text{Neutral}, \text{Negative} \rangle
 \]

- Each term has an associated polarization, for example:
 - joy \(<\text{high, low, low}>\) mostly positive
 - sick \(<\text{low, low, high}>\) mostly negative
 - table \(<\text{low, high, low}>\) mostly neutral
 - car \(<\text{high, low, high}>\) mixed feelings

- Terms are words of any POS, common nouns, named entities, compound words, terms with context…

- Useful in semantic analysis and opinion mining
Polarities? How to collect them?

- By making people play

- LikeIt is a GWAP aimed to build a lexical polarity resource.

- Terms come from the JeuxDeMots lexical network.
 - over 500,000 terms for French
 - connected through 21 million lexico-semantic relations
 - over 80 relation types: hyper, syn, semantic roles, etc.
 - disambiguated: frigate>boat, frigate>bird
 - contextualized: storm [context] insurance
Global principles

- **Likelt** is a game designed to collect polarization data.

- These data are spread over the lexical network for **selecting** the next term to play.

- Polarities obtained through **likelt** are compared to polarities calculated thanks to two other GWAPs.

- **Emot** and **JDM** are games that require to associate FEELINGS to terms.

http://www.jeuxdemots.org/likeit.php
How does it work?

algorithm

JDM lexical network

term

Do you like?

like it

term

I do not care!

yes I do

No I don’t

x players

x votes

polarized term

http://www.jeuxdemots.org/likeit.php
A quite simple Game Principles

- The player has to answer either
 - yes
 - no
 - I do not care

- to the question

 do you like the idea of <a given term> ?

- The user can pass.

 I don’t know

http://www.jeuxdemots.org/likeit.php
Est-ce que vous aimez l'idée de nature ?
Game example

Click on one balloon
Game example: next screen

Est-ce que vous aimez l'idée de *barrière* ?

Votre réponse précédente était *bof* comme 26% des personnes.
Game example: next screen

Next game

Result

Est-ce que vous aimez l'idée de

barrière

Votre réponse précédente était bof comme 26% des personnes
Further to the answer given in the previous screen (barrier), the player immediately can see at the top of the next screen the percentage of players who share his view.

The game thus provides a feedback to the player while being immediately rerun with a new question.

> very efficient in terms of game play
Example of obtained data

<table>
<thead>
<tr>
<th>Term</th>
<th>Polarity distribution</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>nb votes</td>
</tr>
<tr>
<td>gift</td>
<td>POS: 82</td>
<td>Nb votes: 280</td>
</tr>
<tr>
<td></td>
<td>NEUT: 14</td>
<td>norm: 232.73</td>
</tr>
<tr>
<td></td>
<td>NEG: 4</td>
<td></td>
</tr>
<tr>
<td>retirement</td>
<td>POS: 48</td>
<td>Nb votes: 303</td>
</tr>
<tr>
<td></td>
<td>NEUT: 18</td>
<td>norm: 190.60</td>
</tr>
<tr>
<td></td>
<td>NEG: 34</td>
<td></td>
</tr>
<tr>
<td>policemen</td>
<td>POS: 29</td>
<td>Nb votes: 274</td>
</tr>
<tr>
<td></td>
<td>NEUT: 15</td>
<td>norm: 177.45</td>
</tr>
<tr>
<td></td>
<td>NEG: 56</td>
<td></td>
</tr>
<tr>
<td>autumn</td>
<td>POS: 37</td>
<td>Nb votes: 277</td>
</tr>
<tr>
<td></td>
<td>NEUT: 44</td>
<td>norm: 168.34</td>
</tr>
<tr>
<td></td>
<td>NEG: 18</td>
<td></td>
</tr>
</tbody>
</table>

The term *gift* is strongly positively monopolarized, while others show a more heterogeneous distribution.

The norm value is the norm of the vector composed of the values of positive, neutral and negative polarities.

The higher the norm, the more confident we can be in the representativeness of the polarity distribution.
Term Selection Algorithm

1. A term T (whose majority polarity is either positive or negative) is randomly selected.

2. the proposed term is either T with a probability p of 0.5, either N, a term randomly selected among the neighbors of T with a probability 1−p.

3. the probability p varies under empirically determined conditions: if the total number of votes for N is under 30 (resp. over 300, over 1000) for N, then p = 0.25 (resp. 0.75, 0.9).

Bootstrapping

The propagation algorithm was initiated by manually assigning a positive polarity to the term good (1 positive vote) and a negative polarity to the term bad (1 negative vote).
Quantitative evaluation (1/6)

- mid 2008 – april 2015
 - > 100 millions votes
 - > 385 000 polarized terms

- about 75% of the lexical network has polarity information.

283 votes per term on average
178 votes per positive polarity on av.
88 votes per neutral polarity on av.
83 votes per negative polarity on av.
120 votes per polarity on av.

- Average number of positive votes > neutral + negative

- It is possible that many people unconsciously behave in a "socially correct" way i.e. giving only positive opinions and passing over terms that would generate a negative one.
There is a slight predominance of neutral polarity: this is logical because the current vocabulary is mostly neutral.

The positive polarities are almost twice as high as the negative ones due to different reasons.

- Socially correct behavior of the players: they tend to express only their positive opinions.
- Many terms rather perceived as neutral (e.g. *Odonata*) are often labeled positively.
- A large proportion of the proposed vocabulary corresponds to named entities or areas usually eliciting approval, such as cinema, gastronomy, art, literature...
Distributions of polarities depending upon the number of votes

- Median value is around 80. Average value (120) is shifted to the right due to the "hub" terms i.e. the very general terms, which are connected to several tens of thousands of words.
- Such terms are more often proposed than less connected words, and thus rapidly collect a large number of votes.
The dominant polarities combinations are:

- **positive/neutral bipolarity** ➔ it confirms that people tend to vote either neutral or positive, or more precisely to vote positively even if they are rather indifferent.

- **positive/neutral/negative tripolarity** ➔ it indicates that many words arouse an opinion shared, although in these polarities distributions there may be a strong dominance of one amongst the three.

- **unanimity** is rare: only 6.3% shows a single polarity.
Quantitative evaluation (5/6)

Cumulative number of polarities according to the number of votes (weight).

The median values concerning the negative and neutral polarities (resp. 36 and 70) are significantly lower than the median value for positive polarities (about 200).

Many (in proportion) negative and neutral polarities with a low number of votes, and significantly more positive polarities over 200 votes.

Consistent with the hypothesis that:

People seem more likely to vote positively than negatively or neutrally.
Distribution of polarities (on the left) and of the log of polarities (on the right) according to their number of votes (weight).

Over approximately 400 votes, negative polarities are more numerous than others.

Due to the presence in the network of very negative "hubs": highly connected words for which the vote is almost always negative, as death, illness, accident, cancer…

Ups and downs are a consequence of the structure of the network, the algorithm and the fact that players can pass over, all combined.
Qualitative evaluation (1/5)

- Difficulty of performing a qualitative assessment due to
 - NO golden standard for lexical resource for polarity, to which the data obtained via LikeIt could be compared (not for French, not even for English).
 - Inability to perform a manual evaluation due to the number of terms (> 500 000).

- One approach
 - Within the project JDM, two games allow associations between terms and the feelings they evoke: terms relative to feelings can be proposed openly via a text field in the main game JeuxDeMots, and in a semi-open way (chosen by clic or given through free answer in advanced mode) in Emot game.
 - For each term, we get a list of weighted associated feelings.
 - Terms of feelings were the first to be reached by the propagation algorithm, so they are polarized like this:

```
arm: strength (110)(*); protection (100)(+); support (80)(+);
union (5)(-); indifference (4)().
```

(number)= weight of the relation; (+) positive dominant polarity; (-) négative dominant polarity; () neutral dominant polarity; (*) absence of a dominant polarity.
Emot, a game that allows to associate feelings to any term within the network
Qualitative evaluation

JeuxDeMots, an associative game that allows to associate also sentiments to any term within the network
Qualitative evaluation

Players:
- Jeux de mots
- Emot
- Like It

Feelings:
- + feelings + feelings + feelings + feelings
- + feelings + feelings + feelings + feelings
- + feelings + feelings

Sum of polarity vectors:

Inferred polarity:

Comparison:

Direct polarity:
- Yes I do
- I don't care
- No, I don't like

Polarized term:
We calculated the cos and max values, and ordered the first 5,000 terms by decreasing weights for the feelings relation (thus the most often played for this relation at the first).

It clearly shows a significant correlation between the polarization defined by Likelt and that induced by the associated feelings.

The average of the maximal polarities from the game (mpa) can be seen as the maximum rate of agreement reached on average by the general opinion, for the n most played words.
Conclusion

- Our approach and tools used for getting polarity data are relatively recent, and the number of polarized terms represents a significant proportion (>75%) of the entire network.

- It can be assumed that the most interesting common words are those which are the most played in JeuxDeMots, hence the most appropriately linked to other words.

- As our propagation algorithm selects the vast majority of such terms, we may conclude that our approach allows to effectively polarize them.

- Given the results, we reckon we have demonstrated the feasibility, the interest of our project, and broadly undertook to build the corresponding resource.
Future work

- Continuing the double approach (polarity inferred from associated feelings, and polarity directly assigned through the game Likelt) to further expand the already abundant lexical resource of polarity (> 385,000 words with a polarity information as a freely available resource).

- Extrapolation: different characteristics (size, temperature, weight/balance, temporality, location...) may be characterized and quantified using crowdsourcing through GWAP. Note that the data generated through these games, that require only knowledge and a good command of language, are of good quality, which justifies this approach.

- The polarities data are not static but potentially fluctuating, especially in time, and depending on the circumstances. So, going further with the notion of context may be interesting, for example:

 DSK [context] IMF and DSK [context] Sofitel
Thank you for your attention

Do you have any questions?

http://www.jeuxdemots.org/likeit.php