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Abstract. The NLP team of LIRMM currently works on lexical dis-
ambiguation and thematic text analysis [Lafourcade, 2001]. We built a
system, with automated learning capabilities, based on conceptual vec-
tors for meaning representation. Vectors are supposed to encode ideas
associated to words or expressions. In the framework of knowledge and
lexical meaning representation, we devise some conceptual vectors based
strategies to automatically construct hierarchical taxonomies and val-
idate (or invalidate) hyperonymy (or superordinate) relations among
terms. Conceptual vectors are used through the thematic distance for
decision making and link quality assessment.

1 Introduction

In the framework of meaning representation, the NLP team of LIRMM currently
works on strategies for automatically populating hierarchical taxonomies. Such
strategies are based on the simultaneous exploitation of the conceptual vector
model, definitions found in human usage dictionaries, and free text. The con-
ceptual vector model aims at representing thematic activations for chunks of
text, lexical entries, locutions, up to whole documents. Roughly speaking, vec-
tors are supposed to encode ideas associated to words or expressions. The main
applications of the model are thematic text analysis and lexical disambiguation
[Lafourcade, 2001] and can found interesting approaches for vector refinement
through the lexical implementation of taxonomies. Practically, we have built a
system, with automated learning capabilities, based on conceptual vectors and
exploiting monolingual dictionaries for iteratively building and refining them.
So far, from French, the system learned 87000 lexical entries corresponding to
roughly 350000 vectors (the average meaning number being 5). We are conduct-
ing the same experiment for English.

With these lexical and vector resources, we can, in conjunction with simple
hyperonym (or superordinate) extraction methods [Hearst, 92], automatically
construct many partial hierarchies. In our context, the hyperonymy relation is
(perhaps abusively) considered as the inverse of the hyponymy relation, more
often refered in software engineering as specialization. The hierarchy soup com-
posed of hierarchy fragments is built through an iterated process that involves



several strategies. The ideas, applied to French in our experiment, are generic
and could be extended to any language. The bootstrapping consists in producing
a set of hyperonyms from definition dictionaries that are corresponding directly
to meanings as defined in our French dictionary. Filtering and selection are done
with the help of thematic distance on the vectors associated to the items. The
adjunction of hyponyms extracted from definitions, permits to add new mean-
ings or salient properties to the hierarchies. At least, it allows us to strengthen
our links or to detect inconsistencies. Free texts can also be exploited although
(contrary to entry definitions), in case of polysemy, a word meaning identification
should be carried out.

Beside NLP, taxonomy extraction can find applications in intelligent assis-
tance in domain modeling and software engineering. This is specially critical,
when (at least) two sets of classes have to be merged, as strategies based uniquely
on class definitions fall short because of their lack of interpreting capabilities of
naming entities. The name of a class or of an attribute has normally been cho-
sen by designers for their evocating power, and is definitively (at least) a very
strong clue for semantic induction and (at most) sometimes the only informa-
tion available [Rayside, 2001 ]. So far, automated strategies rely only on symbol
matching but never on the semantic association carried by the symbols. Sim-
ilarly to metrics used in software engineering and class hierarchy factorization
[Dao, 01], the thematic distance helps evaluating similarity. The main difference
between Software Engineering and Lexical Semantics remains for the latter that
meaning is a blurred halo in the semantic space and is susceptible of slippage
(through metaphor and meronymy, notably).

In this paper, we first expose the conceptual vectors model and the notion of
semantic distance and contextualization. Then, we expose the hierarchy build-
ing strategies that associate meanings to hyperonyms through sets of correspon-
dences and conceptual distances.

2 Conceptual Vectors

We represent thematic aspects of textual segments (documents, paragraphs, syn-
tagms, etc.) by conceptual vectors. Vectors have been used in information re-
trieval for long [Salton et MacGill, 1983] and for meaning representation by the
LSI model [Deerwester et al, 90] from latent semantic analysis (LSA) studies in
psycholinguistics. In computational linguistics, [Chauché, 90] proposes a formal-
ism for the projection of the linguistic notion of semantic field in a vectorial
space, from which our model originates. From a set of elementary notions, con-
cepts, it is possible to build vectors (conceptual vectors) and to associate them
to lexical items. The hypothesis that considers a set of concepts as a generator
to language has been long described in [Rodget, 1852] (thesaurus hypothesis).
Polysemous words combine the different vectors corresponding to the different
meanings. This vector approach is based on well known mathematical proper-
ties, it is thus possible to undertake well founded formal manipulations attached
to reasonable linguistic interpretations. Concepts are defined from a thesaurus



(in our prototype applied to French, we have chosen [Larousse, 1992] where 873
concepts are identified). To be consistent with the thesaurus hypothesis, we con-
sider that this set constitutes a generator space for the words and their meanings.
This space is probably not free (no proper vectorial base) and as such, any word
would project its meaning on this space.

2.1 Thematic Projection Principle

Let C be a finite set of n concepts, a conceptual vector V is a linear combination
of elements ci of C. For a meaning A, a vector V (A) is the description (in exten-
sion) of activations of all concepts of C. For example, the different meanings of
↪quotation↩ could be projected on the following concepts (the CONCEPT [intensity]
are ordered by decreasing values): V(↪quotation↩) = STOCK EXCHANGE [0.7], LAN-

GUAGE [0.6], CLASSIFICATION [0.52], SYSTEM [0.33], GROUPING[0.32], RANK [0.31], OR-

GANIZATION [0.30], ABSTRACT [0.25], . . .

In practice, the larger C is, the finer the meaning descriptions are. In return,
computer manipulation is less easy. It is clear, that for dense vectors1 the enu-
meration of the activated concepts is long and difficult to evaluate. We would
generally prefer to select the thematically closest terms, i.e., the neighborhood.
For instance, the closest terms ordered by increasing distance of ↪quotation↩ are:
V(↪quotation↩) = ↪management ↩, ↪stock ↩, ↪cash↩, ↪coupon↩, ↪investment ↩, ↪admission↩,
↪index ↩, ↪abstract ↩, ↪stock-option↩, ↪dilution↩, . . .

2.2 Angular Distance

Let us define Sim(A,B) as one of the similarity measures between two vectors
A et B (eq. 1), often used in information retrieval [Morin, 1999]. Then, we define
an angular distance DA between two vectors A and B (eq. 2). We suppose here
that vector components are positive or null, and “·” refers to the scalar product.

Sim(A,B) = cos(Â, B) =
A ·B

‖A‖ × ‖B‖
(1)

DA(A,B) = arccos(Sim(A,B)) (2)

Intuitively, this function constitutes an evaluation of the thematic proximity
and is the measure of the angle between the two vectors. We would generally
consider that, for a distance DA(A,B) ≤ π

4 , (i.e. less than 45 degrees) A and
B are thematically close and share many concepts. For DA(A,B) ≥ π

4 , the
thematic proximity between A and B would be considered as loose. Around π

2 ,
they have no relation. DA is a real distance function. It verifies the properties of
reflexivity, symmetry and triangular inequality. We can have, for example, the
following angles2 (values are in degrees):

1 Dense vectors are those which have very few null coordinates. In practice, by con-
struction, all vectors are dense.

2 Examples are extracted from: http://www.lirmm.fr/~lafourca



DA(↪profit ↩, ↪profit ↩)=0◦ DA(↪profit ↩, ↪product ↩)=32◦

DA(↪profit ↩, ↪benefit ↩)=10◦ DA(↪profit ↩, ↪goods↩)=31◦

DA(↪profit ↩, ↪finance↩)=19◦ DA(↪profit ↩, ↪sadness↩)=65◦

DA(↪profit ↩, ↪market ↩)=28◦ DA(↪profit ↩, ↪joy↩)=39◦

The first value has a straightforward interpretation, as ↪profit ↩ cannot be closer
to anything else than itself. The second and third are not very surprising since a
↪benefit ↩ is quite synonymous of ↪profit ↩, in the ↪finance↩ field. The words ↪market ↩,
↪product ↩ and ↪goods↩ are less related which explains a larger angle between them.
The idea behind ↪sadness↩ is not much related to ↪profit ↩, contrary to its antonym
↪joy↩ which is thematically closer (either because of metaphorical meanings of
↪profit ↩ or other semantic relations induced by the definitions). The thematic
proximity is by no way an ontological distance but a measure of how strongly
meanings may relate to each others.

The graphical representations of the vectors of ↪exchange↩ and ↪profit ↩ shows
that these terms are indeed quite polysemous. Two other terms (↪cession↩ and
↪benefit ↩) seems to be more focused on specific concepts. These vectors are the
average of all possible meanings of their respective word in the general Thesaurus
[Larousse, 1992]. It is possible to measure the level of fuzziness of a given vector
as a clue of the number of semantic fields the word meaning is related to.

Because of the vagueness related either to polysemy or to lacks of precision
(only 873 general concepts), we have to plunge our vectors into a specialized
semantic space. However, we cannot cut loose from the general ones for two
reasons. First, even non-specialized words may turn out to be pivotal in word
sense disambiguation of specialized ones. Second, we cannot know beforehand
whether a given occurrence of a word should be understood in its specialized
acception or more a general one.

Fig. 1. Graphical representation of (more to less polysemous) terms exchange, benefit
and cession (from left to right).

2.3 Vector Operators

Vector Sum. Let X and Y be two vectors, we define their normed sum V as:

V = X ⊕ Y | vi = (xi + yi)/‖V ‖ (3)



This operator is idempotent (we have X ⊕ X = X). The null vector 0 is by
definition the neutral element of the vector sum. Thus we write down 0 ⊕ 0 =
0. We derive by deduction (without demonstration) the closeness properties
associated to this operator (both local and general closeness).

DA(X ⊕X, Y ⊕X) = DA(X, Y ⊕X) ≤ DA(X, Y )

and DA(X ⊕ Z, Y ⊕ Z) ≤ DA(X, Y )
(4)

Normed Term to Term Product. Let X and Y be two vectors, we define
V as their normed term to term product :

V = X ⊗ Y | vi =
√

xiyi (5)

This operator is idempotent (X ⊗X = X) and 0 is absorbent (X ⊗ 0 = 0).
Contextualisation. When two terms are in presence of each other, some of
the meanings of each of them are thus selected by the presence of the other,
acting as a context. This phenomenon is called contextualisation. It consists in
emphasizing common features of every meaning. Let X and Y be two vectors,
we define γ(X, Y ) as the contextualisation of X by Y as:

γ(X, Y ) = X ⊕ (X ⊗ Y ) (6)

These functions are not symmetrical. The operator γ is idempotent (γ(X, X) =
X) and the null vector is the neutral element (γ(X,0) = X ⊕ 0 = X). We will
notice, without demonstration, that we have the following properties of closeness
and of farness):

DA(γ(X, Y ), γ(Y, X)) ≤ {DA(X, γ(Y, X)), DA(γ(X, Y ), Y )} ≤ DA(X, Y ) (7)

The function γ(X, Y ) brings the vector X closer to Y proportionally to their
intersection. The contextualization is a low-cost meaning of amplifying proper-
ties that are salient in a given context. For a polysemous word vector, if the
context vector is relevant, one of the possible meanings is activated through con-
textualization. For example, bank by itself is ambiguous and it vector is pointing
somewhere between those of river bank and money institution. If the vector
of bank is contextualized by river, then concepts related to finance would be
considerably dimmed.

3 Hyperonym identification and hierarchy construction

From term definitions found in human usage dictionaries and from free texts, we
extract hyperonym and hyponym sets. The technic used is directly inspired from
[Hearst, 92] for the use of simple and low cost pattern recognition. The main dif-
ficulty is that for a term t with k meanings, the proper word sense should be
identified before figuring out its place in a hierarchy. When using (highly) spe-
cialized hierarchies [Llorens, 2001], we may skip this disambiguation process,
although it still might lead to interpretation problems [Barrière et al, 01]. We
use dictionary definitions and conceptual vectors for, at the same time (1) ex-
tracting the hyperonym from a well identified meaning, and (2) disambiguating
the hyperonym candidate when needed.
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Fig. 2. Geometric represention (in 2D) of the contextualization function. The α angle
represents the distance between A and B contextualized by each other.

3.1 Hyperonym identification

For a given term and from several vectorized dictionaries, we extract an hyper-
onym set. For instance, for the French term émeraude (emerald), we have two
meanings with the following hyperonym sets:

• Hyper(émeraude.1) = pierre précieuse (src 1), pierre (src 1), [type de]
béryl (src 2), gemme (src 3). (Eng. precious stone, stone, [kind of] beryl,
gem.)
• Hyper(émeraude.2) = couleur [de l’émeraude], vert, vert lumineux
(Eng. color [of emerald], green, shiny green)

The name of the source is given along the potential hyperonyms. Several candi-
dates can be proposed for one definition as several patterns may be applied, and
in general the frontier between under and over-contraction of definitions is dim.
Parts of hyperonym between brackets are trimmed.

The difficulty here is to find one (or several) acceptable hyperonyms for each
meaning. For each set, we compute the conceptual vector of each hyperonym
candidate V (Hyper-cand/meaningi).

V (Hyper-cand/meaningi)) = γ(V (Hyper-cand), V (meaningi))

We contextualize the vector obtained from the definition of the hyperonym can-
didate with the vector of the definition it has been extracted from. If the hyper-
onym candidate exist as a term in the conceptual vector lexical database, then
its vector is used. Otherwise, its vector is computed by composition of the vector
of its sub-term (after a morphological and syntactical analysis).

The selected hyperonym candidate is the term which vector is the closest
(in thematic distance terms) to V (Hyper-cand/meaningi)). We are now able to
create a node for each Hyper-cand/meaningi with a link to the corresponding



disambiguated hyperonym candidate (cf Fig. 3 stage 1). If the term doesn’t exist
in the lexical database, it is added along its computed vector.

Émeraude/pierre précieuse Émeraude/béryl

béryl

Pierre précieuse

Gemme/pierre précieuse Gemme/bourgeon Gemme/résine

closest vector

Émeraude/gemme

…

v v

vv v

v

Émeraude/pierre précieuse Émeraude/béryl

béryl

Pierre précieuse

Gemme/pierre précieuse Gemme/bourgeon Gemme/résine

Émeraude/gemme

…

v v

v
v

v

v

Émeraude/béryl

béryl

Pierre précieuse

Gemme/pierre précieuse

0.81

0.9

0.85
Émeraude/vert

Vert/couleur des signaux

Couleur/matièreCouleur/sensation

Vert/couleur

…

…

1

2

…

…

same meanings

same meanings

Fig. 3. (1) Linking of each meaning equivalent to its hyperonym. If an hyperonym is
by itself ambiguous, its proper meaning is selected by minimizing the thematic dis-
tance between vectors. (2) Trimming of redundant meanings. When several meaning
equivalents are competing, the one linked to the most specific hyperonym is selected.
Other meanings are deleted as they related to upper items in the partial hierarchy.

3.2 Identical meaning trimming

For a given meaning, we have added all disambiguated terms and links to hy-
peronym to the partial hierarchy. We need to delete all but one of the equivalent
terms (cf Fig. 3 stage 2). The objective is to identify the most adequate item.
Again, the strategy invoked here is straightforward, as only the link to the most
specific (lowest in the hierarchy) is kept. In case of doubt (same level in the hi-
erarchy or incompleteness of the hierarchy), the item which vector is the closest
to its hyperonym is kept. In other words, only the most similar couple (term,
hyperonym) is chosen.

This above procedure gives us a symbol for naming a given word meaning
(this is useful only when the word is polysemous). This symbol is constructed
with the simplest possible form: the concatenation of the term and of its most
specific hyperonym. From a psycholinguistic point of view (which is out of scope
here), the concision of the symbol would also be taken into consideration. Fur-
thermore, such symbols are human readable and machine parsable. If the vec-
tor of emerald/green is not available, we (human and machine) can guess from



the symbol that it might be a kind of green, and use the vector of green as a
substitute. Of course, from the name of the hyperonym, which itself could be
polysemous, we cannot without the hierarchy guess the proper meaning. But, in
case the hierarchy is lost, the mutual information shared between the hyponym
and the hyperonym would in most cases disambiguate both.

3.3 Hyponym added information

In dictionaries, many definitions of very general terms make extensive use of
examples. Basically, these examples constitute hyponyms (the inverse relation
relatively to hyperonyms) and could be exploited with benefit. The most obvious
use of hyponyms is to cross-check hyperonyms, nevertheless we can also extract
information that are not directly accessible from normal (hyperonymic) defini-
tions. By the use of hyponymy, the hierarchy cannot take the form of a tree but
of a (partial) lattice (cf Fig. 4). Indeed, a meaning can have several hyperonyms.
For instance, we have extracted the following hyponyms (among others):

• Hypo(moyen de transport) = véhicule, voiture, avion, train, automo-
bile, cheval, · · · (Eng. Hypo(transport means): vehicle, car, plane, train,
motorcar, horse, · · · )
• Hypo(viande) = poulet, agneau, boeuf, cheval, mouton, · · · (Eng.
Hypo(meat): chicken, lamb, beef, horse, mutton, · · · )

Here, we can observe that horse (cheval) is a particular meat (viande) and also a
means of transportation (moyen de transport). Although, we have the following
hyperonyms (familiar meanings excluded):

cheval.1: mammifère. (Eng. mammal)
cheval.2: art de monter à cheval. (Eng. art of ridding horses)
cheval.3: unit de mesure. (Eng. measure unit)

We have seen clearly (through vector contextualization and thematic distance)
that the two hyponym sets seem to induce two new meanings that were not given
through definitions. In this case, we do create the new meanings (cheval/moyen
de transport and cheval/viande) and link them to their hyperonyms. The prob-
lem is that starting from vectorized definitions, there is no way to catch these
new meanings as they are not (yet) identified. Thus, to overcome this problem,
we link each of these new meanings as hyperonym to its closest already existing
counterpart. In the above example, we have:

• cheval/moyen de transport is closer to cheval/mammifère than to
cheval/unité de puissance. This relation can be checked on their respec-
tive vector, and (sometimes) by pattern matching on some part of (en-
cyclopedic) definition.
• cheval/viande is closer to cheval/mammifère than to cheval/unité de
puissance.
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véhicule/Moyen de transport véhicule/vecteur
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Fig. 4. Hyponym insertion. Adding found hyponyms can lead to the identification
either (1) of new salient properties in already existing meanings or (2) of new meanings
altogether. Thematic distance is used as a meaning selector.

4 Conclusion

This paper has presented a strategy for hierarchy construction through low cost
hyperonym extraction (from definitions) associated to disambiguation and link-
ing decision based on conceptual vectors. By itself, the overall process consists
in symbolizing word meaning (giving a unique name to each item that are mem-
bers of a meaning set). It is now possible to handle a meaning not only by
exemplifying its vector, but also by referring to it thanks to its symbol.

Our strategies have been prototyped and have been included in our (concep-
tual) vector lexical database. It is mainly used for comforting vector calculation
and detecting inconsistencies. The overall process is by itself iterative and in-
cremental. And a global hierarchy is being built by fusion of partial ones. Only
some hierarchy parts are actually exploited during NLP process, mainly those
which are really useful for word sense disambiguation. The experiment has been
conducted (and is still in process) on 50000 nouns (for roughly 87000 words).
Comforting enough is the fact the constructed hierarchy is really close to some
Aristotelian classification. This is basically explained by the fact that the struc-
ture of the dictionary definitions draws much on this tradition. The main depar-
ture is the multiple inheritance schema that originates from property salience
(as show on the term horse). In general, the frequency of this phenomenon is
inversely proportional to the technicality of the domain.

The produced partial specialization hierarchies enable some automatic re-
finement of domain representation. In effect, when domains are too specialized,
the fine meaning difference cannot be apprehended through conceptual vectors
(unless enlarging considerably the vector space). Allowing agents to process in-



formations both at the vectorial and symbolic (as defined above) levels seems
definitively a way to solve some aspects of the symbol grounding problem. Beside
Natural Language Processing and information retrieval, possible application of
this research is to provide intelligent assistance in advanced software engineering.
Such assistance would mainly rely on guessing designer intentions through the
inspection of names of entities. Relating lexical information to common knowl-
edge could pave the way to more flexible domain representations.
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