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Abstract

Synonymy is a pivot relation in NLP
but remains problematic. Putting
forward, we introduce the notion
of relative synonymy, to circumvent
some diÆculties among which possi-
ble polysemy and contextual inter-
pretation. In the framework of con-
ceptual vectors, it is then possible
to formalize test functions for syn-
onymy and to experiment their use
in thematic analysis that will help
text classi�cation.

1 Introduction

Synonymy is, with hyperonymy, one of the
most useful lexical functions in Natural
Language Processing (NLP) (Sparck Jones,
1986). Whereas synonymy is generally pro-
vided through linguistic or ontologic expertise
(e.g. Wordnet based works such as (Hearst,
1998)), few systems try to recognize syn-
onymy in context (Gwei and all., 1987). Nev-
ertheless, synonymy is a studied relation in
NLP since it has demonstrated its usefulness
in:

� creating machine readable dictionaries
that help disambiguation (Milne, 1986);

� performing an information retrieval more
sophisticated than a character string pat-
tern retrieval (Salton, 1968);

� avoiding the multiplication of concepts
in knowledge bases (the same concept
would be associated to a list of synonyms
(Schank, 1973));

� suggesting a good stylistic quality in text
generation.

Synonymy is supposed to have the good prop-
erties of a semantic equivalence relation be-
tween terms1. If this property is to be trans-
ferred to the formal side, synonymy should be
re
exive, symmetric and transitive. Unfortu-
nately these properties are seldom veri�ed, as
we will discuss it later.

In this article, we deal with the problems
arising from the transposition of synonymy,
as a linguistic function, to its detection and
measure in a NLP system. This brings us
to de�ne, along with other researchers (such
as Gwei and Foxley) di�erent types of syn-
onymies, that we have sketched in a broad
fashion in a previous work. In this commu-
nication, we focus on the concept of relative
synonymy, which we show as a good way to
avoid blind choice between possible synonyms
of a polysemous word. We then propose an
overview of ideas and processes related to
the formalism of conceptual vectors ((Salton,
1968); (Salton and MacGill, 1983)), on which
we have built all our framework. We �nally
describe the test functions that measure se-
mantic closeness and relative synonymy, and
we discuss the bene�ts of the latter.

2 Synonymy in a nutshell

2.1 Synonymy and formal properties

One of the �rst known inconvenience of syn-
onymy, as a relation between terms, is that it
does not necessarily verify transitivity (Lewis,
1952). For instance, ,(to) run- and ,(to) walk

1a term is represented by a word or an expression
having the status of a lexical entry in a dictionary



fast -, ,(to) run- and ,(to) perform-, are synony-
mous by pairs but are such that ,(to) walk fast -
and ,(to) perform- are not synonymous. Exam-
ples are numerous but we chose here the con-
cept of SORTING2 because, as we have mainly
worked on French (presently, we are trans-
ferring our system to English for the needs
of automatic translation assistance), we have
tested verbal synonymy with some very pol-
ysemic verbs such as ,(to) sort (out)-. Fortu-
nately, we have almost exactly the same type
of polysemy for this verb in both French and
English. This will help explaining the prob-
lem and housing information for the forth-
coming translation system. Practically, many
concepts are invoked by SORTING

� CLASSIFYING such as in [sorting out a list of

�fty elements by ascending order ]

� SELECTING such as in [sorting out stamps for

a collection]

� SEPARATING such as in [sorting clothes be-

tween clean and dirty]

� MENDING such as in [sorting one's bike]

� SOLVING such as in [sorting out a problem]

� UNDERSTANDING such as in [sorting out what

happened this morning]

� PUNISHING such as in [sorting somebody out ]

English and French share the �rst three con-
cepts as related to the verbal form ,(to) sort

(out)-. This multiplicity shows that if SORTING
is synonymous to any of the related concepts,
the later are not equivalent to each others.
(Fischer, 1973) asserts that synonymy is at
best a tolerance relation3.
The second disadvantage of synonymy is that
it could be, at least partially, confused with

2we represent the lexical entries by ,entry-, corre-
sponding to words and expressions in the dictionary,
and the concepts by CONCEPT. In general, when a
concept is also represented by a verb, the conceptual
form is verb-ing.

3a tolerance relation could be symmetric and re-

exive but not transitive. There are several levels of
tolerance, according to the veri�ed properties.

hyperonymy4. For instance, ,(to) parcel - could
be replaced by ,(to) divide up- although it is
a hyponym, specialised in usage about land
division.,(to) divide up- is in turn a hyponym
of ,(to) cut - which in turn could means as well
,(to) remove- in [cutting a piece of bread ] as ,(to)
split - in [cutting the wood for �re]. This mis�t
shows a weakness in the symmetry of the re-
lation and thus tempers with its status as a
(strong) tolerance relation. Hyperonymy is
not a symmetrical relation and a hyperonym
playing out the role of a synonym transfers
the constraints of its original function.On the
opposite site, we will also note that a pol-
ysemous term may have several hyperonyms
coming out of di�erent branches of the con-
ceptual representation. Last, two hyponyms
of a given terms are not necessarily synonyms.
For instance, ,kni�ng- and ,shooting- are hy-
ponyms of ,murdering- and they are not syn-
onymous since they pinpoint at the use of a
di�erent weapon.
This brings us to de�ne synonymy as the

ability for two terms, to share the most
important number of semantic features

or to have the widest possible basis in
common. This de�nition leads naturally to a
large family of possible neighbours. It is thus
important to de�ne those among the possi-
ble synonymy relations which will present the
most robust features for applications such as
indexation and information retrieval in a cor-
pus.

2.2 Relative Synonymy

To circumvent the untransitivity of synonymy,
a notion of relative synonymy has been de-
�ned that is built upon the following princi-
ple: two terms may be synonymous according
to the central idea (or topic) developed in a
third term, or by one of them (Lafourcade and
Prince, 2001). The related approaches to rel-
ative synonymy could be seen in Sabah's near
synonymy (Sabah, 1984) in a context of se-
mantic networks, and Gwei and Foxley's con-
textual synonymy in text analysis. Thus ,(to)

4a hyperonym is the parent concept or term of a
given term. For instance ,parent - is hyperonym of
,father - and of ,mother -. In turn, both of them are
hyponyms of ,parent -.



sort (out)- and ,(to) select - are synonymous with
respect to the discriminant concept of SELECT-
ING, whereas ,(to) sort (out)- and ,(to) classify-

are synonymous with respect to CLASSIFYING.
With a third term, it may funtion in the same
way. The concept CLASSIFYING, helps relat-
ing ,(to) sort (out)- and ,(to) organize-, ,(to) sort

(out)- and ,(to) put in order -. All the items that
are synonymous with respect to a same third
one (which could be one of them) are syn-
onymous by pairs. Thus, the synonymy rel-
ative to a third is a transitive function. For
instance ,(to) choose- and ,(to) select - are syn-
onymous with respect to SELECTING,therefore,
,(to) sort (out)- and ,(to) choose- are also synony-
mous with respect to SELECTING. The bene�t
of such a relation is that it then becomes an
equivalence relationship (a formal demonstra-
tion of this is given in (Prince, 1991)) thus
restoring to synonymy all its deductive fea-
tures.

3 Conceptual Vectors

We focus on meaning representation in NLP
and its application to thematic analysis and
information retrieval. Thus we have chosen to
represent the thematic aspects of segments of
text (such as documents, paragraphs, phrases
and so forth) in the shape of conceptual vec-
tors such as in (Lafourcade and Sandford,
1999). This approach originates from the
works of (Chauch�e, 1990) through the use
of a predetermined set of concepts out of
the French Thesaurus (Larousse, 2001). The
same idea has been exploited in (Gwei, 1984),
(Gwei and all., 1987) and the Roget the-
saurus for English. The formalism is issued
from the vectorial model de�ned in Salton's
work, namely in (Salton and MacGill, 1983),
and from the LSI model (Deerwester and all.,
1990) in which the interdependence of con-
cepts is recognized and employed. However,
the originality of our approach reposes on the
fact that we use a morphosyntactic parsing
of texts to extract vectors instead of a key-
word surface analysis as presented in (Salton,
1988). The morphosyntactic parsing gener-
ates structural analysis trees, the geometry of
which is one of the parameters of our vectorial

calculus. Generally speaking, the documents
are processed independently, unlike LSI, and
we focus on lexical selection in context. When
comparing with (Resnik, 1995), our approach
di�ers with respect to the exclusive usage of
taxonomies.
We rapidly present the main mathematical
properties conceptual vector model that we
use in the next section. From a paradigmatic
point of view, this model operates as the pro-
jection (in the scope of a well-known mathe-
matical model) of the linguistic notion of se-
mantic �eld.

3.1 Basic assumptions

The main assumptions grounding our ap-
proach are the following:

� (assumption 1) Since linguists have orga-
nized the conceptual framework for lan-
guage in thesaurii (i.e. Larousse for
French, Roget for English), we rely upon
the conceptual hierarchy provided for
each language as the generating family
of conceptual vectors.

� (assumption 2) For French, Larousse
has enumerated 873 concepts, organized
in a tree with 4 levels of abstraction
(the Roget proposes around 1000 con-
cepts, however, many of the exceeding
concepts belong to religious descriptions
that are absent in French). Thus the
dimension of the generated vector space
is 873, although the vectors representing
these concepts do not form a free space
(in fact, the \real" dimension could be
smaller). But as we have no way to de-
�ne a real basis for the vector space, we
will restrain our ambition to a space with
a generator.

� (assumption 3) We assume that every
term, and thus every segment, has a pro-
jection in this vector space, and could
be represented by a linear combination
of vectors.

� (assumption 4) Every vector generated
in the vector space represents a meaning,



whether this meaning is embodied in a
term or a segment (assumption 3) or not.

In fact, the largest C is, the �ner would be
all meaning descriptions o�ered by vectors,
but the heavier would be their computational
handling. Building a conceptual lexicon (the
set of (term, morphological variables, vector)
triplets) is automatically performed from def-
inition corpora (Lafourcade, 2001)). At the
present moment (when writing this article)
the French de�nition corpus corresponds to
160000 de�nitions associated to 60000 lexical
entries (un
exed) (about 27000 monosemous
words and 33000 polysemous words. For the
latter,the average number of de�nitions, some
of them possibly redudant, is about le 4:54).
This amounts to around 2 GigaBytes of text.

3.2 Basic Principles and Properties

Let C be a �nite set of n concepts. A con-
ceptual vector V is a linear combination of
the ci elements of C. (assumption 3). For a
meaning A, the vector VA is the description
(in extension) of those concepts C activated
to represent A . For instance, the meanings
of ,(to) classify- and of ,(to) cut - have been pro-
jected on the following concepts, with an in-
tensity calculated on the di�erent text analy-
sis structural trees. The presentation we give
is by pairs CONCEPT [intensity] ordered by de-
creasing intensity:

V(to) classify = (CHANGE[0.84 ], VARIATION [0.83 ],

EVOLUTION [0.82 ], ORDER[0.77 ], SITUATION [0.76 ],

STRUCTURE[0.76 ], RANK [0.76 ] : : : ).

V(to) cut = (PLAY [0.8 ], LIQUID[0.8 ], CROSS[0.79 ],

PART [0.78 ] MIXING[0.78 ] FRACTION [0.75 ] SUFFER-

ING[0.75 ] WOUND[0.75 ] DRINK [0.74 ] : : : ).

The intensity calculus is made through a
learning process presented in (Lafourcade,
2001). It is obvious that, for dense vectors
(i.e. vectors with very few null components),
the enumeration of activated concepts is very
quickly tedious and especially diÆcult to eval-
uate. We will prefer to select thematically
close terms . For instance the terms close to
,(to) classify- and ,(to) cut -, ordered by decreas-
ing thematic distance are:

,(to) classify- : ,(to) sort (out)-, ,(to) catalog-,

,(to) select -, ,(to) put in order -, ,(to) distribute-, ,(to)

group-, ,(to) dispatch-, ,(to) align-, ,(to) arrange-,

,(to) clean -, ,(to) distribute-, ,(to) discriminate-, ,(to)

ajust - : : :

,(to) cut - : ,(to) scissor -, ,(to) slice thinly-, ,(to)

saw -, ,(to) cut up-, ,(to) trim-, ,(to) clip-, ,(to) in-

tersperse-, ,(to) break -, ,(to) mutilate-, ,(to) plough-,

,(to) geld -, ,(to) wring-, ,(to) mangle-, ,(to) tear -, ,(to)

decimate-, : : :

The thematically close vectors are those
which have a small angular distance, a notion
that is de�ned in the next subsection.

3.3 Angular Distance

Angular distance is the mean of semantic
closeness of two vectors and thus can be
viewed as the semantic proximity the terms
represented by these vectors. Let Sim(X; Y )
be the measure of similarity between two
vectors, usually employed in information re-
trieval, de�ned according to the formula (1)
de�ned hereafter (with \�" as the scalar pro-
duct). We assume here that the vector com-
ponents are always positive or null (it is not
necessarily true). We de�ne an angular dis-
tance function DA between two vectorsX and
Y according to formula (2).

Sim(X;Y ) = cos(X;Y ) =
X � Y

kXk � kY k (1)

DA(X;Y ) = arccos(Sim(X;Y )) (2)

Intuitively this function plays the role of an
evaluation of thematic closeness. Practically,
it is the measure of the angle between the
two vectors. Generally speaking, we will con-
sider that for a distance DA(X; Y ) � �=4
rad (around 22.5Æ), X and Y are semanti-
cally close, and share some concepts. When
DA(X; Y ) � �=4,the semantic closeness of
A and B will be considered weak. Around
�=2 (angle = 90Æ),the meanings are unrelated.
Synonymy, in its broader sense is included in
thematic closeness, however it demands con-
cordance in morphosyntactic categories. The
opposite is, of course, not true. Thematic dis-
tance is a true distance, unlike the measure of
similarity, and it veri�es the needed proper-
ties of re
exivity (3), symmetry (4) and tri-
angular inequality (5):



DA(X;Y ) sort classify choose hierarchize dispatch �le distribute
sort 0 0.517 0.662 d1 0.611 d2 0.551 0.441 0.462
classify 0 0.829 0.6 0.523 0.409 d4 0.444
choose 0 0.848 d3 0.77 0.796 0.758
hierarchize 0 0.595 0.523 0.519
dispatch 0 0.471 0.391
�le 0 0.36
distribute 0.0

Table 1: Angular distances between possible synonyms of ,(to) sort (out)-

DA(X;X) = 0 (3)

DA(X;Y ) = DA(Y;X) (4)

DA(X;Y ) +DA(Y;Z) � DA(X;Z) (5)

By de�nition DA(~0; ~0) = 0 and DA(X;~0) =
�=2 with ~0 representing the null vector5. We
consider, in a generalising fashion, the exten-
sion of the image domain of DA to [0; �] in
order to compare vectors with negative val-
ues on some components. This generalization
does not modify the properties of DA. We
also note that angular distance is unsensitive
to vector norming (� and � being scalars):

DA(�X;�Y ) = DA(X;Y ) with �� > 0 (6)

DA(�X;�Y ) = � �DA(X;Y ) with �� < 0 (7)

For instance6, in table 1, we present the an-
gular distances (in rads) between vectors rep-
resenting several terms. The table is symme-
trical (DA being symmetric) and the diagonal
is always equal to 0 (DA being re
exive). Let
us mention that a value is meaningful rela-
tively to another. For instance, it is satisfying
to have, in the table:

1. a) d1 � d3 and d2 � d3 matching the
fact that ,(to) sort (out)- and ,(to) classify-

on one hand, and ,(to) sort (out)- and ,(to)
select - on the other, are \more synony-
mous" than ,(to) classify- and ,(to) choose-

5The null vector obviously corresponds to no word
of any language. It is an idea that activates : : : no
concept! It is a necessary �ction that plays the role of
the mathematical neutral for vector addition.

6all the examples of this articles are extracted from
our French knowledge source and manually translated
for the moment

2. b) d4 is the smallest value of DA((to)
classify; Y ) because the concepts CLAS-

SIFYING and DISPATCHING are relatively
close. Moreover, ,(to) classify- is also poly-
semous (HIERARCHIZING, ASSEMBLING and
FILING) and only CLASSIFYING is present
in the table.

3.4 Vectors Operators

Vector Sum. Let X and Y be two vectors,
we de�ne their normed sum V as:

V = X � Y j vi = (xi + yi)=kV k (8)

This operator is idempotent and we have
X � X = X . The null vector ~0 is by de�-
nition the neutral element of the vector sum.
Thus we write down that ~0�~0 = ~0. We then
derive by deduction (without demonstration)
the closeness properties associated to this op-
erator (both local and general closeness).

DA(X �X;Y �X) = DA(X;Y �X)

� DA(X;Y )
(9)

DA(X � Z;Y � Z) � DA(X;Y ) (10)

Vector Substraction. Let X and Y be
two distinct vectors. We de�ne V as their
normed di�erence as following:

V = X 	 Y j vi = (xi � yi)=kV k (11)

This operator is not idempotent and we
have, by de�nition : V = X 	X = ~0. Let us
notice that, in general, the vi values may be



negatice, and that the distance function has
its image over [0; �].
Normed Term to Term Product. Let

X and Y be two vectors, we de�ne V as their
normed term to term product :

V = X 
 Y j vi =
p
xiyi (12)

This operator is idempotent and ~0 is ab-
sorbant.

V = X 
X = X

V = X 
 ~0 = ~0
(13)

Contextualisation. When two terms are
in presence of each other, some of the mean-
ings of each of them are thus selected by
the presence of the other, acting as a con-
text. This phenomenon is called contextu-
alisation. It consists in emphasizing com-
mon features of every meaning. For opera-
tional goals, we also de�ne the opposite func-
tion named anti-contextualisation. Let X and
Y be two vectors, we de�ne �(X; Y ) (resp.
�(X; Y )) as the contextualisation (resp. the
anti-contextualisation) of X by Y as:

�(X;Y ) = X � (X 
 Y ) (14)

�(X;Y ) = X 	 (X 
 Y ) (15)

These functions are not symmetrical. The
operator � is idempotent (�(X;X) = X)
and the null vector is the neutral element.
(�(X;~0) = X � ~0 = X). The operator � is
nullpotent (�(X;X) = X 	X = ~0) and ~0 is
also a neutral element. We will notice, with-
out demonstration, that we have thus the fol-
lowing properties of closeness and of farness):

DA(�(X;Y );�(Y;X))

� fDA(X;�(Y;X));DA(�(X;Y ); Y )g
� DA(X;Y )

(16)

DA(�(X;Y );�(Y;X))

� fDA(X;�(Y;X));DA(�(X;Y ); Y )g
� DA(X;Y )

(17)

The function �(X; Y ) brings the vector X
closer to Y proportionally to their intersec-
tion. �(X; Y ) procedes symmetrically.

3.5 Examples

In table 2, we have, in the upper part, the
reminding of the angular distance values (a)
DA(�(X; Y );�(Y;X)) and in the lower part
the values of (b) DA(�(X; Y );�(Y;X)). The
interpretation corresponds exactly to the one
presented hereabove, that is, testing the the-
matic closeness of two meanings (A and B),
each one enhance with what it has in common
with a third (C).

4 Relative Synonymy

We de�ne the relative synonymy function
SynR, between three vectors A, B and C, the
later playing the role of a pivot, as:

SynR(A;B;C) = DA(�(A;C);�(B;C))

= DA(A� (A
 C);B � (B 
C))
(18)

The interpretation corresponds exactly to
the one presented thereabove, that is, test-
ing the thematic closeness of two meanings
(A and B), each one enhanced with what it
has in common with a third (C).

4.1 Properties

We verify the three theoretical properties of
an equivalence relationship, as we claimed to
obtain with relative synonymy as such:

1. SynR(A;A;C) = 0
Re
exivity is inherited from angular dis-
tance DA.

2. SynR(A;B;C) = SynR(B;A;C)
Symmetry of the two �rst arguments
(those which are compared) comes also
out of angular distance.

3. SynR(A;B;E) + SynR(B;C;E) �

SynR(A;C;E)
This is an inheritance of triangular in-
equality of DA. It represents a pseudo-
transitivity for relative synonymy. It in-
dicates that the distance between A and
C=E is at worst equal to the sum of the
measures of synonymy between A and
B=E on one hand, and B and C=E on
the other hand.



bna sort classify choose hierarchize dispatch �le distribute
sort 0 0.269 0.363 0.322 0.288 0.228 0.239
classify 2.183 0 0.474 0.316 0.273 0.211 0.23
choose 2.401 2.17 0 0.485 0.434 0.451 0.425
hierarchize 2.382 2.374 2.314 0 0.313 0.272 0.27
dispatch 2.334 2.303 2.282 2.483 0 0.244 0.201
�le 2.505 2.481 2.313 2.648 2.535 0 0.185
distribute 2.476 2.388 2.364 2.637 2.53 2.761 0

Table 2: Contextualized (up) and anti-contextualized (down) angular distances between pos-
sible synonyms of ,(to) sort (out)-

4. SynR(A;B; 0) = DA(A � ~0; B � ~0) =
DA(A;B)
The null vector ~0 makes relative syn-
onymy collapse with angular distance.

5. SynR(A;B;C) � DA(A;B)
By inheritance of the closeness of DA,
whatever the point of view is, relative
synonymy can but bring A and B closer
to each other.

4.2 Examples

In table 3, we have, in the upper part, the
reminding of the angular distance values (a)
DA(X; Y ) and in the lower part, the values
of synonymy of every item measured rela-
tively to the context (i.e. (to) sort (out)) (b)
SynR(X; Y; sort). We see here the e�ect of
polysemy. For instance, we have:

SynR((to) �le; (to) classify; (to) sort (out))

weighing 0:283, which indicates a strong
relative synonymy of ,(to) �le- and ,(to) classify-
with respect to ,(to) sort (out)-, whereas the
corresponding angular distance (0; 409) did
not hint at so strongly. And reciprocally,
SynR((to) choose; (to) classify; (to) sort (out))

weighs 0:636. This tends to show that ,(to)
choose- and ,(to) classify- are not synonymous
with respect to ,(to) sort (out)-, although they
are both possible synonyms of ,(to) sort (out)-.
Relative synonymy looks like a good clue for
polysemy : ,(to) choose- and ,(to) hierarchize-
belong, in most of their features, to two
distinct semantic \areas".

5 Conclusion

The study we have conducted about syn-
onymy in lexical knowledge sources has shown
that: 1) In a global modelling, such as concep-

tual vectors space, where the input is words
invoking ideas and not concepts combining
into words, synonymy has properties that
could be expressed in terms of measure. 2)
To make a synonymy measure get close to
the good mathematical properties of equiv-
alence or quasi-equivalence relationships that
we hope to obtain, we have been driven to for-
malize a particular type of synonymy, called
relative synonymy.
The latter enhances grouping of terms,

quasi-equivalent, with respect to a given topic
(called a context). In a broader work, we also
de�ned another type of synonymy, called sub-
jective synonymy, whose goal is to track down
some properties that could be discriminant in
addressing hyperonymy. Whereas the latter
appears obvious when given through human
expertise in domain ontologies, in the way
concept ! word, it is much more diÆcult to
assert in the opposite direction, word ! con-
cept. Relative synonymy and, we hope, other
lexical functions such as antonymy, will help
us building a fundamental functional struc-
ture that will enrich both knowledge sources
and thematic text analysis.
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