| Diapositive 1 |
| Objectives |
| Semantic Analysis | |||
| Word Sense Disambiguation | |||
| Text Indexing in IR | |||
| Lexical Transfer in MT | |||
| Conceptual vector | |||
| Reminiscent of Vector Models (Salton, Sowa, LSI) | |||
| Applied on pre-selected concepts (not terms) | |||
| Concepts are not independent | |||
| Propagation | |||
| on morpho-syntactic tree (no surface analysis) | |||
| Conceptual vectors |
| An idea | ||
| = a combination of concepts = a vector | ||
| The Idea space | ||
| = vector space | ||
| A concept | ||
| = an idea = a vector | ||
| = combination of itself + neighborhood | ||
| Sense space | ||
| = vector space + vector set | ||
| Conceptual vectors |
| Annotations | ||
| Helps building vectors | ||
| Can take the form of vectors | ||
| Set of k basic concepts Ñ example | ||
| Thesaurus Larousse = 873 concepts | ||
| A vector = a 873 uple | ||
| Encoding for each dimension C = 215 | ||
| Vector construction Concept vectors |
| H : Thesaurus hierarchy | ||
| V(Ci) : <a1, É, ai, É , an> | ||
| aj = 1/ (2 ** Dum(H, i)) | ||
| Vector construction Concept vectors |
| C : mammals | ||
| L4 : zoologie, mammals, birds, fish, É | ||
| L3 : animals, plants, living beings | ||
| L2 : É , time, movement, matter, life , É , | ||
| L1 : the society, the mankind, the world | ||
| Vector construction Concept vectors |
| Vector construction Term vectors |
| Example : cat | |||
| Kernel | |||
| c:mammal, c:stroke | |||
| nmammal + nstroke | |||
| Augmented with weights | |||
| c:mammal, c:stroke, 0.75*c:zoology, 0.75*c:love É | |||
| nzoology + nmammal + 0.75 nstroke + 0.75 nlove É | |||
| Iteration for neighborhood augmentation | |||
| Vector construction Term vectors |
| Vector space |
| Basic concepts are not independent | |||
| Sense space | |||
| = Generator Space of a real kÕ vector space (unknown) | |||
| = Dim kÕ £ k | |||
| Relative position of points | |||
| Conceptual vector distance |
| Angular Distance DA(x, y) = angle (x, y) | ||
| 0 £ DA(x, y) £ p | ||
| if 0 then colinear - same idea | ||
| if p/2 then nothing in common | ||
| if p then DA(x, -x) with -x as anti-idea of x | ||
| Conceptual vector distance |
| Distance = acos(similarity) | |||
| DA(x, y) = acos(x.y/|x||y|)) | |||
| DA(x, x) = 0 | |||
| DA(x, y) = DA(y, x) | |||
| DA(x, y) + DA(y, z) ³ DA(x, z) | |||
| DA(0, 0) = 0 and DA(x, 0) = p/2 by definition | |||
| DA(ax, by) = DA(x, y) with ab > 0 | |||
| DA(ax, by) = p - DA(x, y) with ab < 0 | |||
| DA(x+x, x+y) = DA(x, x+y) £ DA(x, y) | |||
| Conceptual vector distance |
| Example | ||
| DA(tit, tit) = 0 | ||
| DA(tit, passerine) = 0.4 | ||
| DA(tit, bird) = 0.7 | ||
| DA(tit, train) = 1.14 | ||
| DA(tit, insect) = 0.62 | ||
| tit = kind of insectivorous passerine É | ||
| Conceptual lexicon |
| Set of (word, vector) = (w, n)* | ||
| Monosemy | ||
| word | ||
| ˆ 1 meaning | ||
| ˆ 1 vector | ||
| (w, n) | ||
| Conceptual lexicon Polyseme building |
| Polysemy | ||
| word | ||
| ˆ n meanings | ||
| ˆ n vectors | ||
| {(w, n), (w.1, n1) É (w.n, nn) } |
||
| Conceptual lexicon Polyseme building |
| n(w) = Œ n(w.i) = Œ n.i | ||
| bank : | ||
| bank.1: Mound | ||
| bank.3: River border, É | ||
| bank.2: Money institution | ||
| bank.3: Organ keyboard | ||
| bank.4: É | ||
| Conceptual lexicon Polyseme building |
| n(w) = classification(w.i) |
| Lexical scope |
| LS(w) = LSt(t(w)) | ||
| LSt(t(w)) = 1 if t is a leaf | ||
| LSt(t(w)) = (LS(t1) + LS(t2)) /(2-sin(D(t(w))) |
||
| otherwise | ||
| n(w) = nt(t(w)) | ||
| nt(t(w)) = n(w) if t is a leaf | ||
| nt(t(w)) = LS(t1)nt(t1) + LS(t2)nt(t2) | ||
| otherwise | ||
| Vector Statistics |
| Norm (N) | ||
| [0 , 1] * C (215=32768) | ||
| Intensity (I) | ||
| Norm / C | ||
| Usually I = 1 | ||
| Standard deviation (SD) | ||
| SD2 = variance | ||
| variance = 1/n * Œ(xi - m)2 with m as the arith mean | ||
| Vector Statistics |
| Variation coefficient (CV) | ||||
| CV = SD / mean | ||||
| No unity - Norm independent | ||||
| Pseudo Conceptual strength | ||||
| If A Hyperonym B Þ CV(A) > CV(B) | ||||
| (we donÕt have † ) | ||||
| vector Ç fruit juice È (N) | ||||
| MEAN = 527, SD = 973 CV = 1.88 | ||||
| vector Ç drink È (N) | ||||
| MEAN = 443, SD = 1014 CV = 2.28 | ||||
| Vector operations |
| Sum | ||
| V = X + Y Þ vi = xi + yi | ||
| Neutral element : 0 | ||
| Generalized to n terms : V = Œ Vi | ||
| Normalization of sum : vi /|V|* c | ||
| Vector operations |
| Term to term product | |||
| V = X € Y Þ vi = xi * yi | |||
| Neutral element : 1 | |||
| Generalized to n terms V = Í Vi | |||
| Vector operations |
| Amplification | |||
| V = X ^ n Þ vi = sg(vi) * |vi|^ n | |||
| … V = V ^ 1/2 and n… V = V ^ 1/n | |||
| V € V = V ^ 2 if " vi ³ 0 | |||
| Normalization of ttm product to n
terms V = n… Í Vi |
|||
| Vector operations |
| Product + sum | ||
| V = X € Y = ( X € Y ) + X + Y | ||
| Generalized n terms : V = n… Í Vi + Œ Vi | ||
| Simplest request vector computation in IR | ||
| Vector operations |
| Subtraction | ||
| V = X - Y Þ vi = xi - yi | ||
| Dot subtraction | ||
| V = X × Y Þ vi = max (xi - yi, 0) | ||
| Complementary | ||
| V = C(X) Þ vi = (1 - xi/c) * c | ||
| etc. | ||
| Intensity Distance |
| Intensity of normalized ttm product | |||
| 0 £ I(… (X € Y)) £ 1 if |x| = |y| = 1 | |||
| DI(X, Y) = acos(I(… X € Y)) | |||
| DI(X, X) = 0 and DI(X, 0) = p/2 | |||
| DI(tit, tit) = 0 (DA = 0) | |||
| DI(tit, passerine) = 0.25 (DA = 0.4) | |||
| DI(tit, bird) = 0.58 (DA = 0.7) | |||
| DI(tit, train) = 0.89 (DA = 1.14) | |||
| DI(tit, insect) = 0.50 (DA = 0.62) | |||
| Relative synonymy |
| SynR(A, B, C) Ñ C as reference feature | ||
| SynR(A, B, C) = DA(A€C, B€C) | ||
| DA(coal,night) = 0.9 | ||
| SynR(coal, night, color) = 0.4 | ||
| SynR(coal, night, black) = 0.35 | ||
| Relative synonymy |
| SynR(A, B, C) = SynR(B, A, C) | ||
| SynR(A, A, C) = D (A € C, A € C) = 0 | ||
| SynR(A, B, 0) = D (0, 0) = 0 | ||
| SynR(A, 0, C) = p/2 | ||
| SynA(A, B) = SynR(A, B, 1) | ||
| = D (A € 1, B € 1) | ||
| = D (A, B) | ||
| Subjective synonymy |
| SynS(A, B, C) Ñ C as point of view | ||
| SynS(A, B, C) = D(C-A, C-B) | ||
| 0 £ SynS(A, B, C) £ p | ||
| normalization: | ||
| 0 £ asin(sin(SynS(A, B, C))) £ p/2 | ||
| Subjective synonymy |
| When |C| ¨ ´ then SynS(A, B, C) ¨ 0 | ||
| SynS(A, B, 0) = D(-B, -A) = D(A, B) | ||
| SynS(A, A, C) = D(C-A, C-A) = 0 | ||
| SynS(A, B, B) = SynS(A, B, A) = 0 | ||
| SynS(tit, swallow, animal) = 0.3 | ||
| SynS(tit, swallow, bird) = 0.4 | ||
| SynS(tit, swallow, passerine) = 1 | ||
| Semantic analysis |
| Vectors propagate on syntactic tree |
| Semantic analysis |
| Semantic analysis |
| Initialization - attach vectors to nodes |
| Semantic analysis |
| Propagation (up) |
| Semantic analysis |
| Back propagation (down) | |
| n(Ni j) = (n(Ni j) € n(Ni)) + n(Ni j) |
| Semantic analysis |
| Sense selection or sorting |
| Sense selection |
| Recursive descent | |||
| on t(w) as decision tree | |||
| DA(nÕ, ni) | |||
| Stop on a leaf | |||
| Stop on an internal node | |||
| Vector syntactic schemas |
| S: NP(ART,N) | ||
| ˆ n(NP) = V(N) | ||
| S: NP1(NP2,N) | ||
| ˆ n(NP1) = a n(NP1)+ n(N) 0<a<1 | ||
| n(sail boat) = n(sail) + 1/2 n(boat) | ||
| n(boat sail) = 1/2 n(boat) + n(sail) | ||
| Vector syntactic schemas |
| Not necessary linear | |||
| S: GA(GADV(ADV),ADJ) | |||
| ˆ n(GA) = n(ADJ)^p(ADV) | |||
| p(very) = 2 | |||
| p(mildly) = 1/2 | |||
| n(very happy) = n(happy)^2 | |||
| n(mildly happy) = n(happy)^1/2 | |||
| Iteration & convergence |
| Iteration with convergence | ||
| Local | ||
| D(ni, ni+1) £ e for top n | ||
| Global | ||
| D(ni, ni+1) £ e for all n | ||
| Lexicon construction |
| Manual kernel | |
| Automatic definition analysis | |
| Global infinite loop = learning | |
| Manual adjustments | |
| Application machine translation |
| Lexical transfer | |||
| n source ¨ n target | |||
| Knn search that minimizes DA(nsource, ntarget) | |||
| Submeaning selection | |||
| Direct | |||
| Transformation matrix | |||
| Application Information Retrieval on Texts |
| Textual document indexation | |||
| Language dependant | |||
| Retrieval | |||
| Language independent - Multilingual | |||
| Domain representation | |||
| horse Ç equitation | |||
| Granularity | |||
| Document, paragraphs, etc. | |||
| Application Information Retrieval on Texts |
| Index = Lexicon = (di , ni )* | |
| Knn search that minimizes DA(n(r), n(di)) |
| Search engine Distances adjustments |
| Min DA(n(r), n(di)) may pose problems | |||
| Especially with small documents | |||
| Correlation between CV & conceptual richness | |||
| Pathological cases | |||
| Ç plane È and Ç plane plane plane plane É È | |||
| Ç inundation È Ç Ç blood È D = 0.85 (liquid) | |||
| Search engine Distances adjustments |
| Correction with relative intensity | ||
| Request vs retrieved doc (nr and nd) | ||
| D = … (DA(nr , nd) * DI(nr , nd)) | ||
| 0 £ I(nr , nd) £ 1 ¨ 0 £ DI(nr , nd) £ p/2 | ||
| Conclusion |
| Approach | ||
| statistical (but not probabilistic) | ||
| thema (and rhema ?) | ||
| Combination of | ||
| Symbolic methods (IA) | ||
| Transformational systems | ||
| Similarity | ||
| Neural nets | ||
| With large Dim (> 50000 ?) | ||
| Conclusion |
| Self evaluation | |||
| Vector quality | |||
| Tests against corpora | |||
| Unknown words | |||
| Proper nouns of person, products, etc. | |||
| Lionel Jospin, Danone, Air France | |||
| Automatic learning | |||
| Badly handled phenomena? | |||
| Negation & Lexical functions (Meltchuk) | |||
| Diapositive 49 |