
TN1141: Extending and Controlling Sherlock Page: 1

CONTENTS

Overview

Internet Search Plug-ins

Search Plug-in Files
An Example
Internet Search and XML Search Results
Tips for Search Site Administrators
Internet Search Language IBNF

Making Plug-ins for the People Channel

The LDAP Search Header
LDAP Input Tag Extensions
LDAP Interpret Tag Extensions
IBNF for LDAP Plug-ins

AppleScript Support

Searching the Internet
Selecting Search Sites
Searching Files
Indexing Volumes
Indexing Containers
Search Channels

The Optional kAEOpenDocuments Apple Event Parameter

References

Change History

Downloadables

Mac OS 8.5 includes several enhanced
searching capabilities, known collectively as
Sherlock. Previously, the Mac OS Find
application allowed users to search mounted
disk volumes for files based on information
such as name, modification date, and file type.
Sherlock retains this functionality, but also
extends the user’s search options to include
both the content of files and the Internet.

Sherlock 2 adds a number of new features to
the array of search options presented to the
user. To accommodate those new features,
some additions have been made to the
Internet Search Plug-in language, new
applescript commands have been added.
Where appropriate, these new features are
described in this document.

Find by Content library information formerly
found in this note has been moved to
Technote TN1180, "Sherlock's Find By
Content Library."

 Updated: [Nov 1 1999]

Overview

To perform an Internet search, the Sherlock application sends query information to one or more Internet search sites. The
information returned by the search sites is interpreted by the Sherlock application and then displayed for perusal. As each
Internet search site has its own particular format for query and response information, the Sherlock application uses
plug-ins that describe data formats expected and provided by individual Internet search sites for formatting queries and
parsing response data. Internet search site providers interested in building their own Internet search site plug-ins will
find directions for doing so in the Internet Search Plug-ins section.

AppleScript commands for accessing the new content-based search and Internet search facilities provided by the Sherlock
application are available. These include commands for searching by content, a command for indexing volumes, and
commands for performing Internet searches. These commands are discussed in greater detail in the AppleScript Support
section.

The Sherlock application, when asked to open a file that was found by way of a content-oriented search, attaches
information about the search and why the file was selected to the 'odoc' Apple event it passes to the Finder. The Finder
passes this information along to applications as a property associated with the 'odoc' Apple event. Applications can access
this information and use it to perform further search and display actions when it is found in the 'odoc' event. More
information can be found in the kAEOpenDocuments section.

Find By Content is a new system-level facility implemented as a Code Fragment Manager library. The Sherlock application
is a client of Find By Content and utilizes its search facilities for performing content-based searches. Developers
interested in using the Find By Content services from within their applications may do so by linking against the PowerPC
Code Fragment Manager library named "Find By Content" (without the quotes). Routine descriptions and examples are
provided in the Find By Content section below.

Back to top

Internet Search Plug-ins

The "Search Internet" feature in the Sherlock application allows users to perform Internet searches using one or more

TN1141: Extending and Controlling Sherlock Page: 2

Internet search engines. The Sherlock application itself contains no information about the exact data formats expected or
generated by individual Internet search engines; when accessing any particular Internet search site, the Sherlock
application uses a search plug-in file that describes the data formats both expected by the site for queries and produced by
the site in its responses to queries. Internet Search Interface Language (ISIL) is the language used in search plug-in files
so that Internet search site administrators may provide their own search plug-in files.

ASCII text describing the search site is contained in a search plug-in's data fork. The resource fork may be used for custom
icons, Finder strings, et cetera. Search plug-in files have the creator code 'fndf' and the file type 'issp' and will be
only recognized by the Sherlock application when they reside in the "Internet Search Sites" Folder (FindFolder type =
'issf'). When dropped onto the System Folder's (closed) icon, files of type 'issp' are autorouted to the "Internet
Search Sites" folder.

ISIL is modeled closely after the HTML it is used to describe, so HTML authors familiar with the syntax should have little or
no trouble creating their own search plug-in files. An exact specification of the language can be found in the Internet
Search Interface Language BNF section, and the sections that follow discuss the language in greater detail.

To create a search plug-in file, you will need a text editor program—Simple Text will do—and a utility that will allow you
to change the plug-in's file type. The basic steps for editing a search plug-in file are:

1. Open or create and then edit the file using your text editor program.

2. Save any changes you make and close the file.

3. Change the file type of the file from 'TEXT' to 'issp'.

4. Test your file (now a Sherlock plug-in) using the Sherlock application.
If satisfied, you're done: stop.

5. Change the file type of the search plug-in from 'issp' to 'TEXT'.

6. Go to the first step in this list.

If your text editor edits any file regardless of type and does not change the types of the files it edits, you can skip steps 3
and 5.

The Sherlock application scans the "Internet Search Sites" only once when it is starting up. You should restart the Sherlock
application each time you would like to test your search site file.

Back to top

Search Plug-in Files

Search plug-in files contain ASCII text formatted similarly to the HTML text used to define web pages. Accordingly,
terminology used to describe HTML is used in this document's description of ISIL syntax. Information describing an Internet
search site is contained in a block labeled with the SEARCH tag. This block is used to describe how the Sherlock application
sends queries to an Internet search site, and it includes information such as the site's URL, the HTTP command used to send
a query, and query parameters. Listing 1 illustrates the typical layout for a SEARCH block.

TN1141: Extending and Controlling Sherlock Page: 3

<SEARCH
 name = "<search engine name>"
 method = ["get" | "post"]
 action = "<url to address>"
 [update = "<url containing update file>"]
 [updateCheckDays = "<days between update pings>"]
 [description = "<human-readable-description">]>

....

<INPUT
 name = "<input name>"
 value = "<value>"
 [mode = "results"]>
<INPUT
 name = "<input name>"
 value = "<value>"
 [mode = "browser"] >

....

<INPUT
 name = "<input name>"
 user>

....

<INTERPRET

 [relevanceStart = "<text>"]
 [relevanceEnd = "<text>"]

 [resultListStart = "<text>"]
 [resultListEnd = "<text>"]
 [resultItemStart = "<text>"]
 [resultItemEnd = "<text>"]
 [skipLocal=true]

 [charset = "<text>"]
 [resultEncoding = <integer>]
 [resultTranslationEncoding = <integer>]
 [resultTranslationFont = "<text>"]>

....

</SEARCH>

Listing 1. Typical layout for a SEARCH block in a search plug-in file.

Search blocks begin with the <SEARCH> tag (containing a number of attributes, as described in Table 1) and end with a
</SEARCH> tag. Within a typical search block describing an Internet search site, there will be one or more INPUT tags and
an INTERPRET tag. The SEARCH block attributes describe the search site, how it is to be accessed, and where updates to the
search plug-in file can be found.

Table 1. SEARCH block attributes.

TN1141: Extending and Controlling Sherlock Page: 4

Attribute Name Description

name This is a human-readable name for the search plug-in.

method The method attribute specifies the type of HTTP command that should be used for communications
with the HTTP server. Currently, either "GET" or "POST" can be specified as the communications
method.

action Specifies the full URL to access the search server. Any relative links in the result list will be
localized using this URL.

update This is an optional attribute specifying where the most recent version of the search plug-in file is
kept. If provided, the Sherlock application will periodically check this URL for changes. If the file at
this URL is found to be more recent than the one that is currently installed, the Sherlock application
will prompt the user to download the new file and automatically install it. The file located at this
URL should be in BinHex format (but not otherwise compressed or encoded).

dateCheckDays This is an optional attribute specifying the number of days between times when the update URL is
checked for more recent versions of the search plug-in file. If this attribute is not present, the
default value of 30 days is used.

description This is an optional attribute containing text describing the search engine, its capabilities, and the
content type of the search results. This text may be used for display in user interface facilities.

Additional SEARCH block attributes for Sherlock 2

routeType Specifies which Channel the internet search site plug-in belongs in. The System will route internet
search site plug-ins to the "Internet Search Sites" folder of the System Folder. Sherlock 2 will move
plug-ins from the "Internet Search Sites" folder to the appropriate Channel folder. If a plug-in does
not have a routeType attribute, then it will be move the "My Channel" Channel. If a plug-in has a
routeType attribute, then it will be moved to the appropriate channel. Route types for the default
Channels are as follows:

routeType Specification Channel
routeType="internet"
routeType="people"
routeType="apple"
routeType="reference"
routeType="news"
routeType="shopping"

Internet
People
Apple
Reference
News
Shopping

The INPUT tags are used to construct the data field used in the GET or POST command sent to the HTTP server. The data field
is constructed using the HTTP syntax and the method field determines the method that is used to query the server. A search
block may contain one or more INPUT tags, but only one of the INPUT tags can be a USER INPUT tag.

INPUT tags may specify an optional mode attribute. The Sherlock application will send two types of queries: one when it is
retrieving results and another when it sends a query URL to a browser. INPUT tags specifying the "results" mode (the
default) are used by the Sherlock application when it sends queries to search sites that will be displayed in the list of
search results in the Sherlock application's window. INPUT tags specifying "browser" will be included in query URLs sent
to browser applications for display. For example, the following two INPUT tags may be present in a search plug-in file:

<input name="sv" value="AP" mode = "results">
<input name="sv" value="IS" mode = "browser">

Here, &sv=AP will be sent to the server when the Sherlock application will be used to display the results, and &sv=IS will
be sent to the server when a web browser will be used to display the results.

The INTERPRET tag describes the format of the information returned from search queries sent to the site. This
information allows the Sherlock application to extract individual search results from a query and format them into a list.
Table 2 describes the various attributes that may be specified for an INTERPRET tag. Each attribute specified in the
INTERPRET tag specifies a text pattern occurring in the result page delimiting some specific part of the results. When
available, the Sherlock application will use these text patterns to extract search result information from the result pages
returned by Internet search sites and build lists of items for display.

Table 2. INTERPRET tag attributes.

Attribute Name Description

resultListStart Specifies the text pattern present at the beginning of the list of search results in
the result page returned by the server. If resultListStart is not specified,
then the Sherlock application will assume the result list begins at the top of the
result page.

TN1141: Extending and Controlling Sherlock Page: 5

resultListEnd Specifies the text pattern present at the end of the list of search results in the
result page returned by the server. If resultListEnd is not specified, then the
Sherlock application will assume the result list ends at the bottom of the result
page. The resultListStart and resultListEnd attributes are used to define
text patterns delimiting the list of results.

resultItemStart Specifies a text pattern present at the beginning of each individual item in the list
of results. When the text specified is matched in the result page, only links
immediately following the text pattern will be included in the list of results
displayed for the user.

resultItemEnd Specifies a text pattern present at the end of the text used to describe an item in the
list of results. Text between a result's link and this text pattern will be presented
in the details pane. The resultItemStart and resultItemEnd attributes are
used to define text patterns delimiting individual items in the list of results
returned by the server.

relevanceStart Specifies a text pattern marking the beginning of the relevance information
provided for each item in the list of results. When present, the first numeric text
found after the pattern will be interpreted as the relevance of the item. Note: the
numbers used to represent relevance scores should be between 0 and 100.

relevanceEnd Specifies a text pattern marking the end of the relevance information. The search
for relevance information will not proceed beyond this text pattern. The text
patterns defined in the relevanceStart and relevanceEnd attributes are
used to delimit the relevance score for each individual search result. Note: the
numbers used to represent relevance scores should be between 0 and 100.

skipLocal skipLocal is a boolean attribute. If skipLocal is true, then the Sherlock
application will ignore links that refer to the same host as specified in the ACTION
attribute in the SEARCH tag.

charset The expected encoding of the HTML results. This attribute may be set to any value
appropriate for the charset HTML meta tag.

resultEncoding The encoding that the HTML results are in. This may be any integer constant defined
in <TextCommon.h>.

resultTranslationEncoding The encoding that the HTML results should be translated to. This may be any integer
constant defined in <TextCommon.h>.

resultTranslationFont the preferred font for the translated text

Additional INTERPRET tag attributes for Sherlock 2 plug-ins

language ISO 639 language code of the result page.*

country ISO 3166 country code of the result page.*

Additional INTERPRET tag attributes for Sherlock 2 shopping channel plug-ins

priceStart Specifies a text pattern marking the beginning of the price information provided
for each item in the list of results. When present, the first numeric text found
after the pattern will be interpreted as the price of the item. This attribute is only
supported when the plug-in is in a "Shopping" channel.

priceEnd Specifies a text pattern marking the end of the price information. The search for
price information will not proceed beyond this text pattern. The text patterns
defined in the priceStart and priceEnd attributes are used to extract the price for
each individual search result.

availStart Specifies a text pattern marking the beginning of the availability information
provided for each item in the list of results. When present, the text found after the
pattern will be interpreted as the price of the item. This attribute is only
supported when the plug-in is in a "Shopping" channel.

availEnd Specifies a text pattern marking the end of the availability information. The search
for availability information will not proceed beyond this text pattern. The text
defined in the availStart and availEnd attributes are used to extract the availability
for each individual search result.

Additional INTERPRET tag attributes for Sherlock 2 news channel plug-ins

dateStart Specifies a text pattern marking the beginning of the date information provided for
each item in the list of results. When present, the text found after the pattern will
be interpreted as the date of the item.

dateEnd Specifies a text pattern marking the end of the date information. The search for date
information will not proceed beyond this text pattern. The text patterns defined in
the dateStart and dateEnd attributes are used to extract the date for each individual
search result.

Additional INTERPRET tag attributes for Sherlock 2 people channel plug-ins

TN1141: Extending and Controlling Sherlock Page: 6

nameStart Specifies a text pattern marking the beginning of the name information provided
for each item in the list of results. When present, the text found after the pattern
will be interpreted as the name of the item. The text patterns defined in the
nameStart and nameEnd attributes are used to extract the name for each individual
search result.

nameEnd Specifies a text pattern marking the end of the name information. The search for
date information will not proceed beyond this text pattern.

emailStart Specifies a text pattern marking the beginning of the email information provided
for each item in the list of results. When present, the text found after the pattern
will be interpreted as the person's email address.

emailEnd Specifies a text pattern marking the end of the email address information. The
search for email information will not proceed beyond this text pattern.

*An internet search source plug-in can specify language and country codes in the interpret portion of the a search
source. This information helps Sherlock 2 determine region information. For Sherlock 2 this information is only used to
help determine the price column of a Shopping Channels search results. In Sherlock 1 this information is ignored.

The attributes charset, resultEncoding, resultTranslationEncoding, and resultTranslationFont are
for interpreting results returned with different character encodings. If the result page contains the HTML meta tag
"charset," then the Sherlock application will use the Text Encoding Converter to translate the document into a Macintosh
encoding.

It is possible, though, that the Sherlock application will not be able to recognize a text encoding by name. For these cases,
search plug-in creators can explicitly specify the character encoding that will be used in responses to queries by using the
resultEncoding attribute. The value specified for the resultEncoding attribute can be any integer constant defined
in the file <TextCommon.h>. Similarly, resultTranslationEncoding is used to specify the text encoding that the
document should be translated into before processing continues. The value used for this attribute is also an integer constant
from <TextCommon.h>.

For example, if a result page returned from a search site was encoded using the "euc-jp" character set (in
<TextCommon.h> "euc-jp" is defined as kTextEncodingEUC_JP = 2336) and we would prefer that it be translated
to Mac Japanese (defined as kTextEncodingMacJapanese = 1 in <TextCommon.h>) and displayed using the "Osaka"
font, then the following character translation values would be specified:

<interpret
resultEncoding = 2336
resultTranslationEncoding = 1
resultTranslationFont = "Osaka">

INTERPRET tags are optional, and all of the attributes within an INTERPRET tag are optional as well. If a SEARCH block
does not contain an INTERPRET tag, then every link found in the result page will be treated as a result and the Sherlock
application will present the entire list to the user as the results of her query

With Sherlock 2, a plug-in can support multiple INTERPRET tags in a search tag. Multiple INTERPRET tags can be used
when a given site can return result pages in a number of different formats or results may be returned on the same page in a
number of different sections. With older versions of Sherlock, only the first interpret tag will be used.

Back to top

An Example

In this example, it is assumed that the Internet search site that we are writing the search plug-in file for is located at the
URL http://clarus.apple.com. (As of this writing, this site does not exist, although the following text is written as if the
site does exist. If the site did exist, it would presumably enable visitors to search for information regarding Clarus the
Dogcow. An explanation of how visitors other than dogcattle would make use of the search results is beyond the scope of this
document and is left as an exercise for the reader.)

Step 1: Describe the site in the opening SEARCH tag.

Using your web browser, go to the search site and view the HTML source for the web page. Somewhere in the HTML, you
should find a FORM tag as follows:

<form action="http://clarus.apple.com/Titles" method="get"
name="Search">

Or, it is possible that the action may be specified as a local string as follows:

<form action="/Titles" method="get" name="Search">

If the action is specified as a local string, then prefix it with the address in the SEARCH tag's action attribute. Using the
information found here, we can construct the opening SEARCH tag for the search block:

TN1141: Extending and Controlling Sherlock Page: 7

<search
 name="Clarus"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>

From the HTML source, we were able to determine that the action is http://clarus.apple.com/Titles/ and the
method appropriate for communicating with the site is get. The name of the site and the description are values we set
ourselves.

Step 2: Define the INPUT tags.

There are two ways to determine what inputs are expected by an Internet search site. The first method is to manually
perform a query and look at the URL that is sent to the server. The second is to pick through the HTML to discover the
information.

The Query Method. Looking at the query information is the simplest method. For example, if we go to the search site in
our web browser and type the query string "coffee" and start a search, then we may observe a URL that looks like this:

http://clarus.apple.com/Titles?qt=coffee&nh=10

From which, we can locate the inputs. The inputs come after the "?" and are separated by ampersand characters [&]. In this
query, the inputs are as follows:

qt=coffee
nh=10

Using this information, we can construct the following two INPUT tags:

<input name="qt" user>
<input name="nh" value="10">

There may be some optional parameters available on a search site, so trying different options and queries may yield more
useful information.

The HTML Method. If the inputs are not present in the URL then they must be determined by looking at the HTML source.
Here, we look for the INPUT tags present in the search site's web page to determine what will be used to describe the
inputs. For example, suppose the first few lines of the HTML for a search site were formatted as follows:

<form action="/Titles" method="get" name="Search">
<table width="100%" cellspacing=0 cellpadding=3 border=0>
<tr><td colspan=4>
Search</td>
<td align=center>Tips
</td></tr>
<tr><td colspan=5>
<input type="text" name="qt" value="" size="25" MAXLENGTH=255>
</td></tr>
<INPUT TYPE=hidden NAME="nh" VALUE="10">
</table>
</form>

Between the <form> and </form> tags, there are the two inputs relevant to accessing this search engine:

<input type="text" name="qt" value="" size="25"
MAXLENGTH=255>
<INPUT TYPE=hidden NAME="nh" VALUE="10">

TN1141: Extending and Controlling Sherlock Page: 8

Again, this information can be used to construct the following two INPUT tags:

<input name="qt" user>
<input name="nh" value="10">

Experimenting with these input parameters and writing different types of query URLs can provide useful information about
their meaning and use. For instance, after writing several variations of the query URL, we discovered that nh specifies the
number of hits that should be returned in a response to a query. Rather than 10 hits at a time, we would prefer to see 25
hits, so we change the inputs as follows:

<input name="qt" user>
<input name="nh" value="25">

Now that the inputs have been determined, there is enough information to put together a complete search plug-in file:

<search
 name="Clarus Test"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>
<input name="qt" user>
<input name="nh" value="25">
</search>

However, in this form, although it will be possible for queries to be sent and results to be displayed, the lack of an
INTERPRET tag means that the results may not be displayed correctly. To ensure that they are, an INTERPRET tag should
be added.

Step 3: Describe the results in the INTERPRET tag.

Determining the text delimiters located in the responses returned by Internet search engines requires examination of the
HTML source returned as the response to one or more queries. From this data, we can determine text patterns delimiting
interesting parts of the response information. For example, suppose the following were returned as a response to a query:

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
 ALT="Apple Computer"

<P>
<SMALL>90%</SMALL>
Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>
<P>
<SMALL>85%</SMALL>
Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>
</BODY>
</HTML>

Listing 2. A sample HTML response to a query.

The List of results are delimited by the text patterns "" and "</BODY>":

TN1141: Extending and Controlling Sherlock Page: 9

resultListStart=""
resultListEnd="</BODY>"

Each item in the list of results is bracketed by the text patterns "<P>" and "</P>":

resultItemStart="<P>"
resultItemEnd="</P>"

And, the relevance score for each item is bracketed by the text patterns "<SMALL>" and "</SMALL>":

relevanceStart="<SMALL>"
relevanceEnd="</SMALL>"

Putting this all together, the complete search plug-in file would have the following contents:

<search
 name="Clarus Test"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>
<input name="qt" user>
<input name="nh" value="25">
<interpret
 resultListStart=""
 resultListEnd="</BODY>"
 resultItemStart="<P>"
 resultItemEnd="</P>"
 relevanceStart="<SMALL>"
 relevanceEnd="</SMALL>">
</search>

Back to top

Internet Search and XML Search Results

It is possible that a search engine may provide a separate machine-readable interface such as Extensible Markup Language
(XML).

<searchResponse>
 <advertisement>

 </advertisement>

 <searchResults>
 <resultItem>
 <relevance>67%</relevance>
 <link>Title</link>

 <summary>Summary</summary>
 </resultItem>
 </searchResults>
</searchResponse>

Listing 3. A sample XML document.

At the time of this document's creation, the XML specification is still under development; however, using the current state
of the standard, the Internet Search Interface can be easily configured to interpret XML result lists. For example, the
INTERPRET tag shown below illustrates how a search plug-in could be set up to interpret the XML document shown in
Listing 3.

TN1141: Extending and Controlling Sherlock Page: 10

<interpret
 resultListStart = "<searchResults>"
 resultListEnd = "</searchResults>"
 resultItemStart = "<resultItem>"
 resultItemEnd = "</resultItem>"
 relevanceStart = "<relevance>"
 relevanceEnd = "</relevance>">

Back to top

Tips for Search Site Administrators

Comment-style Delimiters

The Sherlock application uses information provided by search plug-in files to extract information from HTML results
returned from Internet search sites. Specifically, information in search plug-in files is used to find delimiters in the
response information for the search results. The question of the Sherlock application being able to find and display results
consistently depends entirely on the search site remaining in sync with the formats specified in the search plug-in file.
When the formats specified in the search plug-in file are based on anecdotal properties found in one or two search results
files as in the example above, this sort of desynchronization can occur quite easily whenever small formatting changes are
made in the result pages generated by a search site.

To avoid this problem, it is suggested that search site administrators include comments delimiting the interesting parts of
response pages. By doing so, search plug-in files can be built to use the comment text as delimiters, and HTML formatting
information included in result pages can be modified without risk of invalidating search plug-in files that have been built
to access the search site. For example, the INTERPRET tags given below could be used to interpret the HTML response
information shown in Listing 4.

resultListStart="<!-- RESULT LIST START -->"
resultListEnd="<!-- RESULT LIST END -->"
resultItemStart="<!-- RESULT ITEM START -->"
resultItemEnd="<!-- RESULT ITEM END -->"
relevanceStart="<!-- RELEVANCE START -->"
relevanceEnd="<!-- RELEVANCE END -->"

Using these text delimiters, the search provider can freely add additional formatting information to their response pages
without being concerned about invalidating any search plug-in files currently in use. This approach is strongly
recommended for all search site providers creating search plug-in files.

TN1141: Extending and Controlling Sherlock Page: 11

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<!-- RESULT LIST START -->

<!-- RESULT ITEM START -->
<P>
<SMALL>
<!-- RELEVANCE START -->
90%
<!-- RELEVANCE END -->
</SMALL>
Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>
<!-- RESULT ITEM END -->

<!-- RESULT ITEM START -->
<P>
<SMALL>
<!-- RELEVANCE START -->
85%
<!-- RELEVANCE END -->
</SMALL>
Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>
<!-- RESULT ITEM END -->

<!-- RESULT LIST END -->

</BODY>
</HTML>

Listing 4. A simple HTML response to a query that includes delimiting comments.

Result Lists

When interpreting search results, the Sherlock application identifies results by looking for HTML anchors containing
hypertext jump attributes. At least one anchor including an hypertext jump (HREF attribute) should occur between the
text patterns specified in resultItemStart and resultItemEnd or resultItemStart. The Sherlock application
will attempt to interpret HTML results between these text patterns and expects to find at least one such anchor.

Back to top

Internet Search Language IBNF

IBNF (Italicized BNF) for Internet search plug-ins. Italics have been used to represent non-terminal nodes rather than
the < > notation as the language being described uses those characters frequently. All letters and strings are
case-insensitive and white space is ignored. Lines beginning with a # character are ignored and are treated as comments.

search-plugin ::= internet-search-plugin
search-plugin ::= LDAPPlugin

internet-search-plugin ::= search-header search-element-list
search-footer

search-header ::= <search search-param-list >
search-param-list ::= search-param-list search-param
search-param-list ::= search-param

search-param ::= name = string
search-param ::= method = string
search-param ::= action = string
search-param ::= update = string
search-param ::= updateCheckDays = string
search-param ::= description = string

#routeType is new for Sherlock 2
search-param ::= routeType = channel
channel ::= string
channel ::= internet
channel ::= apple

TN1141: Extending and Controlling Sherlock Page: 12

channel ::= reference
channel ::= news
channel ::= shopping

#note: multiple interpret tags are new for Sherlock 2
search-element-list ::= search-element-list search-element
search-element-list ::= search-element
search-element::= <input input-item-list >
search-element::= <interpret match-item-list >

input-item-list ::= input-item-list input-item
input-item-list ::= input-item
input-item ::= value = string
input-item ::= name = string
input-item ::= user

The following LDAP Input Tag Extensions defined
for use
in LDAP plug-ins can also be used in Sherlock 2 Internet
search plugins:
input-item ::= user1
input-item ::= user2
input-item ::= user3
input-item ::= userN
input-item ::= prefix = string
input-item ::= suffix = string

match-item-list ::= match-item-list match-item
match-item-list ::= match-item

Match item types for Sherlock 1:
match-item::= resultListStart = string
match-item::= resultListEnd = string
match-item::= resultItemStart = string
match-item::= resultItemEnd = string
match-item::= relevanceStart = string
match-item::= relevanceEnd = string
match-item::= skipLocal

New match item types for Sherlock 2:
match-item::= priceStart = string
match-item::= priceEnd = string
match-item::= availStart = string
match-item::= availEnd = string
match-item::= dateStart = string
match-item::= dateEnd = string
match-item::= nameStart = string
match-item::= nameEnd = string
match-item::= emailStart = string
match-item::= emailEnd = string

search-footer ::= </search>

string ::= " letterlist "
string ::= ' letterlist '
string ::= nospaceletterlist
letterlist := letterlist letter
letterlist := letter
letterlist :=
nospaceletterlist := nospaceletterlist printingletter
nospaceletterlist := printingletter

Back to top

Back to top

Making Plug-ins for the People Channel

Sherlock 2 includes a new 'People' channel that allows users to conduct searches based on personal names. When this
channel is selected, Sherlock 2 uses LDAP (Lightweight Directory Access Protocol) to communicate with the server
specified by the search plug-in. Developers interested in creating plug-ins that can be used for searches in the people

TN1141: Extending and Controlling Sherlock Page: 13

channel can do so by using the extended LDAP search tags available for use with Sherlock 2. These new search tags are
described in this section.

LDAP plug-ins are very similar in format to search plug-ins used in the other Sherlock 2 channels. The difference is they
are being used to parse data received from a LDAP server instead of data received from an HTTP server. To compensate for
this difference, these plug-ins use an extended version of the Internet Search Interface Language.

A detailed description of the format of LDAP Plug-in language is provided in IBNF later in this section. Readers may want to
refer to this during the following discussion.

Back to top

The LDAP Search Header

The search header for LDAP Plug-in files always specifies an action that contains a LDAP URL, a method type of "ldap", and
a route type of "people". For example, the following is a valid header for LDAP Plug-in:

 <search
 name="ldap.example.com"
 action="ldap://ldap.example.com/??one?"
 method="ldap"
 routeType="people">

Back to top

LDAP Input Tag Extensions

Input tags have been extended to allow selection of specific extraction of particular words from the string typed by the
user. Input tags inside of Internet search plug-ins can use the 'user' flag to indicate that the input tag should use the data
typed in the text entry field by the user. In LDAP Plug-ins the following flags are available for use in input tags:

user - the entire text of the query.

user1 - the first word of the query.

user2 - the second word of the query.

user3 - the third word of the query.

userN - the last word of the query.

In addition to these tags, it is possible to specify prefix and suffix strings that will be appended to inputs once they have
been extracted from the string typed by the user and before they are sent to the LDAP server. To specify these strings add
one of the following specifications to the input tag:

prefix = string - text to prepend to the beginning of query item.

suffix = string - text to append to the end of query item.

Back to top

LDAP Interpret Tag Extensions

Search results are not returned from a LDAP server in HTML format. Because of this, LDAP plug-ins use
ldapinterpret tags instead of interpret tags for parsing returned data. These tags allow you to describe different
kinds of information that will be displayed for the tag. The layout or a ldapinterpret tag is as follows:

 <ldapInterpret
 name=<ldapAttribute>
 [prefix=<prefixString>]
 [suffix=<suffixString>]
 [prop=<propertyString>]
 [type=<typeString>]
 />

name - <ldapAttribute> is the LDAP attribute to be displayed.

prefix - optional <prefixString> is a prefix string that will be displayed in before the attribute if the
attribute was found in the results.

suffix - optional <suffixString> is a suffix string that will be displayed in after the attribute if the
attribute was found in the results.

TN1141: Extending and Controlling Sherlock Page: 14

prop - The column that this attribute relates to in Sherlock's result list. Following properties are supported with
Sherlock 2: "name" (the Name column), "email" (the EMail column), and "telephonenumber" (the Telephone
column).

type - Type of result for Sherlock 2, the only type of result currently allowed is "mailto". This tells Sherlock to
build a "mailto" URL that will be displayed in the description for the result.

Back to top

IBNF for LDAP Plug-ins

IBNF (Italicized BNF) for LAPD search plug-ins. Italics have been used to represent non-terminal nodes rather than the
< > notation as the language being described uses those characters frequently. All letters and strings are case-insensitive
and white space is ignored. Lines beginning with a # character are ignored and are treated as comments.

LDAPPlugin ::= LDAPHeader LDAPDefinitionList LDAPFooter

LDAPHeader ::= <search LDAPHeaderItemList >
LDAPHeaderItemList ::= LDAPHeaderItemList LDAPHeaderItem
LDAPHeaderItemList ::= LDAPHeaderItem
LDAPHeaderItem ::= name = string
LDAPHeaderItem ::= action = "LDAP_URL"
LDAPHeaderItem ::= method = "ldap"
LDAPHeaderItem ::= routeType = "people"

LDAP_URL ::= defined in rfc2255, "The
LDAP URL Format"

LDAPDefinitionList ::= LDAPDefinitionList LDAPDefinition
LDAPDefinitionList ::= LDAPDefinition
LDAPDefinition ::= <input name = string LDAPInputParamList
/>
LDAPDefinition ::= <ldapInterpret name = string
LDAPInterpretList />

LDAPInputParamList ::= LDAPInputParamList LDAPInputParam
LDAPInputParamList ::= LDAPInputParam
LDAPInputParam ::= LDAPQueryPart
LDAPInputParam ::= LDAPExtension
LDAPQueryPart ::= user
LDAPQueryPart ::= user1
LDAPQueryPart ::= user2
LDAPQueryPart ::= user3
LDAPQueryPart ::= userN
LDAPExtension ::= prefix = string
LDAPExtension ::= suffix = string

LDAPInterpretList ::= LDAPInterpretList LDAPInterpretItem
LDAPInterpretList ::= LDAPInterpretItem
LDAPInterpretItem ::= LDAPMatchPattern
LDAPInterpretItem ::= prop = LDAPProperty
LDAPInterpretItem ::= type = LDAPType

LDAPMatchPattern ::= prefix = string
LDAPMatchPattern ::= suffix = string

LDAPProperty ::= "name"
LDAPProperty ::= "email"
LDAPProperty ::= "telephonenumber"

LDAPType ::= "mailto"

LDAPFooter ::= </search>

string ::= " letterlist "
string ::= ' letterlist '
string ::= nospaceletterlist
letterlist := letterlist letter
letterlist := letter
letterlist :=
nospaceletterlist := nospaceletterlist printingletter
nospaceletterlist := printingletter

Back to top

TN1141: Extending and Controlling Sherlock Page: 15

Back to top

AppleScript Support

The new search facilities provided by the Sherlock application can be accessed from AppleScript scripts. AppleScript
scripts can ask the Sherlock application to perform an Internet search using one or more Internet Search Sites or search
for files with specific content on local or remote volumes. Each of these commands returns the results of the search as a
string that can be used elsewhere in your script. Optionally, AppleScript scripts can ask the Sherlock application to
display the results of the search.

Searching the Internet

Internet based searches use the "search Internet" command. The "search Internet" command allows AppleScript scripts to
specify the Internet search sites that will be used in the search along with query information. The query information can be
provided as either a string or as a reference to a file containing the query information (but not both). Results of the search
are returned as a string, and it is possible to specify that the Sherlock application display the results. Definition 1 includes
the "search Internet" entry from the Sherlock application's AppleScript dictionary.

search Internet: Search the Internet

search Internet string—the Internet sites to search, optional

[in channel string]
—the channel to search*

[for string]—the text
to look for...

[using alias]—...or a
saved Find file containing the query

[display
boolean]—Specifies whether or not to display the result (default
is without display)

Result: string—the URLs that match the query

*The new in channel parameter is only available in Sherlock 2.

Definition 1. The "search Internet" dictionary entry from the Sherlock application.

It is important to remember that the "for" and "using" parameters are mutually exclusive and cannot be used together in
one command. Either the query information is provided as a string or it is provided in a file. If the display parameter is
true, then the Sherlock application will display the results of the search.

The "using" parameter allows query information stored in a file to be used rather than a query string. To create such a file,
use the "Save Search Criteria" command in the Sherlock application's File menu.

The direct object to this command is a list of Internet search site names. If the list of Internet search site names is not
specified and the "for string" parameter is used, then the same sites that were used in the last Internet search will be used
in the search. The list of Internet sites is ignored when the "using alias" parameter is specified.

Selecting Search Sites

Sherlock provides a AppleScript command allowing you to select the search sites that will be used in the next Internet
search. With Sherlock 2, an additional parameter has been added to the select search sites command allowing you to select a
set of search sites that will be used within a particular channel.

select search sites: Select the specified Internet search sites

select search sites names...—a list of strings

[in channel string]—in the specified channel*

*The new in channel parameter is only available in Sherlock 2.

Definition 2. The "search" dictionary entry from the Sherlock application.

Searching Files

Two AppleScript commands are provided for access to the Find by Content facilities in the Sherlock application. The first
command allows AppleScript scripts to perform searches based on contents of files and the second allows AppleScript
scripts to create or update index files on particular volumes that are used by Find By Content. The AppleScript dictionary
entry for the "search" command is shown in Definition 2 and the "index volumes" command is shown in Definition 3. The
"search" command allows AppleScript scripts to perform searches based on file contents.

TN1141: Extending and Controlling Sherlock Page: 16

search: Search disks or servers

search alias—the volumes or folders to search, optional

[for string]—the text
to look for...

[similar to
alias]—...or file(s) containing text for Find by Content...

[using alias]—...or a
saved Find file containing the query

[display
boolean]—(default is without display) Specifies whether or not to
display the result

Result: alias—the files that match the query

Definition 3. The "search" dictionary entry from the Sherlock application.

In the "search" command, the parameters "for," "similar to," and "using" are mutually exclusive parameters and may not
be used together in the same command.

As in the Internet search command, the "using" parameter allows query information stored in a file to be used rather than a
query string. To create such a file, use the "Save Search Criteria" command in the Sherlock application's File menu.

The direct object to the "search" command is a list of volumes or folders to search. If no list of volumes is provided and
either the "search for" or the "search similar to" parameter is used, then the "search" command will search all local,
indexed volumes. When the "using" parameter is specified, the list of volumes is ignored.

Indexing Volumes

Before the Find By Content facilities can be used to search a volume, the volume must contain an index. Index files are
stored in an invisible folder called "TheFindByContentFolder" located in a volume's root directory and they contain
necessary information for performing content-based searches. A volume cannot be searched by the Find By Content
facilities unless it contains an index. AppleScript scripts can ask the Sherlock application to either update or create an
index file for one or more volumes.

index volumes: Create or update the index(es) of the specified volume(s)

index volumes alias—list of volumes to index

Definition 4. The "index volumes" dictionary entry from the Sherlock application.

Indexing Containers

Sherlock 2 adds a new AppleScript feature allowing callers to re-index particular folders or files without having to index
an entire volume. This feature is not available with the original version of Sherlock. Scripts attempting to use this feature
with older versions of Sherlock will fail.

index containers: Create or update the index(es) of the specified volume(s)/folder(s)/file(s)

index containers alias—list of volume(s)/folder(s)/file(s) to index

Definition 5. The "index containers" dictionary entry from the Sherlock 2 application.

Search Channels

Sherlock 2 adds the concept of search channels. To allow script writers full access to this new facility, a new "channel"
class has been added to Sherlock's AppleScript suite. Scripts can use this new class to find out what channels are available,
get and set the current channel, and refer to channels in search commands. Here are some examples of commands that can be
used with channels:

 count channels
 exists channel "Internet"
 get channels
 get name of channels
 get all search sites of channel "Internet"

 get current channel
 set current channel to channel "Internet"

Back to top

TN1141: Extending and Controlling Sherlock Page: 17

Back to top

The Optional kAEOpenDocuments Apple Event Parameter

To provide applications with information useful in selecting and displaying parts of documents in which users are most
likely interested, when the user opens a file that was located by way of a content-based search from within one of the
Sherlock application's windows, the Sherlock application will insert information about the search that led to the file into
the kAEOpenDocuments ('odoc') Apple event that is used to open the file. The Sherlock application opens files by
sending kAEOpenDocuments Apple events to the Finder. The Finder, when receiving the kAEOpenDocuments Apple
event, launches the application owning the document and passes the event to the application.

This type of kAEOpenDocuments Apple event contains an additional keyAEPropData (defined in AERegistry.h)
parameter. Among the properties in the keyAEPropData parameter there is one identified using the keyword 'srwd'
that contains the original query string used to locate the file. The 'srwd' property's data is formatted as a C-style string.

OSErr GetSearchWordsFromAppleEvent(AppleEvent* inAppleEvent,
 char* theText, long *ioLength)
{
 OSErr err;
 DescType outType;
 AERecord propData = {typeNull, NULL};

 /* set up our variables */
 if (ioLength == NULL || theText == NULL) return paramErr;

 /* get the property data from the Apple event */
 err = AEGetParamDesc(inAppleEvent,
 keyAEPropData, typeAERecord, &propData);

 /* extract the search words information */
 if (err == noErr)
 err = AEGetKeyPtr(&propData, 'srwd', typeChar,
 &outType, theText, *ioLength, ioLength);

 /* clean up and return */
 AEDisposeDesc(&propData);
 return err;
}

Listing 5. Retrieving the search words from and 'odoc' Apple event.

The Example shown in Listing 5 illustrates how an application may extract the query information from an
kAEOpenDocuments Apple event. Here, the routine attempts to retrieve the keyAEPropData parameter and then it
attempts to extract the 'srwd' information from the property data. If no problems occur and the 'srwd' data is present,
then the original query text will be returned in the buffer pointed to by theText, whose length must be passed in ioLength.
On return, *ioLength will be set to the length of the string, and the function will return noErr.

Note: It is possible for GetSearchWordsFromAppleEvent to return noErr, but to have also returned only a portion
of the query text. You should compare the size returned in ioLength to the original value passed in. If the value returned
is larger than the original value, you should resize the buffer to the size returned, and then call
GetSearchWordsFromAppleEvent again.

The presence of this additional parameter will not affect the behavior of existing applications built according to the
guidelines set forth in the "Responding to Apple Events" chapter of Inside Macintosh : Interapplication Communication.
However, developers may choose to take advantage of this new information when it is present in an Apple event as a clue
pointing to the part of the document that the user would like to see first. (The presence of the 'srwd' information in an
kAEOpenDocuments Apple event implies that the user conducted a search by content and then selected and opened the
document from within the list of files that were found in the search.) For example, an application may choose to highlight
all occurrences of the words in the string, view the first occurrence of a word from the string, or open its find window
with one or more of the query terms.

In some cases, however, it is possible that some or all of the words in the query string may not appear in the document
being opened. In a normal search based on a query phrase, Find By Content will locate files that contain one or more of the
words in the query. But, when a user selects one or more documents found in a previous search and requests "similar"
documents, then it is possible that some of the documents found may not contain any of the words from the query string
specified in the original search. Developers accessing the 'srwd' property should plan for the possibility that some or all
of the keys in the query string may not be present in the document being opened.

Back to top

References

TN1141: Extending and Controlling Sherlock Page: 18

Technote TN1180, "Sherlock's Find By Content Library."

Technote TN1181, "Sherlock's Find by Content Text Extractor Plug-ins."

Back to top

Change History

01-September-1998 Originally written .

1-October-1999 The Find by Content library information formerly found in this note has been moved
to Technote TN1180, "Sherlock's Find By Content Library."

1-November-1999 Added emailStart and emailEnd interpret tags for the people channel.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

