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Abstract

Finite-state techniques are widely used in various areas of Natural Language Processing
(NLP). As Kaplan and Kay (1994) have argued, regular expressions are the appropriate level of
abstraction for thinking about finite-state languages and finite-state relations. More complex
finite-state operations (such as contexted replacement) are defined on the basis of more basic
operations (such as Kleene closure, complementation, composition).

In order to be able to experiment with such complex finite-state operations the FSA Utilities
(version 5) provides an extendible regular expression compiler. The paper discusses the regu-
lar expression operations provided by the compiler, and the possibilities to create new regular
expression operators. The benefits of such an extendible regular expression compiler are il-
lustrated with a number of examples taken from recent publications in the area of finite-state
approaches to NLP.

1 Introduction

Finite-state techniques are widely used in various areas of Natural Language Processing (NLP).
As Kaplan and Kay (1994) have argued, regular expressions are the appropriate level of abstrac-
tion for thinking about finite-state languages and finite-state relations. More complex finite-state
operations (such as contexted replacement) are defined on the basis of more basic operations
(such as Kleene closure, complementation, composition).

For instance, context sensitive rewrite rules have been widely used in several areas of nat-
ural language processing, including syntax, phonology and speech processing. Johnson (1972)
has shown that such rewrite rules are equivalent to finite state transducers under the standard
assumption that they are not allowed to rewrite their own output. An algorithm for compilation
into transducers was provided by Kaplan and Kay (1994). Improvements and extensions to this
algorithm have been provided by Karttunen (1995) (1997) (1996) and Mohri & Sproat (1996). Such
algorithms take as their input regular expressions for the strings to be replaced and the left and
right contexts, and produce a finite-state transducer. In other words, such an algorithm provides
a new regular expression operator.

Many different variants of replacement operators have been proposed, depending on whether
rewrite rules are interpreted left to right, right to left or in parallel; whether rewrite rules are
required to use longest, shortest or all matches; whether rules are obligatory or optional; whether
contexts should match the input side or the output side of the transductions etc. For this reason,
it is crucial to be able to experiment with each of the various proposals in a flexible way.

Version 5 of the FSA Utilities (van Noord, 1998) is an extended, rewritten and redesigned ver-
sion of the FSA Utilities toolbox previously presented at the first WIA(van Noord, 1997). FSA5
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[] empty string
[E1,E2,...En] concatenation of E1, E2 ...En

{} empty language
{E1,E2,...En} union of E1, E2 ...En

E* Kleene closure
Eˆ optionality
˜E complement

E1-E2 difference
$ E containment

E1 & E2 intersection
? any symbol
A:B pair

E1 x E2 cross-product
A o B composition

domain(E) domain of a transduction
range(E) range of a transduction

identity(E) identity transduction
inverse(E) inverse transduction

Table 1: Basic regular expression operators in FSA5.

provides a very flexible extendible regular expression compiler. Below, we present the basic reg-
ular expression operations provided by the compiler, and the possibilities to create new regular
expression operators. We illustrate the exendible regular expression compiler with a number of
examples taken from recent publications in the area of finite-state approaches to NLP.

2 Regular Expressions

Table 1 gives an overview of the basic regular expression operators provided by FSA5. Apart
from the standard regular expression operators and extended regular expression operators for
regular languages, the tool-box also provides regular expression operators for regular relations.
For example, the expression

{a:b,b:c,c:a}* (1)

is the transducer which rewrites each a into a b, each b into a c, and each c into an a. Consider
furthermore a transducer which removes each b, but which leaves each non-b in place:

{b:[],? -b}* (2)

In this example1, the expression ? -b is any symbol except b. An expression Expr denoting a
regular language is automatically coerced in the context in which a transducer is expected into
identity(Expr). Here, ? -b is automatically coerced into identity(? -b), because it is
unioned with a transducer. Composing the examples 1 and 2:

{a:b,b:c,c:a}* o {b:[],? -b}* (3)

yields a transducer which removes each a, and transduces each b to a c, and each c to an a. For
instance, the input abcabcabc yields cacaca.

In FSA5, such a regular expression could be turned into a transducer using the command:

% fsa -r ’{a:b,b:c,c:a}* o {b:[],? -b}*’ > ex1.fa (4)
1For technical reasons a space is required after each occurrence of the ? meta-symbol.
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In this case, the resulting automaton is written to the file ex1.fa in FSA5 format. There are op-
tions to produce automata in many different formats, including formats for other finite-automata
tool-boxes such as AT&T’s fsm program (Mohri, Pereira, and Riley, 1998) and various visualiza-
tion formats (including dot, vcg, daVinci, LATEX and postscript). Other interesting formats
are as a Prolog or C program implementing the transduction.

FSA5 can also be used interactively. In that case a graphical user interface is provided from
which regular expressions can be input. The resulting automata are then displayed on the screen,
and the resulting automata can be tested with sample inputs. The availability of such a graphical
user interface in combination with various visualization tools has enabled the use of FSA5 in
teaching (Bouma, 1999). For more information on these and other possibilities refer to the FSA
Home Page: http://www.let.rug.nl/vannoord/Fsa/. The FSA Home Page includes an
on-line demo.

3 Extendible Regular Expression Operators

The regular expression compiler can be extended with new regular expression operators by pro-
viding one or more files defining these operators. The definitions are essentially of two types.
In both cases, the actual definitions are written in (often very simple) Prolog. On the one hand,
operators can be defined in terms of existing regular expression operators. On the other hand,
regular expression operators can be defined by providing a direct implementation on the under-
lying automata. Many researchers prefer the first style. For instance, Kaplan & Kay (Kaplan and
Kay, 1994) (p. 376) argue:

The common data structures that our programs manipulate are clearly states, transi-
tions, labels, and label pairs—the building blocks of finite automata and transducers.
But many of our initial mistakes and failures arose from attempting also to think in
terms of these objects. The automata required to implement even the simplest ex-
amples are large and involve considerable subtlety for their construction. To view
them from the perspective of states and transitions is much like predicting weather
patterns by studying the movements of atoms and molecules or inverting a matrix
with a Turing machine. The only hope of success in this domain lies in developing
an appropriate set of high-level algebraic operators for reasoning about languages
and relations and for justifying a corresponding set of operators and automata for
computation.

Paradoxically, Mohri & Sproat improve upon Kaplan & Kay’s algorithm by taking precisely
the opposite approach. Their algorithm is primarily presented in terms of manipulations upon
states and transitions within automata. One could perhaps translate Mohri & Sproat’s algorithm
into a high-level calculus, but a great deal of efficiency would be lost in the process. It is a
testimony to the flexibility of FSA5, that these two approaches can both be implemented and
combined.

New operators in terms of existing operators. A regular expression operator is defined as a
pair macro(ExprA,ExprB) which indicates that the regular expression ExprA is to be inter-
preted as regular expression ExprB. For example, simple nullary regular expression operators
(equivalent to abbreviatory devices found in tools such as lex and flex), can be defined as in
the following example:

macro( vowel, {a,e,i,o,u} ). (5)

indicating that the operator vowel/0 can be understood by assuming that every occurrence of
vowel in a regular expression is textually replaced by

�
a,e,i,o,u � .
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The same mechanism is used to define � -ary operators, exploiting Prolog variables. For in-
stance, the containment operator containment(Expr) is the set of all strings which have as a
sub-string any of the strings in Expr. This could be defined as follows:2

macro(containment(Expr), [? *,Expr,? *]). (6)

Naturally, operators defined in this way can be part of the definition of other operators. For
instance, the operator free(A) is the language of all strings which do not have any of the strings
in A as a substring. This can be defined as:

macro(free(A), ˜containment(A)). (7)

Definitions can also be recursive. The following example demonstrates furthermore that def-
initions can take the operands of the operator into account. The operator set(List) yields
the union of the languages given by each of the expressions in the list List; union(A,B) is a
built-in operator providing the union of the two languages A and B:

macro(set([]),’{}’).
macro(set([H|T]),union(H,set(T))).

(8)

We can also exploit the fact that these definitions are directly interpreted in Prolog by pro-
viding Prolog constraints on such rules. This possibility is used in Gerdemann and van Noord
(1999) to define a longest-match concatenation operator which implements the longest-capture
semantics required by the POSIX standard.

A simple example is a generalization of the operator free. Suppose we want to define an op-
erator free(N,Expr) indicating the set of strings which do not contain more than N occurrences
of Expr. This can be done as follows:

macro(free(N,X),˜ [? *|List]) :-
free_list(N,X,List).

free_list(0,X,[X,? *]).
free_list(N0,X,[X,? *|T]) :-

N0 > 0, N is N0-1,
free_list(N,X,T).

(9)

Another example is an implementation of the N-queens problem: how to place N queens on
an N by N chess-board in such a way that no queen attacks any other queen. For any N we can
create a regular expression generating exactly all strings of solutions. A solution to the N-queen
problem is represented as a string of N integers between 1 and N. An integer

�
at position � in

this string indicates that a queen is placed on the
�
-th column of the � -th row.

macro(n_queens(N), sigma(N)* & length(N) & columns(N) &
diagonals(N) & reverse(diagonals(N))).

(10)

The operator n queens(N) is defined as the intersection of a number of constraints. The first
constraint, sigma(N)*, indicates that a solution must be a string of integers between 1 and N.
The second constraint indicates that the length of the string must be N. The remaining constraints
ensure that queens do not attack each other. The definition of length illustrates once more the
use of Prolog to create a regular expression; the definition of sigma/1 uses the set operator

2Note that this operator is standardly available in FSA5. Many of the built-in operators in FSA5 are defined using the
same technique.
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Figure 1: Solution to the 5-queens problem

defined previously.

macro(length(N),List) :- length(List,N), fill_qm(List).

fill_qm([]).
fill_qm([? | T]) :- fill_qm(T).

macro(sigma(N),set(L)):-
findall(C,between(1,N,C),L).

between(N,_,N).
between(N0,N,I) :-

N1 is N0+1,
N1 < N+1,
between(N1,N,I).

(11)

The complete program is given in the appendix. For instance, the expression n queens(5)
produces the automaton in figure 1.

Direct implementation of new operators. Some operators are more easily defined in terms of
the underlying automaton. For instance, the operator reverse(X) is the set of all strings Y such
that the reversal of Y is in X. It is difficult to define this operator in terms of other operators.
However, the operation is trivial in terms of the underlying automaton: each of the transitions
needs to be swapped, final states become start states and vice versa. The (simplified) definition
is given as follows:
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rx(reverse(Expr),Fa) :-
fsa_regex:rx(Expr,Fa0), reverse_fa(Fa0,Fa).

reverse_fa(Fa0,Fa) :-
fsa_data:start_states(Fa0,Finals), fsa_data:final_states(Fa0,Starts),
fsa_data:transitions(Fa0,Trans0), reverse_transitions(Trans0,Trans),
fsa_data:construct_fa(Starts,Finals,Trans,Fa).

reverse_trans([],[]).
reverse_trans([trans(A,B,C)|T0],[trans(C,B,A)|T]) :-

reverse_trans(T0,T).

(12)

As is typical in such definitions, the fsa regex:rx predicate is used to construct an automaton
for a given regular expression. The fsa data module provides a consistent interface to the
internal representation of automata. Its predicates can be used to select relevant parts of an
automaton (such as start states, final states and transitions) and to construct automata on the
basis of such parts.

4 Regular Expression Operators in NLP

This section illustrates the flexibility and the power of the FSA5 extendible regular expression
compiler on the basis of a number of examples taken from recent publications in the field of NLP.

Lenient Composition. In a recent paper, Karttunen (1998) has provided a new formalization
of Optimality Theory in terms of regular expressions. Optimality theory (Prince and Smolensky,
1993) is a framework for the description of phonological regularities which abandons rewrite
rules. Instead, a universal function called GEN is proposed which maps input strings non-
deterministically to many different output strings together with a set of ranked universal con-
straints which rule out many of the phonological representations generated by GEN. The con-
straints eliminate all but the best output. Some constraints can be conflicting. Therefore it might
be impossible for a candidate string to satisfy all constraints. The best string is the string which
violates the least important constraint.

Procedurally, this mechanism can be understood as follows. Firstly, an input is mapped to
a set of candidate output strings. This set of strings is then passed on to the most important
constraint. It removes many of the candidate strings. The remaining strings are passed on to the
next important constraint, and so on. In the simplest case, only a single string survives all of the
constraints. If none of the strings satisfy a given constraint, then the strings survive with the least
number of violations of that constraint.

Karttunen formalizes GEN as a regular relation. Each of the constraints is itself a regular
language allowing only the strings which satisfy the constraint. If the constraints were to be
combined using ordinary composition, then the set of outputs would often be empty. Therefore,
instead of composition Karttunen introduces an operation of lenient composition which is closely
related to a notion of defaults.

Informally, the lenient composition of S and C is the composition of S and C, except for those
elements in the domain of S that are not mapped to anything by S o C. Thus, it enforces the
constraint C to those strings in S which have an output that satisfies the constraint:

macro(priority_union(Q,R), {Q, ˜domain(Q) o R}).
macro(lenient_composition(S,C), priority_union(S o C,S)).

(13)

Here, priority union of two transductions Q and R is defined as the union of Q and the
composition of the complement of the domain of Q with R; i.e. we obtain all pairs from Q, and
moreover for all elements not in the domain of Q we apply R. Lenient composition of S and C
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is defined as the priority union of the composition of S and C (on the one hand) and S (on the
other hand); i.e. we obtain the composition of S and C and moreover for all inputs for which that
composition is empty we retain S.

Consider the example

lenient_composition({b x [b,b],a x [b,b]*},[b,b,b]*) (14)

The input transducer maps an a to an even number of b’s, and it maps a b to two b’s. If this
transducer is leniently composed with the requirement that the result must be a string of b’s
divisible by 3, then the resulting transducer maps b to two b’s, as before (since the constraint
cannot be satisfied for any map of the input b), and it maps an a to a string of b’s which is
divisible by 6.

Karttunen illustrates the method by providing a formalization of the syllabification analysis
in Optimality Theory. This formalization has been implemented in FSA5 and is given in the
appendix.

The replace operator. In Mohri and Sproat (1996) a variant of the replace operator is im-
plemented which is more efficient than previous implementations provided by Kaplan and
Kay (1994) and Karttunen (1995). This improved version crucially depends on the pos-
sibility to manipulate the transitions and states of the underlying automata directly. The
replacement of expression Phi into Psi in the context of Left and Right is written
replace(Left,Phi,Psi,Right). In the left-to-right interpretation, this operator can be de-
fined as the following cascade:

macro(replace(L,Phi,Psi,R),
r(R) o f(Phi) o replace(Phi,Psi) o l1(L) o l2(L)).

(15)

This definition and the definitions of the auxiliary operators are closely modelled on those given
in Mohri and Sproat (1996). The auxiliary operators are defined in the appendix.

A typical example of the use of the replace operator is provided by the past tense endings of
Dutch regular verbs. In Dutch, the singular past tense is formed by the -de and -te suffixes.
If the previous phoneme is voiced, the suffix -de must be used; in order circumstances the -te
suffix is appropriate. This phenomenon can be analysed by assuming an underlying, abstract,
-Te suffix. The T is then transformed into a d or t depending on context. The rule can be defined
as follows (the + indicates a morpheme boundary):

macro(tkofschip,
replace(’T’:t,[{k,f,s,[c,h],p,t,x},+],e) o replace(’T’:d, +, [])

(16)

Left-most longest-match replacement with backreferencing. In Gerdemann and van Noord
(1999) a left-most longest match replacement operator replace(T,Left,Right) is defined
which ensures that the transducer T is applied in contexts Left and Right. One application of
such an operator is finite-state parsing (chunking), (Abney, 1995; Chanod and Tapanainen, 1996;
Grefenstette, 1996; Roche, 1997). In finite-state parsing, sets of context-free rules are collected into
levels. Typically there is a finite number of such levels, and these levels are ordered. First each of
the rules of the first level apply. The result is then input to the second level, etc. Note that rules
cannot work on their own output, unless the same rule is placed in several levels.

In the following example we will not use the contexts; therefore replace/1 is defined as:

macro( replace(T), replace(T,[],[])). (17)

This operator ensures that the transducer T is applied to a string at all possible positions, using
a left-to-right left-most longest match policy.

In this particular example we will assume that the input to the finite-state parser is a tagged
sentence: each word is represented by a category, an opening bracket, the word itself, and a
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closing bracket. A rule with a given left hand side and right hand side will look for the sequence
of elements described by the right hand side and wrap the result inside left hand side brackets.
In general, the macro --> can be defined as the following transducer (this macro disallows the
case that the daughters include the empty string):

macro((A --> Ds), [[] x [A,’[’], Ds-[], []:’]’]). (18)

We use the macro d(Expr) for elements in the right hand side of rules; the macro dw(Expr)
is similar but is used for pre-terminals, to refer to specific words.

macro(d(Cat), [Cat, ’[’:’(’, ˜ $ ’]’,’]’:’)’] ). %$
macro(dw(Cat,Word), [Cat, ’[’:’(’,Word,’]’:’)’]).

(19)

Note that the brackets (introduced by an earlier level) are replaced here by other brackets in
order to ensure that these brackets cannot be used in later levels again; in other words at any
given level we can only ‘see’ the top-most constituents (yet, the full parse tree can be recoved
using the ‘invisible’ brackets).

Using these two macro’s a rule to recognize basic noun phrases is:

np --> [d(art)ˆ,d(num)ˆ,d(adj)*,d(n)+] (20)

A level of rules can now simply be defined as the replacement operator applied to the union
of these rules. For instance, the following is a level recognizing multi-word-units:

macro(mwu,replace({(prep --> [dw(prep,{’Ten’,ten}),
dw(n,opzichte),
dw(prep,van)] ),

(prep --> [dw(prep,{’In’,in}),
dw(n,verband),
dw(prep,met)] ),

(prep --> [dw(prep,{’In’,in}),
dw(n,plaats),
dw(prep,van)] )

})).

(21)

Finally, we use composition to combine a number of such levels. Thus, the following defines
a simple noun-phrase chunker:

macro(np_chunker, mwu
o

replace(( adj --> [d(adv), d(adj)]))
o

replace(( np --> [d(art)ˆ,d(num)ˆ,d(adj)*,d(n)+]))
o

replace(( pp --> [d(prep),d(np)]))
o

replace(( np --> [d(np),d(pp)+]))

(22)

For example, one of the sentences from the Eindhoven corpus (den Boogaart, 1975) is chunked
as in figure 2.
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Figure 2: Application of NP chunker

5 Further Issues

5.1 Operators with Side-effects

The compiler supports a number of operators which have an effect on the underlying automata.
For instance, the operator determinize(Expr) can be used to ensure that the resulting au-
tomaton is determinized. Similar operators provide a simple interface to various minimization
algorithms provided by FSA5.

Furthermore, certain operators can be used which alter the operation of the regular expres-
sion compiler. The operator spy(Expr), for instance, can be used to request that the compiler
provides progress information on the compilation of the expression Expr (size of the result, and
CPU-time required to obtain the result). The cache(Expr) operator can be used to cache the
result of the compilation of regular expression Expr. For instance, in the replacement example
taken from Mohri and Sproat (1996) the expressions Left and Phi occur twice: wrapping those
expressions inside a cache/1 operator implies that the expressions are compiled only once.

5.2 Alphabets

Many of the more complex examples of regular expression operators, such as the replacement
operators, introduce special marker symbols into strings in order to mark off candidate regions
for replacement. The assumption is that these marker symbols are outside the resulting trans-
ducer’s alphabets. But the problem here is that previous versions of finite state calculus have
not provided any way of specifying either the input or output alphabet, so there is no way of
ensuring that the assumption holds.

This problem was at least recognized by Karttunen (1996), whose algorithm starts with a filter
transducer which performs an identity transduction which filters out any string which happens
to contain any of the special marker symbols. But this step is problematic for two reasons. First,
when applied to a string that does happen to contain one of the marker symbols, the algorithm
will simply fail. Second, the use of Karttunen’s filter transducer leads to some serious inefficiency
in the resulting transducer, which will be cluttered with arcs over the special marker symbols
leading to a sink state.

As a step in the direction of solving this problem 3 it is possible in FSA5 to specify precisely
what the input and output alphabets are. In particular, it is possible to define an identity trans-

3A complete solution to the problem is presented in Gerdemann & van Noord (1999).
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ducer, whose sole purpose is to transduce strings over a given alphabet to strings over the same
alphabet extended with some number of marker symbols. A flexible approach such as this ap-
pears to be necessary to implement any algorithm in the tradition of Kaplan & Kay. For example,
the code of Kaplan & Kay contains several lines of the general form:

��� �������
	�������
������	������������ (23)

This is interpreted as the language described by ���
������	���������� with instances of the marker� freely interspersed. The ���
����� here may be defined in terms of any operations in the fi-
nite state calculus. But if ���
����� is defined in terms of complement, which in turn is defined
as � ��� �"!#	����������%$'&)(+*,���-�"� , then one is required to know what & is within the context���
������	���������� . Does & contain � or not? In FSA5, one can be precise about such issues.

5.3 Implementation

The regular expression compiler is defined in SICStus Prolog. Regular expressions are read and
parsed using the Prolog parser (i.e. regular expressions are read in as Prolog terms), exploiting
the inherent flexibility of this parser. The constructed term is then straightforwardly compiled
into a corresponding finite automaton using a simple top-down recursive procedure.

Note that this mechanism implies that in order to construct an automaton for a regular ex-
pression such as [a*,b,cˆ,d+] automata are constructed for each of the sub-expressions. For
regular expressions which are constructed solely using such simple operators, more efficient au-
tomaton construction algorithms are known. We have not implemented these algorithms because
of the desire to be able to treat user-defined operators. One possible improvement could be to
have the compiler identify which parts of an expression are simple enough to be treated by a
more efficient specialized algorithm.

5.4 Questions concerning question mark

The possibility to use the question mark meta-symbol to refer to any symbol is extremely useful
in order to define general regular expression operators. For instance, the containment operator
defined above could not be defined without it. In order to be able to support this meta symbol,
the automata constructed by the regular expression compiler support a related symbol, written
$?, with a slightly different meaning: all possible symbols, except those symbols seen during
the construction of the automaton. Thus, each automaton is associated with a list of symbols
which are used to set the meaning of the meta-symbol $?. The reason for this technique, which
is apparently similar to the technique used in the Xerox regular expression compiler, is that we
can now construct an automaton for expressions such as ?-a:

0

1$?

2

a

(24)

If automata are combined using any of the regular expression operators, then each automaton
is first expanded in order to take into account the symbols used in any of the other automata.
Thus, in the expression:

(? - a) & (? - b) (25)

the automaton for ?-a is first expanded into an automaton for
�
?,b � -a.
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The advantage of this technique is that the actual implementation of the intersection operator
can treat $? as an ordinary symbol. The disadvantage, however, is that in some cases this leads
to automata with many (seemingly redundant) transitions.

A potential solution to this redundancy problem is to use a technique due to Watson (1996)
in which a label is considered to be a predicate, taking a single argument (the input symbol). A
transition is taken if the predicate returns true for the actual input symbol.

Another more fundamental problem (for which this suggestion does not seem to help) arises
if the identity operator is applied to ?. Obviously, the identity of ? should be a transducer that
maps any input symbol to the same output symbol. Note that this is different from ?:? which is a
transducer which maps any input symbol to any output symbol. For this reason, another special
symbol pair is introduced in the representation for transducers: $@:$@ is a transition which reads
any symbol not in the current list of symbols and outputs the very same symbol. FSA5 supports
these special symbol pairs. So far so good. But now we apply the determinization algorithm for
transducers (Mohri, 1996)(Roche and Schabes, 1995). This algorithm essentially ‘delays’ output
symbols until a deterministic choice is possible. For instance, consider the expression:

{[a:b,b],[a:a,a]} (26)

This maps a sequence ab to a bb, and a sequence aa to aa. A ‘deterministic’ transducer for this
example is:

0 2
a:[]

1
a:[a,a] b:[b,b]

(27)

Now consider the case in which two question marks are placed between the first and second
symbol, i.e.:

{[a:b,? ,? ,b],[a:a,? ,? ,a]} (28)

The resulting automaton, given in figure 3, maps sequences aXXa to aXXa and sequences
aXXb to bXXb. The automaton illustrates the size increase and redundancy referred to above, but
it also illustrates another problem: the output $@ symbols are pushed into later transitions.

Such transducers are interpreted as follows (this idea is due to Lauri Karttunen, p.c.). A queue
is maintained which keeps track of input symbols matched with $@. If an $@ has to be output,
it is dequeued. This mechanism is supported in the FSA5 interpreter and compiler. Automata
containing such delayed $@ outputs are not supported, however, by any of the regular expression
operators.

Concluding Remarks

We have discussed the extendable regular expression compiler of FSA5. We have shown that the
functionality and flexibility provided by the toolbox can be used to experiment with a variety
of finite-state techniques in natural language processing, including applications in phonology,
morphology and syntax.
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A Syllabification in Optimality Theory

This is the implementation of Karttunen’s formalization of syllabification in Optimality Theory.

%% Karttunen’s X -> L ... R. Every X is ‘bracketed’ with L and R.
macro(dots(X,L,R), [[free(X), [[] x L, X, [] x R]]*, free(X)]).
%% Karttunen’s A => L R. Every A must occur in context L _ R.
macro(restrict(A,L,R), ˜[? *,A,˜[R,? *]] & ˜[˜[? *,L],A,? *]).
macro(cons,{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,z}).
macro(lbr,{’O[’, ’D[’, ’X[’, ’N[’}).
macro(rbr,’]’).
macro(input,{cons,vowel}*).
macro(parse, dots(cons,{’O[’,’D[’,’X[’},’]’) o dots(vowel,{’N[’,’X[’},’]’)).
macro(overparse,[([] x [lbr,rbr])ˆ,dots({cons,vowel},[],[lbr,rbr]ˆ)]).
macro(onset,[’O[’, consˆ, ’]’]).
macro(nucleus,[’N[’, vowelˆ, ’]’]).
macro(coda,[’D[’, consˆ, ’]’]).
macro(unparsed,[’X[’, {cons,vowel}, ’]’]).
macro(syllable_structure,ignore([onsetˆ,nucleus,codaˆ],unparsed)* ).
macro(gen, input o overparse o parse o syllable_structure).
macro(have_ons,restrict(’N[’, onset, [])).
macro(nocoda,free(’D[’)).
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%% ’parse’ is used twice in Karttunen 98; we use parsed(N) where N is
%% the maximum number of occurrences of X
macro(parsed(N), free(N,’X[’)).
macro(fillnuc, free([’N[’, ’]’])).
macro(fillons, free([’O[’, ’]’])).
:- op(403,yfx,lc).
macro(R lc C, lenient_composition(R,C)).
macro(syllabify,gen lc have_ons lc nocoda lc fillnuc lc parsed(0) lc

parsed(1) lc parsed(2) lc parsed(3) lc parsed(4) lc fillons ).

B Mohri & Sproat Replace Operator

Implementation in FSA5 of the contexted replacement operator of Mohri and Sproat (1996).

macro(r(R),reverse(marker(1,[sigma*,reverse(R)],[>]))).
macro(f(F),reverse(marker(1,[{sigma,>}*,reverse([ignore(F,{>}),>])],

[’<1’,’<2’]))).
macro(l1(L), sloppy_ignore(marker(2,[sigma*,L],’<1’),{’<2’:’<2’})).
macro(l2(L),marker(3,[sigma*,L],’<2’)).
macro(replace(Phi,Psi), {{sigma,’<2’:’<2’, > :[]},

[’<1’:’<1’,ignore(Phi,{’<1’,’<2’,> }) x Psi,> :[]]}*).
macro(sigma,? - {’<1’,’<2’,>}).

rx(marker(Type,Expr,C),Fa) :-
fsa_regex:rx(identity(determinize(Expr)),Fa0), mark(Type,C,Fa0,Fa).

mark(1,Ins,Fa0,Fa) :- %% Ins: symbols to be inserted
fsa_regex:add_symbols(Ins,Fa0,Fa1), fsa_data:symbols(Fa1,Sig),
fsa_data:start_states(Fa1,Starts), fsa_data:transitions(Fa1,Trs0),
fsa_data:final_states(Fa1,Fins), fsa_data:all_states(Fa1,AllSts),
ordsets:ord_subtract(AllSts,Fins,NFins0),
add_ins(Fins,Ins,NFins,NFins0,Trs,Trs1),
replace_trs_sf(Trs0,Trs1,Fa0),
fsa_data:rename_fa(Sig,Starts,NFins,Trs,[],Fa).

replace_trs_sf([],[],_).
replace_trs_sf([trans(A0,B,C)|T0],[trans(A,B,C)|T],Fa):-

( fsa_data:final_state(Fa,A0) -> A=q(A0) ; A=A0 ),
replace_trs_sf(T0,T,Fa).

add_ins([],_,F,F) --> [].
add_ins([F0|Fs],Ins,[q(F0)|NewF0],NewF) -->

add_ins0(Ins,F0), add_ins(Fs,Ins,NewF0,NewF).

add_ins0([],_F) --> [].
add_ins0([Sym|Syms],F) --> [trans(F,[]/Sym,q(F))], add_ins0(Syms,F).

mark(2,Del,Fa0,Fa) :- %% Sym is a symbol to be deleted
fsa_regex:add_symbols([Del],Fa0,Fa1),
fsa_data:copy_fa_except(transitions,Fa1,Fa2,Trs0,Trs),
fsa_data:copy_fa_except(final_states,Fa2,Fa,Fins,AllSts),
fsa_data:all_states(Fa0,AllSts),
add_deletions(Fins,Del,Trs1,Trs0), sort(Trs1,Trs).

add_deletions([],_) --> [].
add_deletions([F|Fs],Del) --> [trans(F,Del/[],F)], add_deletions(Fs,Del).

mark(3,Del,Fa0,Fa) :- %% Del is a symbol to be deleted
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fsa_regex:add_symbols([Del],Fa0,Fa1),
fsa_data:copy_fa_except(transitions,Fa1,Fa2,Trs0,Trs),
fsa_data:copy_fa_except(final_states,Fa2,Fa,Fins,AllSts),
fsa_data:all_states(Fa0,AllSts),
ordsets:ord_subtract(AllSts,Fins,NonFins),
add_deletions(NonFins,Del,Trs1,Trs0), sort(Trs1,Trs).

%% As defined by Mohri & Sproat. This should be done differently,
%% ignore is not defined for transducers.
macro(sloppy_ignore(A,B),ignore0(A,B)).

C N-queens Problem
macro(free(Expr), ˜containment(Expr)).
macro(sigma(N),set(L)):- findall(C,fsa_util:between(1,N,C),L).
macro(columns(N),Ints) :- columns(1,N,Ints).

%% don’t use ordinary operator syntax, since this file is read-in with
%% regular expression operator precedences active.
columns(N,N,free([N,? *,N])).
columns(N0,N,free([N0,? *,N0]) & Ints) :-

N0<N, is(N1,+(N0,1)), columns(N1,N,Ints).

macro(diagonals(N), I) :- diagonals(1,N,I).

diagonals(N0,N,I) :- is(N,N0+1),!, diagonals_n(1,N0,N,I).
diagonals(N0,N,I0 & I) :- diagonals_n(1,N0,N,I0),

is(N1,+(N0,1)), diagonals(N1,N,I).

diagonals_n(N0,Br,N,I0) :- is(N,+(N0,Br)),!, diagonal(N0,Br,I0).
diagonals_n(N0,Br,N,I0 & I):-

diagonal(N0,Br,I0), is(N1,+(N0,1)), diagonals_n(N1,Br,N,I).

diagonal(N0,Br,free([N0,length(MidN),N])) :-
is(N,+(N0,Br)), is(MidN,-(Br,1)).
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