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Abstract. Superstrings have many applications in data compression and
genetics. However the decision version of the shortest superstring problem
is NP-complete. In this paper we examine the complexity of approximating
a shortest superstring. There are two basic measures of the approximations:
the compression ratio and the approximation ratio. The well known and
practical approximation algorithm is the sequential algorithm GREEDY. It
approximates the shortest superstring with the compression ratio of 1

2
and

with the approximation ratio of 4. Our main results are:
(1) An NC algorithm which achieves the compression ratio of 1

4+"
.

(2) The proof that the algorithm GREEDY is not parallelizable, the com-
putation of its output is P-complete.

(3) An improved sequential algorithm: the approximation ratio is reduced
to 2.83. Previously it was reduced by Teng and Yao from 3 to 2.89.

(4) The design of an RNC algorithm with constant approximation ratio and
an NC algorithm with logarithmic approximation ratio.

1 Introduction

Let S = fs1; : : : ; sng be a set of n strings over some alphabet �. A superstring of S is
a string sp over � such that each string si 2 S appears as a substring (a consecutive
block of characters) of sp. The shortest superstring problem is to �nd for a given
set S the shortest superstring ss(S) . We use opt(S) to denote the length of ss(S) .
Assume further that no string si 2 S is a substring of any other sj 2 S.

It is known that the shortest superstring problem is NP-hard [5, 6]. Because of
its important applications in data compression practice [13] and DNA sequencing
procedure [8, 12], it is of interest to �nd approximation algorithms with good perfor-
mance guarantees. For example, a DNA molecule can be represented as a character
string over a set of nucleotides fA;C;G; Tg. Although a DNA string can have up
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to 3 � 109 characters (for a human being), with current laboratory methods only
small fragments of at most 500 characters can be determined at a time. Then from
a huge number of these fragments, a biochemist should construct the superstring
representing the whole molecule. E�cient superstring approximation algorithms are
routinely used to cope with this job. In particular, good parallel algorithms would
be useful in that context.

To evaluate how good is the obtained approximation, two kinds of measure are
used. The �rst, most important in practice, is to �nd a superstring sp of S such that

the ratio
jspj

opt(S) is minimized. We will call this ratio to be the approximation factor

of a superstring . The second approach is to �nd a superstring sp of S such that the
ratio of the total compression obtained by sp and by ss(S) is maximized. That is,

we want to maximize jSj�jspj
jSj�opt(S)

, where jSj =
P

1�i�n j si j. We will call this ratio

to be the compression factor of a superstring .
The algorithmGreedy is a simple sequential approximation of a shortest super-

string and appears to do quite well. It can be presented in the following way. Given a
non-empty set of strings S = fs1; : : : ; sng, repeat the following steps until S contains
just one string (which is a superstring of S): Select a pair of strings s0; s00 2 S that
maximizes overlap between s0 and s00; Remove s0 and s00 from S replacing them with
the merge of s0 and s00.

It was proved by Tarhio and Ukkonen [14] and Turner [16] thatGreedy achieves
the compression factor of at least 1/2. Other heuristics have been also considered by
the authors, but 1/2 is still the best obtained compression factor. The approximation
factor ofGreedy was unknown for a long time. The �rst breakthrough was made by
Blum et al. [2], where they proved that Greedy achieves an approximation factor of
4. Furthermore, they showed a modi�ed greedy algorithm that has an approximation
factor of 3, and proved that the superstring problem is MAX-SNP-hard [11]. The
recent result in [1] that MAX SNP-hard problems do not have polynomial time
approximation scheme unless P = NP implies that a polynomial time approximation
scheme (that is, polynomial time algorithms with approximation factor of 1 + " for
any �xed " > 0) for this problem is unlikely. Recently Teng and Yao [15] improved the
result of Blum et al. [2] and presented an algorithm that achieved an approximation
factor of 2.89. Our contribution is an algorithm whose approximation factor can be
bounded by 2.83.

As far as we know, no parallel approximation algorithm for the superstring prob-
lem has been presented. In this paper, we give the following results concerning the
parallel complexity of the problem:

1. An NC algorithm which achieves the compression ratio of 1
4+" .

2. The proof that the algorithm GREEDY is not parallelizable, the computation
of its output is P-complete.

3. The design of an RNC algorithm with constant approximation factor and an
NC algorithm with logarithmic approximation factor.

The open problem is to construct an NC algorithm with a constant approximation
factor.

Below we introduce some necessary de�nitions.
For two strings s and t let v be the longest string such that s = uv and t = vw

for some non-empty strings u and w. The overlap between two strings s and t is the



length of the string v. We will denote it as ov(s; t). The pre�x of a string s with
respect to a string t is the length of the string u. We will denote it as pref(s; t).
It will cause no confusion if sometimes we also call the string v to be the overlap
(ov(s; t)) and the string u to be the pre�x (pref(s; t)) of s and t. De�ne s � t to be
the string uvw, that is s � t = pref(s; t) t.

For a given set of strings S = fs1; : : : ; sng de�ne an overlap graph of S to be the
weighted digraph OG(S) = (V;E; ov) which has n vertices V = f1; : : : ; ng and n2

edges E = f(i; j) : 1 � i; j � ng. Here we take as weight function the overlap ov(; ):
edge (i; j) has weight ov(i; j) = ov(si; sj).

Algorithm Greedy can be also restated in terms of the overlap graph OG(S).
Repeat until selected edges do not form a Hamiltonian path in OG(S): Scan the
edges of OG(S) in non-increasing order of weights and select an edge (i; j) if no edge
of the form (i; p) or (q; j) has been previously selected and if the collection of paths
constructed so far does not include a path from j to i. Obtained Hamiltonian path
(i1; i2); (i2; i3); � � � ; (in�1; in) de�nes us the superstring si1 � si2 � si3 � : : :� sin�1

� sin .
A weighted digraphG is an overlap graph if there exists a set S of strings such that

the graph obtained from OG(S) after removing all zero-weighted edges is isomorphic
to G.

Due to space limitations some proofs and details are omitted here and will appear
in the full version of the paper.

2 NC-Approximation of Shortest Superstrings

De�ne a cycle-cover of a graph G to be a maximal collection of cycles in G such
that each vertex is in at most one cycle. Let also a path-cycle cover be a collection
of paths and cycles in G such that each vertex is in exactly one path or cycle. We
call a path-cycle cover maximal if it can not be extended by any other edge in G.

Let G = (V;E;w) be a complete weighted digraph without seloops, where
V = f1; : : : ; ng is the set of vertices, E = f(i; j) : i 6= j 2 V g is the set of edges
and w : E ! R+ is the (non-negative) weight function. Assume also that the unary
weights are given. Themaximum cycle-cover problem is to �nd a cycle-cover with the
maximumweight (ie., the total weight of the cycles is maximized). It is known that
this problem is reduced to the maximum-weighted matching problem in bipartite
graphs [10]. Thus it can be solved in polynomial sequential time. However there is not
known any NC algorithm for it. In this paper we are only focused on this problem
for the case when all weights are given in unary. In this case there is known an
RNC algorithm for the maximum-weighted matching problem in bipartite graphs,
thus also for the maximum cycle-cover problem [17]. In what follows we show that
there is an NC algorithm that �nds an ( 1

2+" )-approximation of the maximum cycle-
cover (and also for the maximum-weighted matching problem in bipartite graphs).

2.1 Sequential Approximation of a Maximum Cycle-Cover

We begin with a sequential 1
2-approximation. The following is a simple greedy algo-

rithm that �nds a cycle-cover.



Algorithm CC-GREEDY :

Repeat until selected edges do not form a cycle-cover of G:
Scan the edges of G in non-increasing order of weight and select an edge (i; j) if

no edge of the form (i; p) or (q; j) has been previously selected.

Lemma1. Algorithm CC-GREEDY �nds a cycle-cover of weight that is at least
half of the weight of a maximum cycle-cover.

Proof. The proof follows the ideas of Turner's estimation of the superstring com-
pression factor achieved by Greedy [16]. Algorithm CC-GREEDY selects n edges
in non-increasing order and let ei be the i-th chosen edge. Let Pi be a maximum
cycle-cover that includes edges fe1; : : : ; eig and let Ci = Pi � fe1; : : : ; eig. We show
that for 1 � i � n, w(Ci�1) � w(Ci) + 2w(ei). Since w(C0) is the weight of a
maximum cycle-cover and w(Cn) = 0, this would imply the lemma.

Let ei = (p; q). Since ei is the i-th edge chosen by CC-GREEDY , w(ei) �
maxfw(e) : e 2 Ci�1g. There are at most two edges e0 and e00 that are in Ci�1�Ci

and which share the head or the tail with ei. Let e
0 = (p; s), e00 = (t; q) and when s 6=

t; let us de�ne e� = (t; s), Then we can obtain a cycle-cover (Pi�1�fe0; e00g)[fei; e�g
when s 6= t or a cycle-cover (Pi�1�fe0; e00g)[feig otherwise. In both cases we have:

w(Ci) +w(ei) � w((Ci�1 � fe0; e00g) [ feig)

= w(Ci�1) �w(e0)� w(e00) +w(ei)

� w(Ci�1) �w(e) �w(e) +w(ei)

= w(Ci�1) �w(ei)

which implies w(Ci�1) � w(Ci) + 2w(ei).

Using well-known transformations (see eg. [10]) Lemma 1 can be restated as the
following Corollary.

Corollary 2. In a weighted bipartite graph the Greedy matching algorithm �nds a
matching of weight that is at least half of the weight of a maximum-weighted match-
ing.

2.2 Parallel Approximation of a Maximum Cycle-Cover

In this section we describe an approximation of algorithm CC-GREEDY . Let
c > 1, G = (V;E;w) and for each edge e if w(e) 2 (ck�1; ck] then de�ne c-level of
e, levelc(e), to be k (ie., levelc(e) = dlogcw(e)e); additionally if w(e) � 1 then
levelc(e) = 0.

For a given path v1; v2; : : : ; vk its contraction is de�ned as follows. We remove
vertices v2; : : : ; vk together with the edges incident to them and change the edges
(with their weights) outgoing from v1 to be the edges outgoing previously from vk.
Vertex v1 is called the contraction of the path v1; v2; : : : ; vk. The recontraction of a
cycle or a path is obtained by recursively replacing each contraction by its path.



Algorithm ACC-GREEDY

1. Let s be the maximum c-level of edges in G (ie., s = maxe2Eflevelc(e)g) and
let ~G = G and C = ;.

2. Repeat for t = s downto t = 0

(a) Let Gt be the (non-weighted) subgraph of ~G induced by the edges from the
t-th c-level

(b) Find a maximal path-cycle cover of Gt

(c) Remove all cycles in Gt from ~G and after recontracting add them to C;
contract all obtained paths

3. The set C contains a cycle-cover

Lemma3. For any c > 1 algorithm ACC-GREEDY �nds a cycle-cover of weight
at least 1

2c of the weight of a maximum cycle-cover.

Proof. Let G = (V;E;w) be the graph with weights

w(e) =

�
clevelc(e) if ACC-GREEDY chooses e
w(e) otherwise

Note that w(e) � w(e) < c w(e) for every e 2 E. Let MCC(G) be the weight of a
maximumcycle-cover in G and w(AM (G)) be the sum of weights of the edges chosen
by algorithm ACC-GREEDY on G. Observe that algorithm ACC-GREEDY on
the graph G is equivalent to CC-GREEDY assuming that both algorithms select
the same edges in the case of equal weights. Thus w(AM (G)) � 1

2MCC(G) �
1
2MCC(G). On the other hand w(AM (G)) < c w(AM (G)). Thus �nally we get
c w(AM (G)) � 1

2MCC(G).

Now we want to show that this algorithm can be implemented to run in poly-
logarithmic time with polynomial number of processors. The main loop is executed
dlogc(maxe2Efw(e)g)e times. Since the weights of the graph are given in unary, we
only have to show that there is an NC algorithm that �nds a maximal path-cycle
cover. The proof of the following lemma will appear in the full version of the paper.

Lemma4. There is an NC algorithm that �nds a maximal path-cycle cover of a
digraph G.

Lemma 3 and Lemma 4 immediately imply the following theorem.

Theorem5. There is an NC algorithm that �nds a cycle-cover of a weighted digraph
G with the cost of at least 1

2+"
of the weight of a maximum cycle-cover. Here " > 0

is any arbitrary but �xed constant, and we assume that the weights of G are given
in unary.

The running time of this algorithm is either O(log2 n log1+"(maxe2Efw(e)g)) with

n4 processors or O(log3 n log1+"(maxe2Efw(e)g)) with n2 processors.



2.3 Parallel Approximation of Shortest Superstrings

In this section we develop techniques presented in the previous section to design
an NC algorithm that �nds a superstring that has the overlap (the compression
measure) at least 1

4+" that of a shortest superstring.
First we build the overlap graph OG(S) for the set of strings S. We assume in

this construction that there is no seloop in OG(S). Then we �nd a cycle-cover of
OG using algorithmACC-GREEDY from Section 2.2. We next remove from every
cycle an edge with the minimum weight and join (by any edges) obtained paths to
get a Hamiltonian path.

Lemma6. Obtained Hamiltonian path is of the weight at least 1
4+" of the weight of

a maximum weight Hamiltonian path, for any " > 0.

Proof. Any maximum cycle-cover MCC is of weight not smaller than the weight of
a maximumHamiltonian path MHP. Let C be a cycle-cover obtained by algorithm
ACC-GREEDY and GS be a superstring obtained by the algorithm presented
above. From Theorem 5 we get w(C) � 1

2+ 1

2
"
w(MCC) for any " > 0. Since we

remove the least weighted edge from every cycle in C, we get w(GS) � w(C)=2.
Thus

w(GS) � w(C)=2 �
1

4 + "
w(MCC) �

1

4 + "
w(MHP)

Theorem7. There is an NC algorithm that achieves compression factor of 1
4+" . It

runs either in O(log2 n�log1+" jSj) time with n4 processors or in O(log3 n�log1+" jSj)
time with n2 processors.

3 Algorithm Greedy Is Not Parallelizable

AlgorithmGreedy appears to be very sequential in nature, since to select a current
pair of strings with the largest overlap we need to know the results of previous merges.
To formalize this observation we would like to prove that Greedy applied to the
superstring problem is P-complete 3, what is commonly believed to mean: a hardly
parallelizable algorithm.

We start with proving that the problem of �nding the Hamiltonian path cho-
sen by algorithm Greedy is P-complete. For a given Boolean circuit, a certain
complete weighted digraph is introduced, in which a Hamiltonian path selected by
Greedy can simulate a computation of the circuit's value. Then we argue that the
digraph is an overlap graph, i.e., a set of strings can be constructed whose overlap
graph is isomor�c to the digraph.

Lemma8. The problem of �nding the Hamiltonian path chosen by algorithmGreedy
is P-complete.

Proof. Due to space limitations the construction of the graph is omitted here. From
now on we will call the result digraph the circuit-simulating graph.

3 To be more precise: a search problem of �nding a superstring obtained by GREEDY is
considered and proved to be P-complete



For a digraph G de�ne its skeleton G to be an undirected graph with the vertex
set the same as the vertex set of G and the edge set which is obtained from the edge
set of G by removing directions.

In the following lemmas we would like to derive some su�cient conditions of a
digraph to be an overlap graph. The �rst observation is that a positive-weighted
edge in an overlap graph relates the beginning of one string to the end of another.
Therefore, when we want to collect the related strings in a structure, we have to
consider adjacent edges in alternating directions. This leads us to the following
de�nitions:

An alternating path is a sequence of nodes and edges v1e1v2e2 � � �vk�1ek�1vk
such that either e1 = (v1; v2); e2 = (v3; v2); e3 = (v3; v4); e4 = (v5; v4) � � �, or
e1 = (v2; v1); e2 = (v2; v3); e3 = (v4; v3); e4 = (v4; v5) � � �. An alternating tree is a
connected (ie., AT is connected) digraph AT = (VT ; ET ) containing t nodes and
t� 1 edges such that each sequence v1e1v2e2 � � �vl�1el�1vl, where vi 2 VT , ei 2 ET

and v1e1v2e2 � � �vl�1el�1vl is a path in AT , is an alternating path. Assume that
all edges in AT have weights de�ned by a function w. A weighted alternating tree
AT is monotone if there exists a vertex r, called the root of AT , such that for
each alternating path re1v1e2v2 � � � ekvk in AT , w(e1) < w(e2) < � � � < w(ek) An
alternating cycle in a digraph G is a cycle in G that can be transformed into an
alternating path by splitting it in a node.

Lemma9. Every monotone alternating tree with positive, integer weights is an over-
lap graph.

Lemma10. If a weighted digraph G with positive, integer weights can be edge-
covered by a disjoint sum of monotone alternating trees in such a way that for each
vertex in G all its incoming edges are in one tree and all its outgoing edges are in
another tree, then G is an overlap graph.

Proof. According to Lemma 9, each alternating tree AT in the cover C of G is
an overlap graph. That is, strings can be assigned to nodes of AT to obtain the
corresponding overlap graph. Let �AT denote an alphabet of the strings. W.l.o.g. we
can assume that alphabets �AT , AT 2 C, are pairwise disjoint. Let the incoming
edges of a vertex v be in AT and its outgoing edges in AT 0. Thus we have got
two strings inv 2 ��

AT and outv 2 ��
AT 0 . The result string for v we obtain by

concatenating inv with outv. It can be easily checked that the overlap between two
such strings is non-zero if and only if the corresponding nodes are joint by an edge.

Lemma11. If a digraph G does not contain alternating cycles, then it can be
(uniquely) edge-covered by edge-disjoint alternating trees such that each vertex of
G has all its incoming edges in one tree and all its outcoming edges in another tree.

Theorem12. The problem of �nding a superstring chosen by algorithm Greedy is
P-complete.

Proof. With respect to Lemma 8 we have only to show that a circuit-simulating
graph G is an overlap graph. The gates in G can been designed in such a way that
G contains no alternating cycles. By Lemma 11, G can be uniquely edge-covered



by disjoint alternating trees. Moreover the trees are of size bounded by a constant
(independent on the size of a circuit) and they are monotonic. Hence, by Lemma 10,
G is an overlap graph.

4 Sequential Algorithm with 2.83 Approximation Factor

In this section we present a new sequential algorithm for the superstring prob-
lem that has an approximation factor of 256 and thus supersedes the algorithm of
[15]. The later algorithm has the factor of 289 and is an improvement on algorithm
TGREEDY [2] that has the factor of 3. We base on the ideas from both papers.

In this section, according to the previous papers, we will use the terms assignment
and cycle-cover interchangeably. For a given set of strings S = fs1; : : : ; sng we
consider two complete digraphs with S as a set of nodes: one OG(S) weighted by
ov(�; �), the other PG(S) weighted by pref(�; �). We assume that both contain no
seloop. Let us notice that a minimum assignment in PG(S) is also a maximum
assignment in OG(S), and vice versa. We will call such an assignment an optimal
assignment. For a cycle c in an assignment C, let d(c) denote the total pref(�; �)
weight of the edges in c. We refer to d(c) as the weight of c.

For the sake of completeness we recall two crucial lemmas from [2] and [15].
Recall that a minimum assignment is called canonical if each string s is assigned to
a cycle whose weight is the smallest among all cycles that s �ts (see [15]).

Lemma13. [2] Let c1 and c2 be two cycles in a minimum weight assignment C with
s1 2 c1 and s2 2 c2. Then, the overlap between s1 and s2 is less than d(c1) + d(c2).

Lemma14. (2-cycle Lemma, Teng and Yao [15])
Let c1 and c2 be two cycles in a canonical minimum assignment C with r1 2 c1 and
r2 2 c2. Then ov(r1; r2) + ov(r2; r1) < max(jr1j; jr2j) + min(d(c1); d(c2)).

As the shortest superstring problem for S corresponds to the maximumHamilto-
nian path problem in OG(S) graph, approximation schemes start by computing an
optimal assignment. Then the problem is how to join the cycles in the assignment to
obtain a Hamiltonian path. Algorithm TGREEDY [2] opens each cycle by deleting
the edge with the shortest overlap and joins the obtained strings by Greedy . One
can obtain the same approximation factor of 3 by the following procedure:

1. select a set R of cycles' representatives (one node si from each cycle ci) and �nd
an optimal assignment CC of R;

2. open each cycle in CC by deleting the shortest-overlap edge, and concatenate
the obtained strings to form �;

3. split each cycle ci in the selected node si ( the result will begins and ends with
si) and replace si in � by the results.

These stages form the basis of the algorithm presented by Teng and Yao [15].
The improvement on the approximation factor in [15] is obtained by making the
assignment in Stage 1 canonical and by treating separately 2-cycles in Stage 2. Our
further improvement is achieved by selecting \good" representatives of 2-cycles and
3-cycles in Stage 2, and by �nding an optimal assignment on them.

Below there is an analog of Lemma 14 for a 3-cycle.



Lemma15. (3-cycle Lemma)
Let c1, c2 and c3 be cycles in a minimum assignment C with r1 2 c1, r2 2 c2 and
r3 2 c3. Then ov(r1; r2) + ov(r2; r3) + ov(r3; r1) � 2 � min(jr1j; jr2j; jr3j) + d(c1) +
d(c2) + d(c3).

Proof. Without loss of generality we can assume that jr1j = min(jr1j; jr2j; jr3j). Then
ov(r1; r2) � jr1j, ov(r3; r1) � jr1j. By Lemma 13, ov(r2; r3) � d(c2) + d(c3).

The Algorithm

1. Find an optimal assignment C of S, and make C canonical.
2. Take an arbitrary string from each cycle of C to form a set R, and �nd an

optimal assignment CC for R.
3. Select representative set RR containing one element for each 2-cycle in CC and

one element for each 3-cycle in CC. From each 2-cycle take the longer string and
from each 3-cycle take a string that is not in the pair with the longest overlap
(i.e. when s1, s2 and s3 are the strings of a 3-cycle, ov(s1; s2) � ov(s2; s3) and
ov(s1; s2) � ov(s3; s1), then select s3). Let RR = fg1; g2; : : : ; gmg. If gi is from
a 2-cycle then let fi be the second element of the cycle. If gi is from a 3-cycle
then let fi be the superstring of two other strings in the cycle, ordered as on the
cycle. Let RR0 = ff1; f2; : : : ; fmg.

4. Find an optimal assignment CCC on RR. Create two superstrings for RR[RR0

by splitting cycles in CCC and inserting strings from RR0 (see Fig. 1). Cycles
with even number of nodes are split exactly (i.e. every edge of a cycle is built
in a superstring), in cycles with odd number of nodes the edge with a smallest
overlap is left out. Let q0 and q1 be the result superstrings and let q be the
shorter of them.

overlap edge
the shortest 
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2

1

1

1

22

2

1 2

1 1

11

1

22

2

22

1

1

1

2

2

2

Fig. 1. Splitting CCC cycles together with 2,3-cycles from CC into two superstrings. Edges
labeled with 1(2) are in the superstring g1(g2).

5. Open each i-cycle, i � 4, in CC by deleting the edge with the smallest overlap;
concatenate the resulting strings together with q to obtain �. Note that � is a
superstring for R. Split each cycle in C in a node from R to obtain superstrings
that begin and end with the strings from R. Let �� be the extended string of



� obtained by replacing each string of R with the superstring representing its
cycle in C. Return ��.

Analysis

Observe �rst that the algorithm runs in polynomial time, because an optimal as-
signment can be constructed in time O(n3) (see e.g. [10]), and for given a minimum
assignment one can transform it into a canonical minimumone in O(njSj) time [15].

Let d2, d3, d4 be, respectively, the total weight of the cycles in C that have
representatives in 2-cycles, 3-cycles, and all i-cycles for i � 4, in assignment CC.
Thus d2 + d3 + d4 = d(C). Let ov2, ov3 and ov4 be, respectively, the total overlap
present in the 2-cycles, 3-cycles, and all i-cycles for i � 4, in assignment CC. Then,
we have: ov(q1) + ov(q2) � ov2 + ov3 + ov3=3 +

2
3ov(CCC), since in each 3-cycle

of CC we take twice the edge with the longest overlap and in CCC-cycles with
the odd number of edges only the edge with the smallest overlap is deleted. Since
ov(CCC) � ovopt(RR) = jRRj � opt(RR), we get

ov(q) �
1

2
ov2 +

2

3
ov3 + (jRRj � opt(RR))=3:

Let RRi, i = 2; 3, denote the set fr 2 RR : r is in a i cycle in CCg. Then ov(�) �
ov(q) + 3

4ov4 =
1
2ov2 +

2
3ov3 +

3
4ov4 + (jRR2j+ jRR3j � opt(RR))=3.

Lemma16.

jRR2j � ov2 � d2=2;

jRR3j � ov3=2� d3=2:

Proof. The �rst inequality follows from Lemma 14 and the second from Lemma 15.

Combining all observations above we get,

j�j = jRj � ov(�) = opt(R) + ovopt(R)� ov(�) � opt(R) + ov(CC)� ov(�)

� opt(R) + opt(RR)=3 +
1

2
ov2 +

1

3
ov3 +

1

4
ov4 � (jRR2j+ jRR3j)=3

� opt(R) + opt(RR)=3 +
1

6
ov2 +

1

6
ov3 +

1

4
ov4 +

1

6
(d2 + d3)

� opt(S) + opt(S)=3 +
1

3
d2 +

1

3
d3 +

1

2
d4 +

1

6
(d2 + d3)

=
4

3
opt(S) +

1

2
(d2 + d3 + d4) � opt(S)(

4

3
+

1

2
) = 1

5

6
opt(S)

Since j��j = j�j+ d(C), we obtain j��j � 256opt(S).

5 Parallel Approximations of Superstring Length

In this section we present an NC algorithm with a logarithmic approximation ratio
and an RNC algorithm with a constant approximation ratio.



5.1 The Weighted Set Cover Problem

Let X = f1; 2 : : : ; ng and let Y = fY1; Y2; : : : ; Ymg � 2X be a family of its subsets.
A cover of X is a subcollection Y 0 � Y such that

S
Yi2Y 0 Yi = X. For each set

Yi 2 Y let w(Yi) denote its (positive) weight and for a subcollection Y 0 � Y de�ne
its weight by w(Y 0) =

P
Yi2Y 0 w(Yi). The weighted set cover problem is to �nd a

cover Y � of X of the minimumweight.
The weighted set cover problem is known to be NP-hard [6]. A recent result

of Lund and Yannakakis [9] shows that this problem cannot be approximated in P
with ratio c log2 n for any c < 1=4 unless NP = DTIME(nO(1)). However there is
known a polynomial-time algorithm that �nds a logarithmic-factor approximation.
The following lemma has been shown by Berger et al. [3].

Lemma17. For any " > 0, there is an NC algorithm for the weighted set cover
problem that runs in O(log4 n logm log2(nm)="6) time, uses O(n +

Pm

i=1 j Yi j)
processors, and produces a cover of weight at most (1 + ") logn times the weight of
a minimum cover.

5.2 The NC Algorithm with Logarithmic Approximation Factor

For any si; sj and d; 0 � d < minfj si j; j sj jg, let u and v be strings of the length d
such that si = xu and sj = vy for some non-empty string x and y. If u = v then we
de�ne con(i; j; d) = xuy; otherwise con(i; j; d) is unde�ned. If con(i; j; d) is de�ned,
then let CON(i; j; d) = fsi; sjg[fsk : sk is a substring of con(i; j; d)g. In this way
we have obtained a family FAM-CON of subsets of S. For each CON(i; j; d) 2
FAM-CON de�ne its weight w(i; j; d) =j con(i; j; d) j=j si j + j sj j �d.

Let C = fCON(i1; j1; d1);CON(i2; j2; d2); : : : ;CON(ic; jc; dc)g be a cover of S
de�ned by a collection of sets from FAM-CON . We can obtain the corresponding
superstring SC = con(i1; j1; d1) � con(i2; j2; d2) � � � � � con(ic; jc; dc). Since C is a
cover of S, every string from S must be a substring of SC . Note also that w(C) =P

1�k�cCON(ik; jk; dk) =
P

1�k�c j con(ik; jk; dk) j=j SC j. The following fact can
be easily derived (see eg., [8]).

Fact 18. Let C� be a minimum weighted set cover of S. Then w(C�) =j SC� j�
2 � opt(S).

Now, suppose that we have found a set cover C such that w(C) � t � w(C�), for
some t. Then clearly j SC j� t� j SC� j. Thus, the superstring SC has length at most
2 � t � opt(S). Hence using Lemma 17 we obtain the following theorem.

Theorem19. There is an NC algorithm that for any " > 0, �nds a superstring
whose length is at most (2 + ") logn times the length of a shortest superstring.

A similar construction was used implicitly by Li [8] for a sequential algorithm.

5.3 The RNC Algorithm with Constant Approximation Factor

Blum et al. [2] presented the following sequential algorithm for the approximation of
the shortest superstring. Let GS be the overlap graph for the set of strings S. Find



a maximum weight cycle-cover C on GS , where C = fc1; : : : ; cpg is the collection
of cycles. For each cycle ci = i1 ! � � � ! ir ! i1, let ~si = si1 � � � � � sir where
i1 is arbitrary chosen. Then the �nal superstring is obtained by concatenating all
together the strings ~si. Blum et al. [2] proved that this algorithm always �nds a
superstring of length at most 4 � opt(S). It is well known that the problem of �nding
a maximum weight cycle-cover is equivalent to the problem of �nding a maximum
weight matching in bipartite graph. In general it is not known whether it can be
done either NC or in RNC . However, when the weights of the graph are given in
unary one can �nd a maximumweight matching in RNC [17]. Since in our case the
weights of GS are given in unary, the construction given by Blum et al. [2] can be
parallelized to get an RNC algorithm.

Theorem20. There exists an RNC algorithm that �nds a superstring of length at
most 4 � opt(S).
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