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Abstract

Given a collection of strings S = fs1; : : : ; sng over an alphabet �, a superstring � of S is a
string containing each si as a substring; that is, for each i, 1 � i � n, � contains a block of jsij
consecutive characters that match si exactly. The shortest superstring problem is the problem of
�nding a superstring � of minimum length.

The shortest superstring problem has applications in both data compression and computa-
tional biology. In data compression, the problem is a part of a general model of string compression
proposed by Gallant, Maier and Storer (JCSS '80). Much of the recent interest in the problem is
due to its application to DNA sequence assembly.

The problem has been shown to be NP-hard; in fact, it was shown by Blum et al.(JACM
'94) to be MAX SNP-hard. The �rst O(1)-approximation was also due to Blum et al., who gave
an algorithm that always returns a superstring no more than 3 times the length of an optimal
solution. Several researchers have published results that improve on the approximation ratio; of
these, the best previous result is our algorithmShortString, which achieves a 23

4
{approximation

(WADS '95).
We present our new algorithm, G-ShortString, which achieves a ratio of 22

3
. It generalizes

the ShortString algorithm, but the analysis di�ers substantially from that of ShortString.
Our previous work identi�ed classes of strings that have a nested periodic structure, and which
must be present in the worst case for our algorithms. We introduced machinery to descibe these
strings and proved strong structural properties about them. In this paper we extend this study
to strings that exhibit a more relaxed form of the same structure, and we use this understanding
to obtain our improved result.

1 Introduction

The shortest superstring problem has applications in both computational biology [7, 16,
18] and data compression [10, 20]. We begin by describing the former. DNA sequenc-
ing is the task of determining the sequence of nucleotides in a molecule of DNA. These
nucleotides are one of adenine, cytosine, guanine, and thymine, and are typically repre-
sented by the alphabet fa; c; g; tg. A molecule of human DNA is about 108 nucleotides
long. Current laboratory procedures can directly determine the nucleotides of a fragment
of DNA up to about 600 nucleotides long. In shotgun sequencing, several copies of a DNA
molecule are fragmented using various restriction enzymes.

Once the nucleotides of all of the fragments have been determined, the sequence as-
sembly problem is the computational task of reconstructing the original molecule from
the overlapping fragments. The shortest superstring problem is an abstraction of this
problem, in which the shortest reconstruction is assumed to be the most likely on the
grounds that it is the most parsimonious. We state the problem as follows.
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Given a collection of strings S = fs1; : : : ; sng over an alphabet �, a superstring � of
S is a string containing each si as a substring, that is, for each i, 1 � i � n, � contains
jsij consecutive characters that match si exactly. The shortest superstring problem is the
problem of �nding a superstring � of minimum length.

The shortest superstring problem is MAX SNP-hard [4]; several heuristics and approx-
imation algorithms have been proposed. One often used algorithm is a greedy algorithm
that repeatedly merges the pair of strings with the maximum amount of overlap. Turner
[23] and Tarhio and Ukkonnen [21] independently proved that the greedy algorithm con-
structs a superstring that achieves at least half as much overlap as an optimal superstring.
However, this does not guarantee a constant approximation with respect to the length of
the resulting superstring.

The �rst bound on the length approximation of the greedy algorithm was provided by
Blum et al.[4], who showed that the greedy algorithm returns a string that is no longer
than four times optimal; they also give a modi�ed greedy algorithm that returns a string
that is within three times optimal. Teng and Yao [22] gave a nongreedy algorithm that
�nds a string that is within 28

9
of optimal. Subsequently, three results appeared that

achieved better approximation ratios using very di�erent techniques. Czumaj et al.[6]
re�ned the algorithm of [22] to achieve a 25

6
approximation. Kosaraju et al. obtained an

improved result for the maximum traveling salesman problem; this more general result
can be used by the algorithm of [4] to obtain an approximation slightly better than 2:8
[15]. Our result of 23

4
[2, 1] was the best known until recently, and in fact can be combined

with the algorithm of [15] to obtain an approximation ratio of about 2:725.
In this report we describe our 22

3
-approximation algorithm for the shortest superstring

problem, which also appears in [3]. Algorithmically, the approach is a generalization of
the one taken in [2], but the analysis is very di�erent.

We now give a brief overview of our approach. All of the above mentioned algorithms
begin by �nding a minimum-weight cycle cover on a graph which has a node for every
string and an edge between string u and v of length juj � ov(u; v), where ov(u; v) is
the amount of overlap that can be obtained by merging u and v. This cycle cover
partitions the strings into cycles; the remaining work is in patching the cycles together
to form one cycle covering the whole graph. The key to our new algorithm is to exploit
the periodic structure of the cycles of strings that arise in this problem. In particular,
the 3-approximation of [4] uses a theorem about in�nite periodic functions [8], and the
correspondence between periodic functions and strings in cycles. However, the particular
instances of cycle patching that appear to be di�cult actually involve short periodic
strings, that is, strings that are periodic, but whose period may repeat only slightly more
than once. We prove several new properties about such strings, allowing us to answer
questions of the following form: given a string with some periodic structure, characterize
all the possible periodic strings that can have a large amount of overlap with the �rst
string. Given this understanding, we will be able to predict the ways in which overlap
between certain strings can occur, and thus plan for it algorithmically.

2 Preliminaries

For consistency, we use some notation and de�nitions of [4] and [22]. We assume, without
loss of generality, that the set S of strings is substring free, i.e. no sj is a substring of si,
i 6= j. We use jsij to denote the length of string si, jSj to denote the sum of the lengths
of all the strings, and opt(S) to denote the length of the shortest superstring of S.
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Figure 1: Execution of Generic SuperString Algorithm. Nodes are labeled with strings, edges
with pre�xes. (a) The graph after Step (4). Solid edges are in C, dashed edges in CC. The edge
with an X is the one discarded in Step (4). (b) The �nal string consisting of �� (the merge of abaab
and abcabca) along with the labels from the edges of the cycles.

Given two strings s and t, we de�ne ov(s; t), the overlap between s and t, to be the
length of the longest string x,such that there exist non-empty u and v with s = ux and
t = xv. We call u the pre�x of s with respect to t, pref(s; t), and refer to juj as the
distance from s to t, d(s; t). Observe that for any s and t, ov(s; t) + d(s; t) = jsj. String
uxv, the shortest superstring of s and t in which s appears before t is denoted by hs; ti,
and jhs; tij = jsj+ jtj � ov(s; t).

We can map the superstring problem to a graph problem by de�ning the distance
graph. We create a graph G = (V;E) with a vertex vi 2 V for each string si 2 S. For
every ordered pair of vertices vi; vj, we place a directed edge of length d(si; sj) and label
the edge with pref(si; sj). We can now observe that a minimum length hamiltonian cycle
(traveling salesman tour) v�1 ; : : : ; v�n ; v�1 , in G, with edge i; j labeled by pref(s�i ; s�j),
almost corresponds to a superstring in S, the only di�erence being that we must replace
pref(s�n ; s�1) with s�n . Since pref(si; sj) � jsj, we can conclude that opt(TSP ) � opt(S),
where opt(TSP ) is the optimal solution to TSP de�ned above. This TSP is directed
(sometimes called asymmetric); thus the best known approximation [9] is only within a
factor of O(logn). Therefore, we must exploit more of the structure of the problem in
order to achieve better bounds.

Given a directed graph G, with weights on the edges, a cycle cover C is a set of cycles
such that each vertex is in exactly one cycle. A minimum-cost cycle cover is a cycle
cover such that the sum of the weights of the edges in all the cycles is minimized. A
minimum-cost cycle cover can be computed in O(n3) time by a well-known reduction to
the assignment problem [17]. Since a tour is a cycle cover, opt(C) � opt(TSP ). When
we say that a string si is in some cycle c of cycle cover C, we mean that the vertex vi with
which si is associated is in cycle c. Throughout the paper, when we refer to a cycle, we
will be referring to a cycle that is in a minimum-cost cycle cover in the distance graph.

Because ov(si; sj) + d(si; sj) = jsij, one could also weight the edges by their overlap,
�nd a maximum-cost cycle cover and obtain the same solution. A superstring which has
minimum length, or distance, also has maximum overlap. However, this correspondence
breaks down for approximations; approximating the largest overlap appears to be an
easier problem (cf. [23, 22, 15]) than approximating the shortest superstring.

We now describe a generic superstring algorithm used, in some form, by [4],[22] and
[6]. An execution of the algorithm appears as Fig. 1.

Generic SuperString Algorithm
1) Find a minimum cost cycle cover C in the distance graph G.
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2) For each cycle c 2 C, choose one string to be a representative rc.
Let G0 be the subgraph induced by the representative set R.

3) Compute a cycle cover CC on G0.
4) Break each cycle 
 2 CC by deleting one edge.
5) Concatenate the remaining strings arbitrarily.
6) Extend each representative rc by the concatenation of the pre�xes around c.

The �rst cycle cover identi�es sets of strings that have large amounts of overlap. This
allows us to form the second cycle cover, in which approximating overlap and the string
length are roughly comparable, so stronger bounds apply. Step (6) correctly extends the
superstring for R into a superstring for S, as proved in [22].

We now analyze the generic algorithm in a way that anticipates our improvements. A
more detailed analysis appears in [4]. Let d(C 0) be the sum of the distances and ov(C 0)
be the sum of the overlaps of the edges in a cycle cover C 0. Consider the second cycle
cover CC. Let opt(R) be the optimal superstring on the strings in rc 2 R and observe
that opt(R) � opt(S). Let �� be the string produced in Step 5, a superstring of R, and
let opt(ov(R)) = jRj � opt(R) be the amount of overlap in the optimal superstring for
R. Since the shortest superstring for R is a cycle cover for G0, ov(CC) � opt(ov(R)).
However, the superstring �� does not have as much overlap as CC, since we delete one
edge from each cycle.

For a cycle 
, let ovn
 denote the overlap in the edge deleted in Step 4, and let ovt

denote the remaining overlap in 
. Let ovt =

P

2CC ovt
 and ovn =

P

2CC ovn
 . Thus,

j��j � jRj�ovt. By de�nition, jRj � opt(R)+opt(ov(R)) � opt(R)+ov(CC). Combining
these two inequalities with ov(CC) = ovn + ovt, gives that �� � opt(R) + ovn. We then
must extend each cycle, in Step 6. Let Ext(
) be the cost of extending all cycles c 2 C

s.t. rc 2 
. Then we can express the length of �, the string obtained, as

j�j � opt(R) +
X


2CC

�
ovn
 + Ext(
)

�
: (1)

Let d(c) be the sum of the weights of the edges of a cycle c 2 C; so d(C) =
P

c2C d(c).
To obtain a 3-approximation, observe that the set of edges which contribute to ovn form
a matching M on G0. Now we employ a key lemma from [4]:

Lemma 2.1 ([4]) Let c; c0 be cycles in a minimum cycle cover C with strings s 2 c and
s0 2 c0. Then the overlap between s; s0 is less than d(c) + d(c0).

Since M is a matching, each cycle c is at an endpoint of a string at most once, and
hence ovn � d(C). Now, we extend �� by the edge labels on each cycle, adding a total of
d(C) to the length of the string. Let � be the resulting string. We conclude that

j�j � opt(R) +
X


2CC

ovn
 + Ext(
) � opt(R) + d(C) + d(C) � 3opt(S) ; (2)

since both d(C) and opt(R) are lower bounds on opt(S).
The analysis above makes it clear that the cycle cover CC actually partitions the

cycles in the cycle cover C, and hence each cycle in CC can be analyzed separately.
As was observed by [22] in their 28

9
algorithm, if 
 has three or more vertices, then

ovn
 �
2

3

P
c2
 d(c).

Thus we can restrict our attention to 2-cycles in CC. We will analyze each 2-cycle in
CC separately, and obtain a 22

3
bound by proving structural properties of these cycles.

4



Given a representative v = rc for some cycle c, we use cv to denote the cycle c of which
v is a representative. We summarize this discussion with the following lemma:

Lemma 2.2 An algorithm following the framework of the generic algorithm above, that,
for each 2-cycle 
 in CC consisting of vertices v and t, attains a bound of ovn
 +Ext(
) �

�(d(cv) + d(ct)), for some � � 5

3
, is a (1 + �)-approximation algorithm for the shortest

superstring problem.

We de�ne a few terms describing the structure of cycles. The reader is referred to [4]
for a more complete discussion. We call a string s irreducible if all cyclic shifts of s yield
unique strings, and reducible otherwise. We say that s has periodicity x if there exists a
string t with jtj = x such that s is substring of t1. Let per(c) be the string formed by
concatenating all the labels on the edges of a cycle c. Then for each string s 2 c, s is a
substring of per(c)1. Note that per(c) must be irreducible; otherwise a cycle with less
total distance could generate the same strings, contradicting the minimality of the cycle
cover. The irreducibility of the periods of cycles in a minimum cycle cover will �gure
prominently in many of our proofs.

We can now state a corollary to Lemma 2.1 that we will also use frequently in our
proofs.

Corollary 2.3 ([4]) Let w be a substring of both (�j)
1 and (�k)

1. Then if jwj �
j�jj+ j�kj, either �j or �k is reducible.

3 Repeaters and their Characteristics

In the previous section, we saw that in order to obtain a better approximation for the
shortest superstring problem it is su�cient to consider 2-cycles in the second cycle cover of
the generic superstring algorithm. In this section we describe the machinery for describing
2-cycles developed in [2].

Suppose we choose v and t as representatives of two cycles of the �rst cycle cover C,
and they form a 2-cycle in CC in which one of ov(v; t) or ov(t; v) is large but the other
is small. In Step 4 we will break the 2-cycle to form a string, and since we are trying
to maximize overlap, the obvious choice is to keep the high-overlap edge and discard the
other. But if both edges have high overlap, we must discard one of them. In a 2-cycle this
will cost us up to half of the overlap, which is the \worst case" of the generic algorithm.
We observe that both edges in such a 2-cycle cannot participate in an optimal solution;
in this sense the second cycle cover has achieved \false overlap". We formalize the idea
of a \high-overlap 2-cycle" as follows:

De�nition 3.1 Let 
 be a 2-cycle in the second cycle cover CC of the Generic al-
gorithm, consisting of vertices rj and rk, the representatives of cycles cj and ck in C.
Without loss of generality assume that d(cj) � d(ck). Then 
 is a (g; h)-HO2-cycle if
minfov(rj; rk); ov(rk; rj)g � gd(cj) + hd(ck).

Our strategy is to anticipate, when we choose representatives, the potential of each
string to participate in a (2

3
; 2
3
)-HO2-cycle. In particular we evaluate the potential of

each string to play the role of the larger-period string in the 2-cycle. Such a string must
have a very speci�c structure; if we �nd a string without such a structure, we use it
as representative. Otherwise we know a great deal about the structure of the entire
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z = abababrstababab z = ababadababadabababadababadabab
) ( ( ) ( ) (

y = y` = ababab y = y` = ababadababadababa
yr = ababab yr = ababadababadabab
� = ab � = ababad

(a) (b)

Figure 2: Positive and Negative Characteristics. Per(c) is underlined. (a) shows a negative charac-
teristic. (b) shows a positive characteristicy and � are also shown.

cycle and can trade o� the amount of two-way overlap against the cost of extending the
representative to include the rest of the cycle.

In order to have the potential to be the larger-period string in a high-overlap 2-cycle,
a string z must have a signi�cant pre�x that has some smaller period. This smaller
period might correspond to the period of another cycle in the cover, and hence some
other representative w such that ov(w; z) would be large. The su�x of z must simlarly
have the same smaller period, so that ov(z; w) would be large. We require some notation
to describe this potential.

De�nition 3.2 Let z be a string in cycle c and let � be an irreducible string with
j�j < d(c). Then � is a (g; h)-repeater of z if there exist witnesses y` and yr, such that

1. y` is a pre�x of z and yr is a su�x of z.

2. y` and yr are substrings of (�)1.

3. jy`j; jyrj > gd(c) + hj�j.

We will always choose y` and yr to be the maximum length pre�x and su�x that satisfy
conditions 1{3 above.

Consider the string z in Fig. 2b and let g = h = 2

3
. Here per(c) = ababadababadab, � =

ababad, y` = ababadababadababa and yr = ababadababadabab. So jy`j; jyrj >
2

3
d(c)+ 2

3
j�j,

and we say that � is a (2
3
; 2
3
)-repeater of z.

Note that in our example y` and yr are almost the same; this is not a complete
coincidence. All the repeaters we will be considering in this paper will have g � 1

2
and

hence y` and yr must overlap, often signi�cantly (as in this example). For convenience we
will de�ne one witness y� which contains both y` and yr; that is, we de�ne y� to be the
maximum-length substring of (�)1 that is also a substring of per(c)1. In other words,
if you took � and tried to repeat it as many times as possible, in both directions, while
being consistent with c, you get y� . In the example above y� = y`. When the context is
clear, we will drop the � and just refer to witness y.

Henceforth when discussing and proving properties of cycles, we will refer to the
maximal witness y� rather than to the underlying pair of witnesses y` and yr. This
simpli�cation is conservative.

The idea behind (g; h)-repeaters is to identify periodic substrings of the period of
a cycle in C. We will also be interested in identifying that portion of a cycle that is
not consistent with some (g; h)-repeater �. Note that a copy of y� begins every d(c) in
per(c)1, and that jyj < 2d(c), since by Corollary 2.3, jyj < d(c) + j�j � 2d(c).
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De�nition 3.3 Let c be a cycle with (g; h)-repeater � and maximal witness y. Fix a
copy of y in per(c)1. The point just to the left of the �rst character of y is the head of
y. Index this point as 0 and continue the indices between each character leftward and
rightward to cover the interval [�d(c)::d(c)]. Now mark the point jyj � d(c) and call it
the tail of �. The characteristic of �, X�, is the interval from the head to the tail. If
jyj � d(c) > 0 we call [0::jyj � d(c)] a positive characteristic X�. If jyj � d(c) � 0 we call
[jyj � d(c)::0] a negative characteristic X� .

We can picture the characteristics of the repeaters of a cycle c in terms of parentheses.
Fig. 2b illustrates this idea for positive characteristics. The left and right ends of y� are
marked with left and right parentheses; these correspond to the head and tail of adjacent
copies of X� .

A negative characteristic appears in Fig. 2a and can be pictured as a single solid
entity (perhaps of size zero) which spans the gap between copies of y. In this example rst
is the negative characteristic. Each characteristic appears once every d(c). Intuitively,
the characteristic of a repeater borders the portion of per(c) which must be included as
a pre�x and su�x of some string z if z is to participate in a high-overlap 2-cycle. Recall
that we de�ned (g; h)-repeaters (Def. 3.2) in terms of some string z in a cycle c which
contained witnesses y` and yr as a pre�x and su�x. In general there might be several
such strings in c which could satisfy the de�nition. We say that � is active in each of
these strings. We say that two characteristics X�i , X�j are nested if X�i is a positive
characteristic and X�j falls within X�i . We say that two characteristics X�i , X�j are
disjoint if their intervals are disjoint. Otherwise we say that X� and X�0 are linked.

We will frequently be interested in the relationship between two substrings of per(c)1,
for instance between two witness strings y and y0. As noted above, a copy of any substring
of per(c)1 occurs every d(c) in per(c)1. We overload our notation for d(; ) and ov(; ) in
the obvious way to refer to pre�x distance d(y; y0) and overlap ov(y; y0). We also de�ne
the su�x distance ~d(y; y0) to be the distance from the last character of a copy of y to the
last character of the �rst copy of y0 that ends after y.

We will require the following bound on the length of a witness string:

Lemma 3.4 ([2]) Let y� be a maximal witness for some (g; h)-repeater � in a cycle c.
Then jy�j < d(c) + j�j < 2d(c).

4 The Algorithm

We present our algorithm G-ShortString, which is a 22
3
-approximation algorithm for

the shortest superstring problem. We describe the algorithm in Section 4.1. In order
to prove our bound on its approximation ratio in Section 4.3, we present some technical
lemmas on the structure of cycles with (2

3
; 2
3
)-repeaters in Section 4.2.

4.1 Algorithm G-ShortString

In order to achieve a bound of 22
3
within the framework of Generic, Lemma 2.2 states

that we need to concentrate on (2
3
; 2
3
)-HO2-cycles. As in [2], our strategy is to anticipate,

when we select a representative rj , the possible involvement of rj as the larger-period
string in a (g; h)-HO2-cycle. In [2] we used criteria for doing so which were based on
our detailed knowledge of the structure of (3

4
; 3
4
)-repeaters. G-ShortString does not

depend on such knowledge.
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Figure 3: De�nitions 4.2 and 4.3.

Our new procedure for selecting representatives is to evaluate a cost function for each
string in a cycle, and to select the string with the best worst-case cost. We identify a cost
function which resembles the desired bounds, and we explicitly attempt to minimize this
function in the algorithm. We achieve our improved bound by more careful extension
of each representative rj of a cycle cj that is also the larger-period string in a (2

3
; 2
3
)-

HO2-cycle. We therefore need some new ideas about extension and some notation for
expressing it.

De�nition 4.1 Let � be a (g; h)-repeater with maximal witness y� in an m-cycle c.
Index the strings si such that d(y� ; si) < d(y�; si+1), 1 � i < m. Then we de�ne the right
string of � in c, RString(c; �) = sm. The left string of � in c, LString(c; �) is de�ned
symmetrically; reindex the strings si such that ~d(si; y�) > ~d(si+1; y�), 1 � i < m. Then
we de�ne LString(c; �) = s1.

In other words, if we align a copy of each of the strings in c in such a way that
the �rst one begins as soon after a copy of y� as possible, then the rightmost string is
RString(c; �). The idea is that if we choose as representative a string t in which � is
active, and t becomes the larger-period string in a (g; h)-HO2-cycle, then RString(c; �)
is the rightmost string which we will have to include if we extend to the right. Figure 3
illustrates De�nitions 4.1 and 4.2.

De�nition 4.2 Let � be a (g; h)-repeater which is active in a string t in cycle c. Then the
right �-extension with respect to t, Er(t; �) = ~d(y� ;RString(c; �)). The left �-extension
with respect to t, E`(t; �) = d(LString(c; �); y�).

Given a (2
3
; 2
3
)-repeater � which is active in a string t in cycle ct, we wish to calculate

the cost of choosing t and having t involved in a (2
3
; 2
3
)-HO2-cycle 
 with some string

v such that per(cv) = �. In particular, by Lemma 2.2 we are interested in anticipating
ovn
 +Ext(ct) +Ext(cv). Consider without loss of generality the right end of t, and let yr
be the su�x of t which is the witness string for �. Then we know that ovn
 � jyrj � jy�j.
If there is slack in either of these inequalities, then we use the slack as part of our upper
bound on extension cost. We have to extend to the right well beyond the end of y� in any
case, so it does not matter whether we charge jy�j � jy`j to ovn
 or to Ext(ct). From the
end of y� , we need to extend to the right only as far as necessary to include RString(c; �).
We also have to extend v to include the remaining strings in cv ; we assume the cost of
full extension. This motivates the following de�nition.

De�nition 4.3 Let � be a (g; h)-repeater that is active in string t in cycle c. Then the
anticipated cost of choosing t as representative and forming a 2-cycle with a string with
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period � is
Cost(t; �) = jy�j+minfE`(t; �);Er(t; �)g+ j�j:

What we seek, then, is to minimize, in our choice of representative t, the maximum
over all (2

3
; 2
3
)-repeaters active in t, the anticipated cost Cost(t; �). Allowing � 2 t to

mean \� active in t", we seek .

BestRep(c) = argmint2c

�
max
�2t

fCost(t; �)g

�

Procedure G-FindReps(c), shown below, calculates the anticipated cost for each pair
(t; �) such that t is a string in c and � is active in t.

Procedure G-FindReps(cj)

1) Find all (2
3
; 2
3
)-repeaters and associated characteristics in cj .

2) If any string t has no (2
3
; 2
3
)-repeaters

Then rj = t;
3) Else

rj = BestRep(cj);
4) Return rj .

The main body of G-ShortString is exactly ShortString, except that representa-
tives are selected in Step 2) by a call to procedure G-FindReps(c), and the parameters
of the (g; h)-HO2-cycle in Step 4) are di�erent.

Algorithm G-ShortString
(1) Form minimum cycle cover C on distance graph G.
(2) For each cycle c 2 C

Call G-FindReps(c) to choose representative rc.
Add rc to R.

Let G0 be the subgraph induced by R.
(3) Form minimum cycle cover CC on G0.
(4) For each cycle 
 in CC:

if 
 is a (2
3
; 2
3
)-HO2-cycle (v; t)

(a) then if ov(t; v) + Er(t; per(cv)) � ov(v; t) + E`(t; per(cv))
then Extend hv; ti;
else Extend ht; vi;

(b) else discard edge of cycle 
 with least overlap; Extend each vertex w by d(cw)
(5) Concatenate strings from (4) to form superstring �

In Step (4a) above, the instruction \Extend hv; ti" is shorthand for the following idea.
We extend v to the left to include all of the strings in cv; we assume in the analysis in
Section 4.3 that this length is d(cv). We extend t to the right, as far as is necessary to
include RString(c; per(cv)). Extending ht; vi is done symmetrically.

The algorithm G-ShortString correctly computes a superstring of the set of strings
S. This follows from the correctness ofGeneric. Our method of choosing representatives
for each cycle is a special case of the method of Generic, which chooses an arbitrary
string as representative. In step (4b), we do exactly what Generic does. In step (4a),
we use a di�erent criterion for breaking a cycle 
 2 CC, and we only extend each

9



representative far enough to \cover" all of the strings in its cycle. Each string is therefore
included in the solution �.

G-ShortString runs in polynomial time. The distance graph G can be built in
O(jSj+ n2) time [11], and the cycle cover computations take O(n3) time [17]. These two
results determine the running time of Generic. In addition, our algorithm must �nd all
of the (2

3
; 2
3
)-repeaters in each cycle c 2 C in G-FindReps(c). This can be done naively in

polynomial time by examining a pre�x and su�x of each string, and determining whether
the pre�x and su�x have periodicity 2 � j < d(c).

In order to analyze the approximation ratio achieved by G-ShortString, we require
a few technical lemmas pertaining to (2

3
; 2
3
)-repeaters.

4.2 Properties of Strings with (2
3
;

2

3
)-Repeaters

A small (g; h)-repeater in a cycle c is one whose minimum witness length is less than d(c).
A (2

3
; 2
3
)-repeater � is small if j�j < 1

2
d(c). Generally we are interested in avoiding small

(g; h)-repeaters. To see why this is so, suppose that we choose a representative rj for
cycle cj , and rj is involved in a (2

3
; 2
3
)-HO2-cycle with another representative rk of cycle

ck, and per(ck) = �. Then we will want to bound the extension cost we incur, Ext(cj),
in terms of d(cj) + d(ck) = d(cj) + j�j. So if � is larger, then our extension cost, as a
fraction of d(cj) + d(ck), is smaller.

There may be several small (2
3
; 2
3
)-repeaters in a cycle, but we are able to bound the

number of small (2
3
; 2
3
)-repeaters in a string.

Lemma 4.4 Let s be a string in a cycle c. Then at most one small (2
3
; 2
3
)-repeater can

be active in s.
Proof: Suppose for purpose of contradiction that there exist two such (2

3
; 2
3
)-repeaters

� and �0. Let y`(�) and y`(�
0) be the pre�xes of s which are the left witness strings of �

and �0 respectively. Let y` = argminfjy`(�)j; jy`(�0)jg be the pre�x of s which is periodic
in both � and �0. Applying Corollary 2.3, De�nition 3.2, and the fact that j�0j < 1

2
d(c),

we get

j�j > jy`j � j�0j

>
2

3
d(c)�

1

3
j�0j

>
1

2
d(c);

a contradiction since � is a small (2
3
; 2
3
)-repeater.

The following lemma gives us a lower bound on the size of a (2
3
; 2
3
)-repeater whose

characteristic has the characteristic of another (2
3
; 2
3
)-repeater nested within it.

Lemma 4.5 Let X� be a positive characteristic in cycle c and X�0 a characteristic nested
within X� with j�j > j�0j. Then j�j > 1

2
d(c).

Proof: In this case the witness y0 is completely contained within the witness y. We
apply Corollary 2.3 and the de�nition of (2

3
; 2
3
)-repeater to get

j�j+ j�0j > ov(y; y0)

> jy0j

>
2

3
(d(c) + j�0j)

) j�j >
2

3
d(c)�

1

3
j�0j;

10
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Figure 4: The characteristics X� and X�0 are linked, as in Lemma 4.7.

which implies j�j > 1

2
d(c) because j�j > j�0j.

Because (2
3
; 2
3
)-repeaters may not be well parenthesized, we will often be faced in our

analysis with situations in which two positive characteristics are linked, as pictured in
Figure 4. (Recall that two positive characteristics are linked if they overlap, but neither
contains the other.) The following lemma and its corollary gives us strong bounds on the
size of the two (2

3
; 2
3
)-repeaters and on their di�erence. In order to prove the lemma, we

require a proof technique introduced in [2], the shift argument. We describe this technique
below.

We apply the shift argument to cycles that include two or more repeaters. We are
generally interested in proving that some property holds; we assume that it does not, and
use the shift argument to derive a contradiction. We begin with the following observation,
which can easily be veri�ed by the de�nition of maximal witness.

Observation 4.6 Let y be the maximal witness for a (g; h)-repeater � in a cycle c, and
�x a copy y� of y in per(c)1. Index the character positions of per(c)1 with the character
to the left of y� as 0, the �rst character of y� as 1, and continuing to the right beyond
the end of y�. Let Char(i) be the character in position i. Then

a)Char(0) 6= Char(j�j)

and
b)Char(jy�j � j�j+ 1) 6= Char(jy�j+ 1):

In each shift argument our goal will be to show that either inequality a) or b) in
Observation 4.6 is violated and the terms are indeed equal. We will do so by making
a series of shifts between characters, which we know to be identical, by the periodic
structure of the strings. In particular, within any y� , any two characters that are � apart
are identical, and in per(c)1, any two characters that are d(c) apart are identical. We call
such shifts valid. We will begin at either the character immediately preceding or following
a copy of y or y0, and perform a series of shifts which will bring us to the position whose
character is supposed to be unequal. If these shifts are valid, then the two characters
must be equal, contradicting our initial assumption that the characteristics X� and X�0

could overlap.
We introduce notation to describe the sequence of shifts. We give a starting position

and a position at which we wish to arrive, relative to the starting position. We also give
the series of moves and a set of requirements, that is, conditions on the various parameters
that must be met in order for the moves to all be valid. Below the box, we show that the
conditions for validity are indeed satis�ed, which gives us a contradiction for the region
in which the shifts are valid.

11
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Figure 5: Proof of Lemma 4.9.

Lemma 4.7 Let � and �0 be two (2
3
; 2
3
)-repeaters with positive characteristics in a cycle

c, with j�j > j�0j, and X� and X�0 linked. Let k =
j
j�j
j�0j

k
. Then j�j � kj�0j > jy�j � d(c).

Proof: We apply the following shift argument, using start position (A) in Figure 4:

Start: (A) Goal: �j�j

No. Move Requirement Comments

1. +kj�0j kj�0j < d(c) kj�0j < j�j < d(c)

2. �j�j j�j � kj�0j � jy�j � d(c) See below.

3 �kj�0j j�j < d(c) Def. Repeater.

Because only move #2 is the only one whose validity is conditional, we conclude the
negation of that condition, i.e. j�j � kj�0j > jy� j � d(c).

Corollary 4.8 Let � and �0 be two (2
3
; 2
3
)-repeaters with positive characteristics in a

cycle c, with j�j > j�0j, and X� and X�0 linked. Let k =
j
j�j
j�0j

k
. Then j�0j > jy�j � d(c).

Proof: By the choice of k and Lemma 4.7,

j�0j > j�j � kj�0j > jy�j � d(c):

In our analysis, we will be interested in lower bounds on the size of potentially small
(2
3
; 2
3
)-repeaters in terms of some measure of distance which will correspond to extension

cost. The following two lemmas provides such bounds for two important cases in which
three characteristics are involved. Our choice of dimensions for identifying the relative
positions of the three characteristics will seem unnatural now, but will simplify our task
in Section 4.3.

Lemma 4.9 Let �,�0 and �00 be (2
3
; 2
3
)-repeaters in cycle c, with X�0 and X�00 disjoint,

and with X�0 nested to the left of X�00 within X�, Then j�0j > d(y0; y) + jyj � 2d(c) and
j�00j > ~d(y; y00) + jyj � 2d(c).

Proof: Figure 5 illustrates the start positions of our shift arguments.

Start: (A) Goal: +j�j

No. Move Requirement Comments

1. +j�00j j�00j � ~d(y; y00) + jyj � 2d(c) See below.

2. +j�j j�j+ j�00j < jyj � d(c) + ~d(y; y00) See below.

3 �j�00j j�j+ j�00j > jyj � d(c) + j�00j See below.
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Figure 6: Lemma 4.10: X�0 is linked with X�. X�00 may be nested within X�0 (b), or only nested
within X�(a). If X�00 is linked with X�, it may or may not also be linked with X�0 ((d) and (c)
respectively).

Start: (B) Goal: �j�j

No. Move Requirement Comments

1. �j�0j j�0j � d(y0; y) + jyj � 2d(c) See below.

2. �j�j j�j+ j�0j < jyj � d(c) + d(y0; y) See below.

3 +j�0j j�j+ j�0j > jyj � d(c) + j�0j See below.

Requirement #3 for both of the above is always true because j�j > jyj � d(c) by
Lemma 3.4. Because j�j < d(c), #1 implies #2; therefore #1 must be false:

j�00j > ~d(y; y00) + jyj � 2d(c)

j�0j > d(y0; y) + jyj � 2d(c):

Lemma 4.10 Let �, �0 and �00 be (2
3
; 2
3
)-repeaters in cycle c, with maximal witnesses y,

y0 and y00. Let j�j > j�0j > j�00j, and X� and X�0 positive. If X�0 is linked with X�, then
minfd(y0; y);~d(y; y00)g < 5

3
d(c) + 2

3
j�j � jy� j.

Proof: By the condition of the lemma we know that X� and X�0 are linked, but we do
not know the relationship between between X�00 and the other two characteristics. The
characteristic X�00 may be nested within one or both of X� and X�0 as in Figure 6(a) or
(b), or it may be linked with one or both of X� and X�0 as in Figure 6 (c) or (d). In any
of these cases we can apply Corollary 2.3 to the overlap between y0 and y00:

j�0j+ j�00j > d(y0; y) + ~d(y; y00) + jyj � 2d(c);
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which implies

j�0j >
1

2
(d(y0; y) + ~d(y; y00)) +

1

2
jyj � d(c): (3)

We now use Lemma 4.7 and Equation 3 to obtain

j�j > j�0j+ jyj � d(c)

>
1

2
(d(y0; y) + ~d(y; y00)) +

1

2
jyj � d(c) + jyj � d(c)

=
1

2
(d(y0; y) + ~d(y; y00)) +

3

2
jyj � 2d(c):

Solving for 1

2
(d(y0; y) + ~d(y; y00)) and using De�nition 3.2 gives us our result:

1

2
(d(y0; y) + ~d(y; y00)) < j�j �

3

2
jyj+ 2d(c)

< j�j � jyj+ 2d(c)�
1

2
(
2

3
d(c) +

2

3
j�j)

=
5

3
d(c) +

2

3
j�j � jyj:

4.3 Analysis of the Algorithm

We now analyze our algorithm G-ShortString. The structure of our approach is similar
to that of [2], though the analysis we use in each case is completely di�erent than that
used for ShortString. We relate the performance of our algorithm to that of Generic;
the case of interest is when a cycle in CC is a (2

3
; 2
3
)-HO2-cycle.

Lemma 4.11 For each cycle 
 2 CC which is not a (2
3
; 2
3
)-HO2-cycle, Algorithm G-

ShortString produces a superstring no longer than Generic would produce on the
same cycle 
.

Proof: We observe that step 4b) of G-Shortstring handles any cycle 
 2 CC which
is not a (2

3
; 2
3
)-HO2-cycle. It selects an edge e and extends the cycle 
 in exactly the same

way as Generic. It then fully extends each representative r` 2 
 to cover the remaining
strings in each cycle c`. The only di�erence between the two algorithms in their handling
of these cycles is that we perform full extension before concatenating with the strings
from other cycles in CC. This does not a�ect the length of the resulting string.

We now must show, according to Lemma 2.2, that for each (2
3
; 2
3
)-HO2-cycle, we attain

the bound speci�ed by Lemma 2.2.

Lemma 4.12 Let 
 be a (2
3
; 2
3
)-HO2-cycle in CC with rj the representative of cycle cj

and rk the representative of ck. Then ovn
 + Ext(
) � 5

3
(d(cj) + d(ck)).

Proof: Assume without loss of generality d(cj) � d(ck). Because rj has high overlap at
both ends with rk, there must be at least one (

2

3
; 2
3
)-repeater �0 in ct, with �0 = per(cj).

All strings in cj must have at least one (2
3
; 2
3
)-repeater, otherwise we would not have

chosen rj as representative.
We consider two cases:

1. All strings in cj have a small (2
3
; 2
3
)-repeater.

2. At least one string in cj has no small (2
3
; 2
3
)-repeaters.
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Figure 7: Case 1 of Lemma 4.12.

In each case, we must show that some string in cj must have been able to achieve the
bound. Because the representative is selected by comparing the worst case costs of each
string, the existence of such a string is su�cient.
Case 1: All strings in cj have a small (2

3
; 2
3
)-repeater.

The proof of Lemma 4.4 suggests our strategy: if two strings with di�erent (2
3
; 2
3
)-

repeaters begin near each other, then the sum of their periods must be close to d(c).
If they do not begin near each other, then we can save on extension by the amount of
this gap.

Because we're in Case 1, each string has at least one small (2
3
; 2
3
)-repeater. No string

has more than one small (2
3
; 2
3
)-repeater by Lemma 4.4, and so each string has exactly

one small (2
3
; 2
3
)-repeater. More than one string may have the same small (2

3
; 2
3
)-repeater

active.

Claim 4.13 Let � and �0 be small (2
3
; 2
3
)-repeaters in cycle c. Let Q be the set of strings

in which � is active, and let Q0 be the set of strings in which �0 is active. Then there is a
rotation of the cyclic ordering of the strings in c such that all of the strings in Q appear
before all of the strings in Q0.
Proof: For purpose of contradiction let t and v be two strings in Q and let t0 and v0

be two strings in Q0 such that they appear in the cyclic order t; t0; v; v0. Without loss of
generality let d(t; v) � 1

2
d(c); otherwise d(v; t) � 1

2
d(c) and the same argument follows.

Consider the pre�xes of t and v which are the left witness for �; both pre�xes must be
substrings of the same copy of y� . Since t

0 is between t and v, then it also must have a
pre�x y0` which has period �. The same argument holds for the su�xes of t, v and t0, so
� must be active in t0. But then t0 has both � and �0 active, contradicting Lemma 4.4.

We resume our analysis of Case 1. Let �1 be the largest of the small (2
3
; 2
3
)-repeaters

in c, and let Q1 be the set of strings in which �1 is active. Number the remaining small
(2
3
; 2
3
)-repeaters s2; : : : ; sm, and let Qi, 1 � i � m, be the set of strings in which �i is

active. The Qi partition the strings of the cycle, and by Claim 4.13 the Qi form a cyclic
ordering. Let ui, 1 � i � m be the leftmost string in each group Qi, and let wi, 1 � i � m

be the rightmost string in each group Qi. Let `i = d(vi; vi+1), 1 � i < j. (See Figure 7.)
First we apply Corollary 2.3 to derive a lower bound on the distance `1 between u1

and u2.

j�1j+ j�2j > ov(jy�1 j; jy�2j)

� jy�1 j � `1

) 2j�1j > jy�1 j � `1
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) `1 > jy�1 j � 2j�1j: (4)

Now we bound the anticipated extension cost Cost(u1; �1),

Cost(u1; �1) = jy�1 j+minfE`(u1; �1);Er(u1; �1)g+ j�1j

� jy�1 j+ E`(u1; �1) + j�1j:

If we extend u1 to the left, the last string we will have to cover will be u2, so E`(u1; �1) =
d(c)� `1, and then we use Equation 4:

= jy�1 j+ d(c)� `1 + j�1j

� d(c) + 3j�1j

�
5

3
(d(c) + j�1j):

The last inequality follows from the fact that �1 is a small (2
3
; 2
3
)-repeater, so j�1j <

1

2
d(c) < 1

3
(d(c) + j�1j).

Case 2: At least one string in cj has no small (2
3
; 2
3
)-repeaters.

Throughout the proof of this case, we �x s to be a particular string; in some cases, but
not all, s will prove to be a good choice of representative. When it does not, we will show
that there is another string whose anticipated cost is small enough.

Let A be the set of m0 strings which do not have a small repeater; there is at least
one such string because we are in Case 2. For the purpose of identifying s, rename the
strings in A, a1; : : : ; am0 . Let �i be the smallest repeater which is active in each of the
strings ai. Then let s = ak , with k chosen such that j�kj � j�ij, 1 � i � m0. In other
words, s is the string whose smallest (2

3
; 2
3
)-repeater is the largest, over all the strings in

c.
By our choice of s, we know that for any other string t in cj , t has at least one

(2
3
; 2
3
)-repeater �0 such that j�0j � j�j.

Our strategy will be to show that either s can be extended to include any other strings
in c within our bound, or that there is some particular string t whose position and length
causes the extension of s to be too costly. In the latter case we show that t can be
extended within our bounds.

We will consider four cases, which depend on the the composition of the cycle c.
Case 2A: minfE`(s; �);Er(s; �)g �

5

3
d(c) + 2

3
j�j � jy�j:

In this case we can extend s either to the left if E`(s; �) � Er(s; �), or to the right
otherwise to cover the remaining strings in c. We bound Cost(s; �):

Cost(s; �) � jy�j+minfE`(s; �);Er(s; �)g+ j�j

� jy�j+
5

3
d(c) +

2

3
j�j � jy�j+ j�j

=
5

3
(d(c) + j�j):

This concludes the analysis of Case 2A. If Case 2A does not apply, then as in Figure
8 there must be a string t = LString(c; �) and a string u = RString(c; �), not necessarily
distinct, which extend to the left and right, respectively, too far for s to be extended
within the bounds of Case 2A. In particular, let X`

� and Xr
� be the copies of X� in

which s begins and ends. Then t must extend into X`
�, because otherwise E`(s; �) �

16



( )( )( )( )( )

X σper(c)

(s,σ )El (s,σ )Er

s
t

u

A B

8

Figure 8: Case 2 of Lemma 4.12. Determining the range of possible t and u.

2d(c)� jy� j �
5

3
d(c) + 2

3
j�j � jy�j, since j�j >

1

2
d(c). We also note that t cannot extend

to the left beyond X`
� , or we could simply shift it over d(c) to the right. Therefore the

left end of t is in X`
�. The right end of t must also be within d(c) of the right end of s, or

between points A and B marked in Figure 8. Similarly, the right end of u is in Xr
�, and

the left end may be anywhere within d(c) to the right of the left end of s.
Because each string in c must have at least one (2

3
; 2
3
)-repeater active, let �0 be

the smallest (2
3
; 2
3
)-repeater active in t, and �00 the smallest (2

3
; 2
3
)-repeater active in

u. The position of the right end of t (left end of u) will determine whether X�0 (X�00)
is nested within X� or linked with it. The remaining cases which we consider all have
minfE`(s; �);Er(s; �)g >

5

3
d(c) + 2

3
j�j � jy�j and are determined by whether t = u and

whether X�0 and X�00 are linked with or nested within X�.
In order to simplify our analysis, we will often assume that a string with an active

repeater � extends from the left end of one copy of y� to the right end of another copy
of y�. This assumption is pessimistic in two ways; �rst, we may be over-charging for
extension, if a string does not go as far as the right end of y� and we assume it does.
Second, witnesses longer than the minimum for (2

3
; 2
3
)-repeaters give us stronger results

when we apply Corollary 2.3.
Case 2B: minfE`(s; �);Er(s; �)g >

5

3
d(c) + 2

3
j�j � jy�j , t = u.

We will show that t can be extended within the desired bounds. Recall that �0 is the
smallest (2

3
; 2
3
)-repeater active in t. Observe that E`(s; �) and Er(s; �) span the length of

a single copy of y�0 with some overlap between two copies of X�. This observation gives
rise to the following identity:

E`(s; �) + Er(s; �) = jy�0 j + 2d(c)� jy�j: (5)

Now consider extending t to the right. Any string t0 which begins within d(t; s) of
the beginning of t must end before s due to the no-substring assumption, and we will
only need to extend t by ~d(y�0 ; y�), to the end of X�. (See Figure 9(a).) We will also
have to consider the case where a string v begins to the right of s and extends beyond
the right end of s. We call v an interloper. We �rst consider the case where there are
no interlopers, then when there is an interloper on one side, and �nally when there is an
interloper on each side.

If there are no interlopers, then by the de�nition of interloper, we only have to extend
t left or right to the end of string s. Therefore E`(t; �

0) � d(c)� E`(s; �) and Er(t; �
0) �
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Figure 9: Case 2B of Lemma 4.12. (a) Without an interloper. (b) With one interloper v. (c) With
two interlopers v and w.

d(c)� Er(s; �):

Cost(t; �0) = jy�0 j+ minfd(c)� E`(s; �); d(c)� Er(s; �)g+ j�0j

� jy�0 j+ d(c)� 1

2
(E`(s; �) + Er(s; �)) + j�0j

= 1

2
jy�0 j+ 1

2
jy�j+ j�0j (Eq. 5:)

< d(c) + 1

2
j�j+ 3

2
j�0j (Lemma 3:4:)

< 3

2
(d(c) + j�0j):

Suppose there is an interloper on one side. Let v be the interloper which extends the
furthest to the right as in Figure 9(b). Because all strings must have an active (2

3
; 2
3
)-

repeater, let �2 be the smallest (2
3
; 2
3
)-repeater active in v. By our conditions on where

v starts and ends, X�2 must be linked with X� and contain X�0 as shown. We know by
our choice of s and � that j�j > j�2j. By Lemma 4.5, j�2j >

1

2
d(c), so we apply Lemma

4.7 to conclude that

jy� j <
3

2
d(c): (6)

If v goes beyond X� to the right as in the Figure, we will extend t to the left. As
above when there were no interlopers, we use E`(t; �0) = d(c)� E`(s; �):

Cost(t; �0) = jy�0 j+ d(c)� E`(s; �) + j�0j

= jy�0 j+ d(c)� (jy�0 j+ 2d(c)� jy�j � Er(s; �)) + j�0j (Eq. 5:)

= jy� j+ Er(s; �)� d(c) + j�0j

< jy� j+ j�0j (E`(s; �) < d(c):)

< 3

2
(d(c) + j�0j): (Eq. 6:)
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Finally, suppose that there is an interloper in each direction, say w and v with (2
3
; 2
3
)-

repeaters �1 and �2 respectively, as in Figure 9(c). Although this seems to present some
di�culties, the situation also gives us stronger bounds because multiple characteristics
are linked and we can employ Lemma 4.7.

Note that X�1 and X�2 are linked, as are X�1 and X� . Let g1 = d(y�1 ; y�) be the
amount that w extends to the left beyond X�, and let g2 = ~d(y� ; y�2) be the amount that
v extends to the right beyond X�. We derive a lower bound on j�j:

j�j > j�1j+ jy�j � d(c) (Lemma 4:7:)

> j�2j+ jy�1 j � d(c) + jy�j � d(c) (Lemma 4:7:)

> jy�1 j+ jy�j �
3

2
d(c) (Lemma 4:5:)

) 1

3
j�j > 2

3
j�1j �

1

6
d(c) (Def. 3:2:)

) j�1j < 1

4
d(c) + 1

2
j�j:

Without loss of generality let j�1j > j�2j. We will choose to extend in the direction of
the larger of �1 and �2, so in this case we will extend t to the left. Since g1 = d(y�1 ; y�)
and X�1 and X� are linked, we conclude that

g1 < jy�1 j � d(c): (7)

We use Equation 7, Lemma 4.7, and Equation 4.3 to bound g1:

g1 < jy�1 j � d(c) < j�1j � j�2j <
1

4
d(c) +

1

2
j�j � j�2j <

1

2
j�j �

1

4
d(c): (8)

We now calculate the anticipated cost of extending t to the left (in the direction of
�1, the larger of �1 and �2):

Cost(t; �0) � jy�0 j+ E`(t; �
0) + j�0j

� jy�0 j+ d(c)� E`(s; �) + g1 + j�0j

< jy�0 j+ d(c)� (5
3
d(c) + 2

3
j�j � jy�j) + g1 + j�0j (Case bound:)

= jy�0 j � 11

12
d(c)� 1

6
j�j+ jy�j+ j�0j (Eq. 8:)

< jy�0 j � 11

12
d(c)� 1

6
j�j+ (j�j � j�1j+ d(c)) + j�0j (Lemma 4:7:)

= jy�0 j+ 1

12
d(c) + 5

6
j�j � j�1j+ j�0j:

In the last inequality above we were able to apply Lemma 4.7 because X� and X�1 are
linked; now we can apply it again, because X�1 and X�2 are also linked.

< jy�0 j+ 1

12
d(c) + 5

6
j�j � (j�2j+ jy�1 j � d(c)) + j�0j (Lemma 4:7:)

= jy�0 j+ 13

12
d(c) + 5

6
j�j � j�2j � jy�1 j+ j�0j

< jy�0 j+ 13

12
d(c) + 5

6
j�j � j�2j � (2

3
d(c) + 2

3
j�1j) + j�0j (Def. 3:2:)

< jy�0 j+ 5

12
d(c) + 5

6
j�j � 5

3
j�2j+ j�0j (j�1j > j�2j:)

< 9

4
d(c) + 2j�0j � 5

3
j�2j (Lemma 3:4:)

< 17

12
d(c) + 2j�0j

< 29

18
(d(c) + j�0j): (j�0j < 1

2
d(c):)
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Figure 10: Case 2C of Lemma 4.12. (a) Without an interloper. (b) With an interloper w.

This concludes the analysis of Case 2B. In the remaining two cases, t 6= u; that is,
LString(c; �) 6= RString(c; �). Let �0 be the smallest (2

3
; 2
3
)-repeater active in t and �00

be the smallest (2
3
; 2
3
)-repeater active in u, and without loss of generality let j�0j > j�00j.

By our choice of s we know that j�j > j�0j > j�00j.
If X�0 is linked with X�, we observe that E`(s; �) = d(y0; y) and Er(s; �) = ~d(y00; y), so

we can apply Lemma 4.10 and conclude that minfE`(s; �);Er(s; �)g <
5

3
d(c)+ 2

3
j�j�jy�j.

This satis�es the bound for Case 2A. We therefore only need to consider two remaining
cases: when neither X�0 nor X�00 is linked with X� (Case 2C), and when only X�00 is
linked with X� (Case 2D).
Case 2C: minfE`(s; �);Er(s; �)g >

5

3
d(c) + 2

3
j�j � jy�j, X�0 and X�00 both nested.

We show that t can be extended to the right within our bounds. (See Figure 10a.) Here
again interlopers are possible, so we will �rst consider the case without an interloper, and
then the case with an interloper on at least one side.

If there is no interloper, then we only have to extend t to the right as far as the end
of X�. We use Lemma 4.9, the Case bound on E`(s; �) and Er(s; �), and the fact that
E`(s; �) + Er(s; �) = jy�0 j+ 2d(c)� jy� j:

Cost(t; �0) � jy�0 j+ E`(t; �
0) + j�0j

� jy�0 j+ ~d(y0; y) + j�0j

= jy�0 j+ (jy�j � jy�0 j � d(y0; y) + j�0j

= jy� j+ E`(s; �)� d(c) + j�0j

= 5

3
j�0j+ jy�j+ E`(s; �)� d(c)� 2

3
j�0j:
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We apply Lemma 4.9 and the fact that E`(s; �) = d(y0; y) to bound the last term above,

� 5

3
j�0j+ jy� j+ E`(s; �)� d(c)� 2

3
(E`(s; �) + jy�j � 2d(c))

= 5

3
j�0j+ 1

3
jy�j+

1

3
E`(s; �) +

1

3
d(c)

< 5

3
j�0j+ 4

3
d(c) (Lemma 3:4:)

< 5

3
(d(c) + j�0j):

Because j�0j > j�00j and �0 is active in t, t was our choice of representative and we
elected to extend to the right. Therefore the only interloper which concerns us is one like
w in Figure 10b. Let �2 be the smallest (2

3
; 2
3
)-repeater active in w. Due to our choice of

s, j�j > j�2j, we can apply Lemma 4.7 to obtain:

j�2j < j�j � jy� j+ d(c): (9)

Let g = ~d(y; y�2) be the distance that the interloper w extends beyond X� . We observe
that

g < jy�2 j � d(c)� (E`(s; �)� 2d(c)� jy� j) = jy�2 j+ d(c)� E`(s; �)� jy� j: (10)

We now calculate the cost of extending t to the right:

Cost(t; �0) � jy�0 j+ Er(t; �
0) + j�0j

� jy�0 j+ ~d(y�0 ; y�2) + g + j�0j

= jy�0 j+ (jy�j � (d(c)� E`(s; �))� jy�0 j) + g + j�0j

= jy�j � d(c) + E`(s; �) + g + j�0j

< jy�j � d(c) + E`(s; �)

+(jy�2 j+ d(c)� E`(s; �)� jy�j) + j�0j (Eq. 10:)

= jy�2 j+ j�0j

< d(c) + j�2j+ j�0j (Lemma 3:4:)

< d(c) + j�0j+ (j�j � jy�j+ d(c)) (Eq. 9:)

< d(c) + j�0j+ 1

3
j�j+ 1

3
d(c) (Def. 3:2:)

< 5

3
(d(c) + j�0j):

Case 2D: minfE`(s; �);Er(s; �)g >
5

3
d(c) + 2

3
j�j � jy� j, X�00 (but not X�0) linked with

X�.
In this case X�0 might be nested within X�00 (Figure 11 a), or not (Figure 11b. It is an
unlikely case to give us trouble, because here the smaller (2

3
; 2
3
)-repeater has the larger

characteristic, and it turns out that we achieve a stronger bound than in other cases.
Subcase (i). Because X�00 containsX�0 , Lemma 4.5 applies, so j�00j > 1

2
d(c). Since Lemma

4.7 also applies we have

jy�j < j�j � j�00j+ d(c) <
3

2
d(c): (11)
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Figure 11: Case 2D of Lemma 4.12. (a) X�0 nested within X�00 . (b) X�0 not nested within X�00 .

If there are no interlopers, we can now bound the anticipated cost of extending t to
the right as follows:

Cost(t; �0) � jy�0 j+ E`(t; �0) + j�0j

� jy�0 j+ ~d(y�0 ; y�) + j�0j

= jy�0 j+ (jy�j � jy�0 j � (d(c)� E`(s; �))) + j�0j

< jy� j+ j�0j (E`(s; �) < d(c))

< 3

2
(d(c) + j�0j): (Eq. 11)

Now suppose there was an interloper v with smallest (2
3
; 2
3
)-repeater �2. Then X�2 would

be linked with X�00 and X�, and Lemma 4.10 would apply as in Figure 6(d), and we
would once again be in Case 2A.
Subcase (ii). Now X�0 is not nested within X�00 , as in Figure 11b. If there are no inter-
lopers, then we only have to extend t to the right to the end of X�:

Cost(t; �0) � jy�0 j+ E`(t; �
0) + j�0j

� jy�0 j+ E`(s; �) + d(c)� jy�0 j � (2d(c)� jy� j) + j�0j

= jy�j+ E`(s; �)� d(c) + j�0j:

We apply Lemma 4.9 to complete the analysis:

Cost(t; �0) < jy�j+ (j�0j � jy�j+ 2d(c))� d(c) + j�0j

= 2j�0j+ d(c)

<
3

2
(d(c) + j�0j:

As in Case (i), if there is an interloper then Lemma 4.10 will apply (Figures 6c or d), and
we have Case 2A.

This completes the proof of Case IId, which completes the proof of the lemma.

We now combine Lemmas 2.2, 4.11, and 4.12 to obtain:

Theorem 4.14 Algorithm G-ShortString(S) is a 22
3
-approximation for the shortest

superstring problem.
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