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Abstract. This work focuses on label ranking, a particular task of pref-
erence learning, wherein the problem is to learn a mapping from instances
to rankings over a finite set of labels. This paper discusses and proposes
alternative reduction techniques that decompose the original problem
into binary classification related to pairs of labels and that can take into
account label correlation during the learning process.
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1 Introduction

Preference learning [1] is gaining increasing attention in data mining and related
fields. Preferences can be considered as instruments to support or identify liking
or disliking of an object over others in a declarative and explicit way. In particu-
lar, the learning and modelling of preferences are being recently investigated in
several fields such as knowledge discovery, machine learning, multi-criteria deci-
sion making, information retrieval, social choice theory and so on. In a general
meaning, preference learning is a non trivial task consisting in inducing pre-
dictive preference models from collected empirical data. The most challenging
aspect is the possibility of predicting weak or partial orderings of classes (la-
bels), rather than single values (as in supervised classification). For this reason,
preference learning can be considered as an extension of conventional supervised
learning tasks, wherein the input space can be interpreted as the set of preference
contexts (e.g. queries, users) while the output space consists in the preference
predictions provided in the form of partial orders, linear orders, top-k lists, etc.
Preference learning problems are typically distinguished in three topics [1]: ob-
ject ranking, instance ranking and label ranking. Object ranking consists in
finding a ranking function F' whose input is a set X of instances characterized by
attributes and whose output is a ranking of this set of instances, in the form of a
weak order. Such a ranking is typically obtained by giving a score to each z € X
and by ordering instances with respect to these scores. The training process
takes as input either partial rankings or pairwise preferences between instances
of X. In the context of instance ranking, the goal is to find a ranking function
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F whose input is a set X of instances characterized by attributes and whose
output is a ranking of this set (again a weak order on X). However, in con-
trast with object ranking, each instance x is associated with a class among a set
of ordered classes. The output of a such a kind of problem consists in rankings
wherein instances labeled with higher classes are preferred (or precede) instances
labeled with lower classes. The third learning scenario concerns a set of training
instances which are associated with rankings over a finite set of labels, i.e. label
ranking [2, 3, 4, 5, 6, 8]. The main goal in label ranking is to predict weak or
partial orderings of labels. This paper is organized as follows. In section 2, we in-
troduce label ranking and existing approaches. In particular, we discuss learning
reduction techniques that transform label ranking into binary classification. In
section 3, we describe some novel reduction techniques to reduce label ranking to
binary classification that are capable of taking into account correlations among
labels during the learning process. Finally, in section 4 and 5, we present some
experimental results, conclusions and future work, respectively.

2 Label Ranking

In label ranking, the main goal is to predict for any instance z, from an instance
space X, a preference relation »,: X — L, where L= {\1; \a;...; \¢} is a set of
labels or alternatives, such that A; =, A; means that instance = prefers label \;
to label \; or, equivalently, A; is ranked higher than A;. More specifically, we
are interested to the case where -, is a total strict order over L, or equivalently,
a ranking of the entire set L. This ranking can therefore be identified with a
permutation 7, € {2 (the permutation space of the index set of L), such that
72 (1) < m¢(j) means that label \; is preferred to label A\; (74 () represents the
position of label \; in the ranking). As in classification, it is possible to associate
x to an unknown probability distribution P(.|x) over the set (2 so that P(7|x)
is the probability to observe the ranking 7 given the instance x. Typically, the
prediction quality of a label ranker M is measured by means of its expected loss
on rankings:

E(D(7,,7.)) = E(D(7,7")|x) (2.1)

x

where D(.,.) is a distance function (between permutations), 7, is the true value

(ground truth) and 7, is the prediction made by the model M. Given such a

distance metric, the best prediction is: 7% = arg mir{l} > P(r|x)D(r', 7). Spear-
T'ER e

man’s footrule, Kendall’s tau and the sum of squared distances are well-known

distances between rankings [14, 15, 17]. There are two main groups of approaches
to label ranking. On the one hand, decomposition (or learning reduction) meth-
ods transform label ranking problem into binary classification [2, 3, 4, 5]. On
the other hand, direct methods adapt existing classification algorithms in order
to deal with label ranking [6, 9, 10, 16]. This work focuses on decomposition
methods because they directly learn binary preferences, i.e. simple statements
like x > y and allow to build meta-learners, i.e. rankers where any binary clas-
sifier can be used as base classifier. For example, a rule-based label ranker has
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been recently proposed [2, 3]. In the context of multi-label classification, it has
been recently reported [7, 13] that it is crucial to take into account correlations
between labels. As a consequence, it seems natural to put this issue into per-
spective also in label ranking. However, the standard pairwise learning reduction
[5] does not take such correlations into account: a separate binary classifier is
trained for each pair of labels so that each pair of labels is treated independently
from the remaining pairs. In view of this, we propose in this paper alternative
decomposition techniques, other than [4, 5], to take into account correlations
among labels, while limiting computational complexity.

3 Reduction Framework

In the context of label ranking, the training set is T = {(x,m,)}, where x =
(q1,92,---,q1) is a vector of [ attributes (the feature vector) and m, is the corre-
sponding target label ranking associated with the instance x. In sections 3.1, 3.2,
3.3 we present three novel pairwise reductions techniques: Nominal decomposi-
tion (similar to the one presented in [2, 3]), Dummy Coding decomposition and
Classifier Chains (based on the Classifier Chains for Multi-label Classification
[7]). In section 3.4 we also discuss a method for the ranking aggregation problem.
A probabilistic interpretation of the Classifier Chains for label ranking is finally
presented in section 3.5.

3.1 Pairwise Decomposition: Nominal Coding

In this decomposition, each learning instance (x, 7,) = (q1, g2, ..., @1, T ) is trans-
formed into a set of simpler and easier-to-learn instances {X1,2,X1,3, ..., Xi j, --- }
where the generic instance x;; is responsible to convey not only the feature
vector (¢1, g2, ...,qi) but also information about a specific pair of labels (A;,A;),
according to a given decomposition of 7, into pairwise preferences. The number
of pairs is at most (in case of full rankings) k(k — 1)/2, where k = |L|. The
learning process associated with this reduction is:

Xij = (41,42, -+, Q15 75, d) (3.1)

with 4,5 € {1,2,..,k},i < j, d € {-1,+41} and r;; is a nominal attribute
which uniquely identifies the pair (A;,A;). In this manner, each x; ; is a learn-
ing instance responsible only for the specific pair (A;,A;). The binary attribute
d € {—1;41} takes into account the preference relation between the two labels
(Ai,Aj), according to the original ranking m,. That is, d = +1 when J; is pre-
ferred to A; (or ranked higher), otherwise d = —1, according to the provided
input (x,7,). For example, the instance x = (—1.5,2.4,1.6, Ay = A1 > A3) gen-
erates the following learning instances: x12 = (—1.5,2.4,1.6,71 2, —1), x13 =
(—1.5,2.4,1.6,71 3, +1), xo.3 = (—1.5,2.4,1.6,72 3, +1). By using this reduction,
it is possible to treat the overall pairwise preference information in a single
learning set, instead of creating independent learning sets as in [5]. This allows
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to process the overall preference information at once in a unique learning set and
therefore to learn a model M that takes into account correlations between labels,
if any. The classification problem derived from the original label ranking problem
can be solved by any binary classifier (e.g. Multilayer Perceptron). Assuming a
given base learner whose complexity is @(1, | X|), the complexity of this reduction
is (14 1,|X| x p), where p = k(k —1)/2, since the number of instances is multi-
plied by p (i.e. a copy of the original instance for every pair of labels). To classify
a new instance ', for each pair of labels (\;, A;), with 4,5 € {1,2, ..., k},i < j,
the feature vector of the testing instance z’ is augmented by adding a variable
r;,; one at a time. This allows the model M to predict either +1 or —1 for the
specific query pair (A;, A;).

3.2 Pairwise Decomposition: Dummy Coding

To avoid the use of nominal attributes, another reduction is based on the dummy
coding so that ones and zeros are added to the feature space in order to con-
vey the preference information about pairs of labels. Similarly as in (3.1), each
learning instance (x,7;) = (q1, g2, .-, qi, Tz ) is transformed into a set of instances
{x1,2,%X1,3, .., Xi,j,...}. While in the previous reduction the feature space was
augmented by one (a nominal attribute identifying a pair of labels), in this re-
duction scheme the feature space is augmented by exactly p binary attributes,
where only one attribute is set to 1, the others being set to 0. The learning
process associated with this reduction is:

Xij = (Q1’ q2, -5 4q1,T1,25 -5 Ti 5, "'rk‘,—l,kvd) (32)

with 4,5 € {1,2,..,k},i < j,d € {-1,+1} and r,, = 1ifv =iAz =40
otherwise. Since for every pair (4, j) only one variable r; ; is set to 1, the corre-
sponding learning instance x; ; is responsible for that specific pair. For example,
the instance: x = (—1.5,2.4,1.6, A2 >= A; > A3) generates the following learn-
ing instances: x1,2 = (—1.5,2.4,1.6,1,0,0,—1),x3 3 = (—1.5,2.4,1.6,0,1,0,+1),
X233 = (—1.5,2.4,1.6,0,0,1,41). Assuming a given base learner whose com-
plexity is @(l,|X]), the complexity of this reduction is (I + p, |X| x p), where
p = k(k —1)/2, since p binary attributes are added to each instance x; ;, while
the number of instances is multiplied by p (i.e. a copy of the original instance
for each pair of labels). The classification of a new instance z’ is similar to the
nominal decomposition.

3.3 Pairwise Decomposition: Classifier Chains

In this section we present another learning reduction technique which is based
on Classifier Chains for multi-label classification [7, 13]. The proposed reduc-
tion scheme involves p = k(k — 1)/2 binary classifiers, each binary classifier
being responsible for learning and predicting the preference for a specific pair,
given preference relations on previous pairs of labels, in a chaining scheme. In
this way all previous pairs of labels are treated as additional attributes to model
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conditional dependence between a given pair of labels and all preceding pairs.
The most interesting aspect of this reduction scheme is that it is possible to
propagate preference information about pairs of labels between all classifiers
throughout the chain, enabling thus to take correlations among labels into ac-
count. Moreover, there is a gain in complexity w.r.t. the previous reductions
because the size of the learning set does not change at each iteration. The set of
binary classifiers (the chain) h = (h1, ha, ..., hp) is used to model a global label
ranker where each classifier h; is trained with

X = (qlana"'aqlarlaTQa"'arjflad) (33)

as a learning instance, r,rg, ...,7;—1 being the values (either +1 meaning >, or
—1 meaning <) on the j — 1 previous pairs of labels provided by the ranking 7,
and according to the chosen order of decomposition. The attribute d € {—1;+1}
is the preference information about the jth pair of labels also according to m,
and to the order of decomposition. It should be noticed that a default or a
random order of labels can be considered in the decomposition of the label set
L. Assuming a given base learner whose complexity is &(l,|X|), the complexity
of each single classifier h; is @(I + ¢;,|X]|), where 1 < ¢; < p, since ¢; attributes
(binary variables) are added (at most p, in the last classifier) to each instance. For
example, if |L| = 3 and the order decomposition is {(2, 1), (2, 3), (3, 1)}, the chain
consists in (h1, ha, h3) and the input instance x = (—1.5,2.4,1.6, A\a = A1 > A3) is
used as a learning instance in the following way: hy < (—1.5,2.4,1.6,+1), ho +
(-1.5,24,1.6,4+1,+1), hg + (—1.5,2.4,1.6,+1,+1, —1). The classification of a
new instance z’ is performed in the following way. The classifier h; predicts
the value (either +1 or —1) for the first pair of labels, according to the given
decomposition order. Afterwards, the feature vector of z’ is augmented with
the prediction on the first pair of label and the classifier ho predicts the value
of the second pair of labels (by testing the feature vector of 2’ augmented by
the previous prediction). In an iterative way the classifier h; predicts the value
of the jth pair using the feature vector augmented by all previous predictions
provided by (h1, kg, ..., hj—1). Since the order of labels could have an impact
on the prediction accuracy, we also consider the ensemble scheme proposed in
[7, 13]. In this manner, it is possible to avoid not only the bias due to a single
(default or random) order of labels but also the effect of error propagation along
the chain in case the first classifiers perform poorly. The main idea is to train T
classifier chains (typically T'= 10) where each classifier is given a random label
order and moreover, each classifier is trained on a random selection of learning
instances sampled with replacement (typically 75% of the learning set) in order
to reduce time complexity without loss in prediction quality. It should be noticed
that to avoid the use of an ensemble of classifier chains, some heuristics could be
used to select the most appropriate order. Such heuristics are currently under
study.
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3.4 Ranking Generation Process

The reduction techniques (3.1), (3.2) and (3.3) require an additional step to
provide a final ranking for a testing instance z’. The final ranking should be
as much as possible consistent with the preference relations >, on each pair
of labels learned during the classification process. However, this is not trivial
[2, 3, 4, 11, 14, 15] since the resulting preference relation is total, asymmetric,
irreflexive but not transitive, in general. The underlying problem is how to find
a consensus between the pairwise predictions in order to obtain a linear order?
This is related to the well-known NP-hard Kemeny optimal rank aggregation
problem [14, 15]. A natural choice, at least in this context, for solving the ranking
aggregation problem is the Net Flow Score procedure |2, 3, 11] whose complexity
is O(k?), where k is the number of labels. This procedure allows to obtain a
ranking by ordering labels according to their net flow scores. These scores can
be computed by using estimations of conditional probabilities on pairs of labels
(good estimations can be provided for example by neural networks [18]) and are
defined as follows. Let us define:

F-‘r

(i) = P()\z = )\]) = P(d = —|—1|.’I}/) (34)

as the probability that for the instance z’ label \; is ranked higher (preferred
to) than A;. Each label ); is then evaluated by means of the following score:

SG0) =D (5 =I5 (3.5)

J#i

where I (J{ 5 is given by (3.4). The final ranking is obtained by ordering labels
according to decreasing values of (3.5), so that the higher the score, the higher
the preference in the ranking: S(i) > S(j) & 7 < 7;. It is possible to prove, in
a similar way as proved in [5], that the Net Flow Score procedure, as defined in
(3.5), minimizes the expected loss (2.1), according to the sum of squared rank
distance. This means that, if correct posterior probabilities can be obtained
(or at least good estimations thereof), it is possible to find an optimal ranking
by simply ordering labels according to scores (3.5). Even though the net flow
score procedure does not provide in general optimal rankings w.r.t. the Kendall
distance, empirically it provides good performances (see section 4).

3.5 Probabilistic Classifier Chains

In the context of multi-label classification, a Bayes-optimal probabilistic classifier
chains has been recently discussed [13]. In this section, we discuss a probabilis-
tic classifier chains for Label Ranking which relies on the same idea. Given a
decomposition order of the label set into pairs, a permutation 7 can be iden-
tified in a unique way with a binary vector (y7,...,y;) € {—1,+1}? so that
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yr = +1 & A; = A, while y7 = —1 otherwise. In this manner, the probabil-
ity of a permutation 7 is equivalent to the probability of its associated vector
(Y7, .- vy ) and by means of the chain rule as in a Bayesian network:

P

P(nla’) = P(yT, . ypla’) = P(yf|2') « [T P12 o7 s yia). (3.6)
=2

The chaining procedure (3.3) allows to learn a probabilistic classifier f;, i =
1,...,p for each pair of labels, where p = k* (k— 1)/2. This classifier predicts, for
the ith pair of labels y; = (Aj, Ay), either +1 meaning A; > A, or —1 meaning
that A, > A;, according to the probability distribution learnt by the classifier
fi- By knowing for each pair of labels its (conditional) probability, it is possible
to compute the (conditional) probability of w. By means of (3.6), it is therefore
possible to rank all possible permutations for 2’ w.r.t. their probabilities so that
an optimal prediction is given by:

P

7 = argmax [P(y][2') * _HQIP’(y?Iw’, YTy 1)) (3.7)

As a result, this probabilistic formulation is well-tailored for the subset 0/1 loss
function [7, 13]:
L(m,7') = Lypnr. (3.8)

Interestengly, it can easily be proved that the optimal prediction for the associ-
ated risk minimization problem is given by: 7* = arg max P(r|z"). Moreover,
the classifier chains presented in section 3.3 can be considered as a deterministic
approximation of (3.6), as similarly pointed out in [13]. While the probabilis-
tic approach evaluates all possible permutations, the classifier chain provides,
in general, a suboptimal prediction gradually obtained at each iteration of the
chaining scheme by using:

h(2) = P(r;|a’, 71, s 75 1) 3.9
(@) arg = max (rjlz’,ri, . mj1) (3.9)

As a consequence, the chaining scheme (3.9) does not provide in general neither
an optimal solution w.r.t the subset 0/1 loss function nor a linear order. Inter-
estingly, the probabilistic approach (3.6) does not require any ranking aggrega-
tion algorithm since it directly evaluates permutations. However, a label ranker
well-tailored for the subset 0/1 loss is probably not reasonable in this context
given that it is a quite severe loss (even a slightly different prediction gets the
highest penalty). Nevertheless, a method well-tailored for the subset 0/1 loss
function should exibit good performances w.r.t. other loss functions (Kendall’s
tau distance, Spearman’s footrule, etc.). On the other hand, the cost in terms of
computational complexity is very high: in case of k labels, k! permutations have
to be evaluated, which imposes an upper limit of k ~ 6 labels. Nevertheless, it
should be noticed that a stop criterion could be applied in order to reduce time
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complexity. If px is the probability associated with an initial permutation 7,
the evaluation of another permutation 7 can be stopped at the jth iteration as
soon as:

J
Py [a’) « [[Pi*1a uT*, o ufy) < p° (3.10)
=2

This stop criterion allows to discard not only the permutation 7 but also all
permutations wherein the first j pairs share the same values as 7. This crite-
rion could considerably reduce the complexity during the testing process. As in
section 3.3, an ensemble of probabilistic classifier chains can be considered.

4 Experimental Setup and Results

This section is devoted to experimentations that we conducted to evaluate the
performances of the proposed methods in terms of predictive accuracy. The data
sets used in this paper were taken from the KEBI Data Repository!. The evalu-
ation measures used in this study are the Kendall’s tau and the Spearman Rank
Correlation coefficient [3, 4, 16, 17]. Performance of the methods was estimated
by using a cross-validation study (10-fold). We compared the standard pairwise
comparison (SD) [5] (note that the Net Flow score is used for the rank aggrega-
tion issue) with the proposed reductions: the nominal decomposition (ND), the
dummy coding decomposition (DD), random classifier chains (CD) and ensem-
bled classifier chains (ECD) (the voting procedure for the final ranking is also
based on the Net Flow Score procedure). In this experiment, we used Multilayer
Perceptron (MLP) and Radial Basis Function (RBF) as base classifiers, both
with default parameters, which generally provide good estimations of posterior
probabilities [18]. All experiments were run on a 64-bit machine, allowing up to 4
GB RAM of heap memory size for larger datasets. Results w.r.t. the probabilistic
classifiers chains (PCD) and ensembled probabilistic classifiers chains (EPCD)
are not yet available. Tables 1 and 2 show the performances of the five classifiers
in terms of Kendall’s tau and Spearman’s Rank correlation with MLP and RBF
as base classifiers, respectively. Following the Friedman Test described in [12],
we found that in both cases the null-hypothesis is rejected at a significance level
of 1%. According to the post-hoc Nemenyi test [12], the significant difference
in average ranks of the classifiers is 1.760 at a significant level of 5% and 1.587
at a significant level of 10%. At a significance level of 5%, ECD outperforms
SD and ND when using MLP as base classifier, while the post-hoc test is not
powerful enough to establish any other statistical difference. At a significance
level of 10%, ECD also outperforms CC. When using RBF as base classifier, at
a significant level of 5%, ECD outperforms ND and DD while SD outperforms
ND and DD. Moreover, CD outperforms ND.

! See http://www.uni-marburg.de/fb12/kebi/research/repository
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Table 1. Comparison of reduction techniques with MLP as base classifier

Kendall tau

SD ND DD CcD ECD
IRIS 973+ 045 54 964+ 055 (5) .991+4 .017 (1) 982+ 021 (2 9774+ 029 (3)
GLASS 880+ 064 (2 860+ 079 (5 865+ 062 (4) 878+ 055 (3 .888+ .056 (1
WINE 929+ 048 (4 925+ 040 (5) .939+4 .059 (1) 936+ 036 (2 5) 936+ 048 (25
VEHICLE 875+ 028 (4 877+ 023 (5 877+ 023 (3 892+ 2 893+ .020 (1)
VOWEL 9104 .014 (15) 825+ 038 (5 861+ 022 (4 888+ 027 3 910+ .014 (1 5)
STOCK 830+ 013 55 874+ 010 (3 868+ 009 (4 905+ 010 (2 914+ .017 (1
CPU 443+ 011 (4 4724 015 (3 479+ 009 (2 4314+ 024 (5 487+ .014 (1
BODYFAT 229+ 054 (4 241+ 065 (3) .272+ .042 (1) 150+ 081 (5 243+ 072 (2)
DDT 062+ 040 (5 103+ 027 (3 120+ 022 (2 069+ 041 (4 123+ .022 (1)
HOUSING 641+ 032 (5 712+ 040 (2 699+ 032 (3 667+ 061 (4 721+ .034 (1
AUTORSHIP 858+ 023 (5 929+ 016 (3 9154 015 (4 9374+ 010(2) 941+ .015 (1
WISCONSIN .583+ .039 (1) 108+ 111 (5 2944 125 (4 451+ 014 (3) 5734 031 (2)
Av Rate 370 391 275 312 150

Spearman rank correlation

SD ND DD CcD ECD
IRIS 980+ 033 (4 973+ 041 (5) .993+ .013 (1) 986+ 016 (2) 983+ 022 (3)
GLASS 908+ 059 (2 891+ 078 (5 891+ 072 (4) 900+ 059 Ez) 918+ .057 (1)
WINE 944+ 042 (4 943+ 030 (5) .954+ .044 (1) 952+ 027 (2 949+ 042 (3)
VEHICLE 901+ 026 E4 880+ 031 Es 902+ 021 (3 913+ 025 (2 916+ .018 (1)
VOWEL 956+ .009 (15) 900+ 031 (5 9284 014 (4 930+ 022 (3 956+ .008 (1 5)
STOCK 902+ 008 (5 931+ 005 (3 928+ 005 (4 947+ 007 (2 9534 .011 (1
CPU 520+ 011 (4 536+ 017 (3 543+ 013 (2) 475+ 028 (5) 547+ .017 (1
BODYFAT 297+ 062 (4 315+ 078 (3)  .3474 .047 (1) 1964+ 098 (5 317+ 090 (2)
DDT 071+ 044 (5 119+ 029 (3 135+ 028 (2 076+ 050 (4 1414 .024 (1
HOUSING 751+ 028 (4 802+ 040 (2 7914+ 029 (3 7424+ 059 (5 .807+ .035 (1
AUTORSHIP 895+ 018 (5 954+ 011 (3 942+ 015 (4 958+ 007 (2 963+ .010 (1
WISCONSIN 737+ .040 (1) 158+ 155 (5) 400+ 161 (4) 589+ 021 (3) 728+ 035 (2)
Av Rate 3 66 391 275 312 154

Table 2. Comparison of reduction techniques with RBF as base classifier

Kendall tau

SD ND DD CD ECD
IRIS 968+ 044 (3) 808+ 063 (5) 844+ 057 (4) 982+ 035 (2 .986+ .020 (1
GLASS 876+ 049 (2) 687+ 083 (5 707+ 053 (4) 852+ 051 (3 .885+ .040
WINE 958+ 050 (3 749+ 011 (5 828+ 061 (4) 977+ .033 (1) 973+ 038 (2)
VEHICLE 808+ 034 (3 544+ 041 (5) 548+ 095 (4) 816+ 017 (2 .830+ .025 (1)
VOWEL 8154 .015 (1) 309+ 044 (5) 313+ 040 (4) 728+ 030 (3 786+ 019 (2)
STOCK .861+4 .013 (1) 527+ 072 (5) 609+ 098 (4) 841+ 016 (3) 853+ 010 (2)
CPU 429+ .017 (1) 245+ 034 (5) 254+ 009 (4) 400+ 012 (2 397+ 009 (3)
BODYFAT 174+ 077 (2 127+ 046 (4) 125+ 053 (5) 143+ 038 (3 179+ .053 (1
DDT 126+ 030 (3 114+ 034 (4 130+ 045 (2) 112+ 027 (5 .144+ .018 (1
HOUSING 659+ 019 (2) 441+ 111 (4 438+ 087 (5) 6424 049 (3) .665-+ .037 (1)
AUTORSHIP 935+ 017 (3 517+ 073 (5) 584+ 103 (4) .936+4 .013 (15) .936+ .009 (15)
WISCONSIN 459+ 030 (2 198+ 089 (4) 177+ 071 (5) 427+ 047 (3) .465+ .037 (1)
Av Rate 216 475 4 08 2 54 145

P rank 1

SD ND DD CD ECD
IRIS 976+ 033 (3 856+ 047 (5) 883+ 042 (4) 986+ 026 (2 .990+ .015 (1
GLASS 910+ 041 (2 739+ 084 (4) 735+ 043 (5) 886+ 048 (3 1922+ .032 (1
WINE 965+ 044 (3) 803+ 085 (5 865+ 051 (4) .983+ .025 (1) 980+ 029 (2
VEHICLE 842+ 029 (3) 613+ 051 (5 621+ 098 (4) 853+ 017 (2 868+ .023 (1)
VOWEL .895+4 .012 (1) 347+ 055 (4) 345+ 044 (5) 808+ 030 (3 874+ 015 (2
STOCK .923+4 .009 (1) 631+ 079 (5) 706+ 111 (4) 908+ 012 (3 918+ 006 (2
CPU 480+ .019 (1) 304+ 042 (5) 309+ 009 (4) 448+ 012 (2) 442+ 012 (3)
BODYFAT 212+ 095 (2 162+ 061 (5) 166+ 074 (4) 180+ 051 (3 227+ .076 (1
DDT 144+ 036 (3 127+ 039 (5) 149+ 045 (2) 128+ 036 (4 163+ .023 (1
HOUSING 760+ 022 (2 529+ 123 (5 531+ 095 (4) 738+ 041 (3 761+ .031 (1
AUTORSHIP 958+ 012 (3) 631+ 059 (5 696+ 078 (4) .959+ .009 (2) 960-+ .006 (1)
WISCONSIN 605+ 036 (2) 281+ 126 (5) 250+ 097 (4) 569+ 051 (3) .608+ .043 (1)
Av Rate 216 4 83 4 2 58 141

5 Conclusions

In this paper, we introduced alternative decomposition techniques for Label
Ranking, closely related to the standard decomposition method [5], but that
can take correlations among labels into account. We mainly investigated three
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decompositions that transform label ranking into binary classification and that
allow to create meta learners. In particular, we adapted the classifier chains and
its ensembled version for multi-label classification [7, 13] to label ranking and
showed that the ensemble of classifier chains outperforms all others decompo-
sition methods in a statistically significant way. In order to increase accuracy
of classifier chains, some heuristics to determine the most appropriate label or-
der are currently under study. Furthermore, probabilistic interpretations of the
classifier chains and the ensembled version have also been introduced, though
experimental results have not been provided due to their extremily high com-
putational complexity. In particular the probabilistic classifier chains minimizes
the subset 0/1 loss function in expectation. Another important result concerns
the Net Flow Score procedure that provides a good approximation algorithm
to the ranking aggregation problem.
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