
Fuzzy Queries over NoSQL Graph Databases:
Perspectives for Extending the Cypher Language

Arnaud Castelltort and Anne Laurent

LIRMM, Montpellier, France
{castelltort,laurent}@lirmm.fr

Abstract. When querying databases, users often wish to express vague concepts,
as for instance asking for the cheap hotels. This has been extensively studied in
the case of relational databases. In this paper, we propose to study how such use-
ful techniques can be adapted to NoSQL graph databases where the role of fuzzi-
ness is crucial. Such databases are indeed among the fastest-growing models for
dealing with big data, especially when dealing with network data (e.g., social net-
works). We consider the Cypher declarative query language proposed for Neo4j
which is the current leader on this market, and we present how to express fuzzy
queries.

Keywords: Fuzzy Queries, NoSQL Graph Databases, Neo4j, Cypher, Cypherf.

1 Introduction

Graph databases have attracted much attention in the last years, especially because of
the collaborative concepts of the Web 2.0 (social and media networks etc.) and the
arriving Web 3.0 concepts.

Specific databases have been designed to handle such data relying on big dense net-
work structures, especially within the NoSQL world. These databases are built to re-
main robust against huge volumes of data, against their heterogeneous nature and the
high speed of the treatments applied to them, thus coping with the so-called Big Data
paradigm.

They are currently gaining more and more interest and are applied in many real world
applications, demonstrating their power compared to other approaches. NoSQL graph
databases are known to offer great scalability [1].

Among these NoSQL graph databases, Neo4j appears to be one of the most ma-
ture and deployed [2]. In such databases, as for graphs, nodes and relationships be-
tween nodes are considered. Neo4j includes nodes and relationships labeling with the
so-called types. Moreover, properties are attached to nodes and relationships. These
properties are managed in Neo4j using the key:value paradigm.

Fig. 1 shows an example of hotels and customers database. The database contains
hotels located in some cities and visited by some customers. Links are represented by
the :LOCATED and :VISIT relationships. The hotels and people and relationships are
described by properties: id, price, size (number of rooms) for hotels; id, name, age for
people. One specificity is that relationships in Neo4j are provided with types (e.g., type
“hotel” or “people” in the example) and can also have properties as for nodes. This

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 384–395, 2014.
© Springer International Publishing Switzerland 2014

Fuzzy Cypher Queries 385

allows to represent in a very intuitive and efficient manner many data from the real
world. For instance, :LOCATED has property distance, standing for the distance to city
center.

Fig. 1. Neo4j database console user interface: Example for Hotels and Customers

All NoSQL graph databases require the developers and users to use graph concepts
to query data. As for any other repository, when querying such NoSQL graph databases,
users either require specific focused knowledge (e.g., retrieving Peter’s friends) or ask
for trend detection (e.g., detecting trends and behaviours within social networks).

Queries are called traversals. A graph traversal refers to visiting elements, i.e. nodes
and relations. There are three main ways to traverse a graph:

– programmaticaly, by the use of an API that helps developers to operate on the
graph;

– by functional traversal, a traversal based on a sequence of functions applied to a
graph;

– by declarative traversal, a way to explicit what we want to do and not how we want
to do it. Then, the database engine defines the best way to achieve the goal.

386 A. Castelltort and A.Laurent

In this paper, we focus on declarative queries over a NoSQL graph database. The
Neo4j language is called Cypher.

For instance on Fig. 1, one query is displayed to return the customers who have
visited the “Ritz” hotel.They are both displayed in the list and circled in red in the
graph.

We consider in this paper the manipulating queries in READ mode.

Fig. 2. Displaying the Result of a Cypher Query

However, none of the query languages embeds a way for dealing with flexible queries,
for instance to get cheap hotels or popular ones, where cheap and popular are fuzzy
sets.

This need has nevertheless been intensively studied when dealing with other database
paradigms, especially with relational databases.

In this paper, we thus focus on the declarative way of querying the Neo4j system
with the Cypher query language and we extend it for dealing with vague queries.

The rest of the paper is organised as follows. Section 2 reports existing work from
the literature regarding fuzzy queries and presents the Cypher language. Section 3 intro-
duces the extension of the Cypher language to Cypherf and Section 4 shows how such
an extension can be implemented. Section 5 concludes the paper and provides some
ideas for future work.

2 Related Work

2.1 Neo4j Cypher Language

Queries in Cypher have the following syntax1:

[START]
[MATCH]
[OPTIONAL MATCH WHERE]
[WITH [ORDER BY] [SKIP] [LIMIT]]
RETURN [ORDER BY] [SKIP] [LIMIT]

1 http://docs.neo4j.org/refcard/2.0/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

http://docs.neo4j.org/refcard/2.0/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

Fuzzy Cypher Queries 387

As shown above, Cypher is comprised of several distinct clauses:

– START: Starting points in the graph, obtained via index lookups or by element IDs.
– MATCH: The graph pattern to match, bound to the starting points in START.
– WHERE: Filtering criteria.
– RETURN: What to return.
– CREATE: Creates nodes and relationships.
– DELETE: Removes nodes, relationships and properties.
– SET: Set values to properties.
– FOREACH: Performs updating actions once per element in a list.
– WITH: Divides a query into multiple, distinct parts.

2.2 Fuzzy Queries

Many works have been proposed for dealing with fuzzy data and queries. All cannot be
reported here. [3] proposes a survey of these proposals.

[4, 5] consider querying regular databases by both extending the SQL language and
studying aggregating subresults. The FSQL/SQLf and FQL languages have been pro-
posed to extend queries over relational databases in order to incorporate fuzzy descrip-
tions of the information being searched for.

Some works have been implemented as fuzzy database engines and systems have
incorporated such fuzzy querying features [6, 7].

In such systems, fuzziness in the queries is basically associated to fuzzy labels, fuzzy
comparators (e.g., fuzzy greater than) and aggregation over clauses. Thresholds can be
defined for the expected fulfillment of fuzzy clauses.

For instance, on a crisp database describing hotels, users can ask for cheap hotels that
are close to city center, cheap and close to city center being fuzzy labels described
by fuzzy sets and their membership functions respectively defined on the universe of
prices and distance to the city center.

Many works have been proposed to investigate how such fuzzy clauses can be de-
fined by users and computed by the database engine, especially when several clauses
must be merged (e.g., cheap AND close to city center).

Such aggregation can consider preferences, for instance for queries where price is
prefered to distance to city center using weighted t-norms.

Thresholds can be added for working with α−cuts, such as searching for hotels
where the degree cheap is greater than 0.7.

As we consider graph data, the works on fuzzy ontology querying are very close and
relevant for us [8, 9].

[8] proposes the f-SPARQL query language that supports fuzzy querying over on-
tologies by extending the SPARQL language. This extension is based on threshold query
(e.g., asking for people who are tall at a degree greater than 0.7) or general fuzzy queries
based on semantic functions.

It should be noted that many works have dealt with fuzzy databases for represent-
ing and storing imperfect information in databases: fuzzy ER models, fuzzy object
databases, fuzzy relational databases, fuzzy ontologies-OWL [10], etc. Fuzziness can
then impact many levels, from metadata (attributes) to data (tuples), and cover many

388 A. Castelltort and A.Laurent

semantics (uncertainty, imprecision, inconsistency, etc.) as recalled in [3]. These works
are not reported here as we consider fuzzy queries over crisp data.

3 Fuzzy Queries over NoSQL Graph databases: Towards the
Cypherf Language

In this paper, we address fuzzy READ queries over regular NoSQL Neo4j graph
databases. We claim that fuzziness can be handled at the following three levels:

– over properties,
– over nodes,
– over relationships.

3.1 Cypherf over Properties

Dealing with fuzzy queries over properties is similar to the queries from the literature on
relational databases and ontologies. Such queries are defined by using linguistic labels
(fuzzy sets) and/or fuzzy comparators.

Such fuzzy queries impact the START , MATCH , WHERE and RETURN
clauses from Cypher.

In the WHERE clause, it is then possible to search for cheap hotels in some
databases, or for hotels located close to city center2. Note that these queries are differ-
ent as the properties being addressed are respectively linked to a node and a relationship.

Listing 1.1. Cheap Hotels

1 MATCH (h :Hotel)
2 WHERE CHEAP (price) > 0
3 RETURN h
4 ORDER BY CHEAP (h) DESC

Listing 1.2. Hotels Close to City Center

1 MATCH (c :City)< -[:LOCATED]−(h :Hotel)
2 WHERE CLOSE (c , h) > 0
3 RETURN h
4 ORDER BY CLOSE (c , h) DESC

In the START clause, it is possible to define which nodes and relationships to start
from by using fuzzy labels, as for instance:

Listing 1.3. Starting from Cheap Hotels

1 START h :Hotel (CHEAP (price) > 0)
2 RETURN h
3 ORDER BY CHEAP (h) DESC

2 For the sake of simplicity, the fuzzy labels and membership functions are hereafter denoted by
the same words.

Fuzzy Cypher Queries 389

Listing 1.4. Starting from location links close to city center

1 START l=relationship :LOCATED (CLOSE (distance)>0)
2 MATCH (h :Hotel) -[:LOCATED] -> (c :City)
3 RETURN h
4 ORDER BY CLOSE (h , c) DESC

In the MATCH clause, integrating fuzzy labels is also possible:

Listing 1.5. Matching Hotels Close to City Center

1 MATCH (h :Hotel) -[:LOCATED {CLOSE (distance)>0}] -> (c :City)
2 RETURN h
3 ORDER BY CLOSE (h , c) DESC

In the RETURN clause, no selection will be operated, but fuzzy labels can be
added in order to show the users the degree to which some values match fuzzy sets, as
for instance:

Listing 1.6. Fuzziness in the Return Clause

1 MATCH (h :Hotel) -[:LOCATED] -> (c :City)
2 RETURN h , CLOSE (h , c) AS 'ClosenessToCityCenter '
3 ORDER BY ClosenessToCityCenter DESC

Distance to City
Center (meters)200 1000

CloseToCityCenter

0

1

Membership
Degree

Fig. 3. Fuzzy Cypher Queries: an Example

When considering fuzzy queries over relational databases, the results are listed and
can be ranked according to some degrees. When considering graph data, graphical rep-
resentations are of great interest for the user comprehension and interaction on the data.
For instance, Fig 2 shows how a result containing two items (the two customers who
went to Ritz hotel) is displayed in the Cypher console, demonstrating the interest of the
graphic display.

390 A. Castelltort and A.Laurent

It would thus be interesting to investigate how fuzzy queries over graph may be
displayed, showing the graduality of membership of the objects to the result. For this
purpose, we propose to use the work from the literature on fuzzy graph representation
and distored projection as done in anamorphic maps [11].

3.2 Cypherf over Nodes

Dealing with fuzzy queries over nodes allows to retrieve similar nodes. It is set at a
higher level from queries over properties although it may use the above-defined queries.

For instance, it is possible to retrieve similar hotels:

Listing 1.7. Getting Similar Hotel Nodes

1 MATCH (h1 :Hotel) , (h2 :Hotel)
2 WITH h1 AS hot1 , h2 AS hot2 , SimilarTo (hot1 ,hot2) AS sim
3 WHERE sim > 0 . 7
4 RETURN hot1 ,hot2 , sim

In this framework, the link between nodes is based on the definition of measures
between the descriptions. Such measures integrate aggregators to deal with the several
properties they embed. Similarity measures may for instance be used and hotels may all
the more be considered as their prices and size are similar.

It should be noted that such link could be materialized by relationships, either for
performance concerns, or because it was designed this way. In the latter case, such
query amounts to a query as defined above.

3.3 Cypherf over Relationships

As for nodes, such queries may be based on properties. But it can also be based on the
graph structure in order to better exploit and benefit from it.

In Cypher, the structure of the pattern being searched is mostly defined in the
MATCH clause.

The first attempt to extend pattern matching to fuzzy pattern matching is to consider
chains and depth matching. Chains are defined in Cypher in the MATCH clause with
consecutive links between objects. If a node a is linked to an object b at depth 2, the
pattern is writen as (a) − [∗2]− > (b). If a link between a and b without regarding the
depth in-between is searched, then it is writen (a) − ()− > (b). The mechanism also
applies for searching objects linked trough a range of nodes (e.g., between 3 and 5):
(a)− [∗3..5]− > (b).

We propose here to introduce fuzzy descriptors to define extended patterns where
the depth is imprecisely described. It will then for instance be possible to search for
customers linked through almost 3 hops. The syntax ∗∗ is proposed to indicate a fuzzy
linker.

Listing 1.8. Fuzzy Patterns

1 MATCH (c1 :customer) -[:KNOWS**almost3] -> (c2 :customer)
2 RETURN c1 , c2

Fuzzy Cypher Queries 391

It is related to fuzzy tree and graph mining [12] where some patterns emerge from
several graphs even they do not occur exactly the same way everywhere regarding the
structure.

Another possibility is not to consider chains but patterns where several links from
and to nodes.

In our running example, popular hotels may for instance be chosen when they are
chosen by many people. This is similar as the way famous people are detected if they
are followed by many people on social networks.

In this example, a hotel is popular if a large proportion of customers visited it.
In Cypher, such queries are defined by using aggregators. For instance, the following

query retrieves hotels visited by at least 2 customers:

Listing 1.9. Aggregation

1 MATCH (c :Customer) -[:VISIT] -> (h :Hotel)
2 WITH c AS cust , count (*) AS cpt
3 WHERE cpt>1
4 RETURN cust

Such crisp queries can be extended to consider fuzziness:

Listing 1.10. Aggregation

1 MATCH (c :Customer) -[:VISIT] -> (h :Hotel)
2 WITH c AS cust , count (*) AS cpt
3 WHERE POPULAR (cpt) > 0
4 RETURN cust

All fuzzy clauses described in this section can be combined. The question then risen
is to implement them in the existing Neo4j engine.

4 Implementation Challenges

4.1 Architecture

There are several ways to implement fuzzy Cypher queries:

1. Creating an overlay language on top of the Cypher language that will produce as
ouput Cypher well formatted queries to do fuzzy work;

2. Extending the Cypher queries and using the existing low level API behind;
3. Extending the low level API with optimized functions, offering the possibility only

to developpers to use it;
4. Combining the last two possibilities: using an extended cypher query language over

an enhanced low level API.

Every possibility is debated in this section. The reader will find at the end of this
section a summary of the debates.

392 A. Castelltort and A.Laurent

Fig. 4. Implementation Ways

4.2 Creating an Overlay Language

Concept. The concept is to create a high-level fuzzy DSL language that will be used to
generate Cypher well-formed queries. The generated Cypher queries will be executed
by the existing Neo4j engine.

A grammar must be defined for this external DSL which can rely on the existing
Cypher syntax and only enhance it with new fuzzy features. The output of the generation
process is pure Cypher code. In this scenario, Cypher is used as a low level language to
achieve fuzzy queries.

Discussion. This solution is a cheap and non intrusive solution but has several huge
drawbacks:

– Features missing, indeed every fuzzy query shown in Section 3 cannot be expressed
by the current cypher language (e.g., listing 1.4);

– Performance issue, Cypher is not designed for fuzzy queries neither for being used
as an algorithmic language. All the fuzzy queries will produce Cypher query codes
that are not optimized for fuzzy tasks;

– Lack of user-friendliness, Each query cannot be executed directly against the Neo4j
environnement, it needs a two-step process: (i) write a fuzzy query, then compile it
to get the cypher query; (ii) use the cypher generated queries on the Neo4j database

4.3 Extending the Cypher Queries

Concept. The idea is to extend the Cypher language to add new features. Cypher offers
various types of functions: scalar functions, collection functions, predicate functions,

Fuzzy Cypher Queries 393

mathematical functions, etc. To enhance this language with fuzzy features, we propose
to add a new type of functions: fuzzy functions. Fuzzy functions are used in the same
way as other functions of Cypher (or SQL) as shown in section 3.

Cypher is an external DSL. Therefore, somewhere it needs to be parsed. The query
correctness must be checked and then it should be executed. In the Cypher case, retriev-
ing the results we asked for.

In order to write Cypher, the Neo4j’s team had defined its grammar, which gives the
guidelines of how the language is supposed to be structured and what is and isnt valid. In
order to express this definition, we can use some variation of EBNF syntax [13], which
provides a clear way to expose the language definition. To parse this syntax, Cypher
uses Scala language Parser Combinator library.

Then, to extend the Cypher engine, the Cypher grammar must be extended regarding
the current grammar parser. Once the cypher query is parsed, the code has to be bound
on the current programmatic API to achieve the desired result.

Discussion. This work needs a deeper comprehension of the Neo4j engine and more
skills on Java/Scala programming language (used to write the Neo4j engine and API)
than the previous solutions. The main advantage of this is to offer an easy and user-
friendly way to use the fuzzy feature. The disavantages of this solution are:

– Performance issue. This solution should have better performance than the previous
one but it stills built on the current Neo4j engine API that is not optimized for fuzzy
queries (e.g., degree computing);

– Cost of maintenance. Until Neo4j accepts to inlude this contribution to the Neo4j
project, it will be needed to upgrade each new version of Neo4j with these enhance-
ments. If this feature is built in a plugin, it will be necessary to check that the API
has not been broken by the new version (if so an upgrade of the fuzzy plugin will
be required).

4.4 Extending Low Level API

Concept The scenario is to enhance the core database engine with a framework to
handle efficiently the fuzzy queries and to extend the programming API built on it to
provide to developpers access to this new functionnality.

Discussion. This solution offers a high performance improvment but needs high Neo4j
skills, possibly high maintenance costs, a poor user friendly experience (only develop-
pers can use it) and a costly development process.

4.5 Extending Cypher over an Enhanced Low Level API

Concept. The last and not the least possibility is to combine the solutions from Sections
4.3 and 4.4: adding to the database engine the feactures to handle the fuzzy queries,
extending the API and extending the Cypher language.

394 A. Castelltort and A.Laurent

Discussion. This solution is user-friendly, provides optimized performance but has a
heavy development cost (skills, tasks, etc.) and a high cost of maintenance.

4.6 Summary and Prototype

The first solution is a non intrusive solution with limited perspectives. It is more a hack
than a real long termes solution. The best, but most costly, solution still the last one:
extend cypher query language and build a low level API framework to extend the Neo4j
database engine to support such kind of queries.

A prototype based on the extension of cypher over an enhanced API is under devel-
opement, fuzzy queries can be run, as shown in Fig. 5.

Fig. 5. Protoype Developed

5 Conclusion

In this paper, we propose an extension of the declarative NoSQL Neo4j graph database
query language (Cypher). This language is applied on large graph data which represent
one of the challenges for dealing with big data when considering social networks for
instance. A protoype has been developed and is currently being enhanced.

As we consider the existing Neo4j system which is efficient, performance is guaran-
teed. The main property of NoSQL graph databases, i.e. the optimized O(1) low com-
plexity for retrieving nodes connected to a given one, and the efficient index structures
ensure that performances are optimized.

Future works include the extension of our work to the many concepts possible with
fuzziness (e.g., handling fuzzy modifiers), the study of fuzzy queries over historical
NoSQL graph databases as introduced in [14] and the study of definition fuzzy struc-
tures: Fuzzy Cypher queries for Data Definition or in WRITE mode (e.g., inserting
imperfect data). The implementation of the full solution relying on our work, currently
in progress, will be completed by these important extensions.

Fuzzy Cypher Queries 395

References

1. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. CoRR abs/1004.1001 (2010)
2. Board, T.T.A.: Technology radar (May 2013),

http://thoughtworks.fileburst.com/assets/
technology-radar-may-2013.pdf

3. Meng, X., Ma, Z., Zhu, X.: A knowledge-based fuzzy query and results ranking approach for
relational databases. Journal of Computational Information Systems 6(6) (2010)

4. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE Transac-
tions on Fuzzy Systems 3(1), 1–17 (1995)

5. Takahashi, Y.: A fuzzy query language for relational databases. IEEE Transactions on Sys-
tems, Man, and Cybernetics 21(6), 1576–1579 (1991)

6. Zadrożny, S., Kacprzyk, J.: Implementing fuzzy querying via the internet/WWW: Java ap-
plets, activeX controls and cookies. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.)
FQAS 1998. LNCS (LNAI), vol. 1495, pp. 382–392. Springer, Heidelberg (1998)

7. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for fuzzy SQL queries. In: An-
dreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp.
164–174. Springer, Heidelberg (1998)

8. Pan, J.Z., Stamou, G.B., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying services over
fuzzy ontologies. In: Huai, J., Chen, R., Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., Zhang,
X. (eds.) WWW, pp. 575–584. ACM (2008)

9. Cheng, J., Ma, Z.M., Yan, L.: f-SPARQL: A flexible extension of SPARQL. In: Bringas, P.G.,
Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 487–494.
Springer, Heidelberg (2010)

10. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy owl: Uncertainty
and the semantic web. In: Grau, B.C., Horrocks, I., Parsia, B., Patel-Schneider, P.F. (eds.)
OWLED. CEUR Workshop Proceedings, vol. 188. CEUR-WS.org (2005)

11. Griffin, T.: Cartographic transformations of the thematic map base. Cartography 11(3), 163–
174 (1980)

12. López, F.D.R., Laurent, A., Poncelet, P., Teisseire, M.: Ftmnodes: Fuzzy tree mining based
on partial inclusion. Fuzzy Sets and Systems 160(15), 2224–2240 (2009)

13. Pattis, R.: Teaching ebnf first in cs 1. In: Beck, R., Goelman, D. (eds.) SIGCSE, pp. 300–303.
ACM (1994)

14. Castelltort, A., Laurent, A.: Representing history in graph-oriented nosql databases: A ver-
sioning system. In: Proc. of the Int. Conf. on Digital Information Management (2013)

http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf
http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf

	Fuzzy Queries over NoSQL Graph Databases: Perspectives for Extending the Cypher Language
	1 Introduction
	2 Related Work
	2.1 Neo4j Cypher Language
	2.2 Fuzzy Queries

	3 Fuzzy Queries over NoSQL Graph databases: Towards the Cypherf Language
	3.1 Cypherf over Properties
	3.2 Cypherf over Nodes
	3.3 Cypherf over Relationships

	4 Implementation Challenges
	4.1 Architecture
	4.2 Creating an Overlay Language
	4.3 Extending the Cypher Queries
	4.4 Extending Low Level API
	4.5 Extending Cypher over an Enhanced Low Level API
	4.6 Summary and Prototype

	5 Conclusion
	References

