Beyond the Holy Grail – Automatically Generating Constraint Propagators for Conjunctions of Time-Series Constraints

Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis

24th November 2017
1ère journée CAVIAR
The Question Motivating this Work

Consider two constraints
\[\gamma_1(\langle X_1, X_2, \ldots, X_n \rangle, R_1) \land \gamma_2(\langle X_1, X_2, \ldots, X_n \rangle, R_2), \]

where \(R_1 \) and \(R_2 \) are constrained to be
the result of some computations over \(\langle X_1, X_2, \ldots, X_n \rangle \)
depending \textbf{only} on the relations \(<, =, >\) between \(X_i \) and \(X_{i+1} \).

For example,
\begin{itemize}
 \item \(R_1 \) is the number of peaks in \(\langle X_1, X_2, \ldots, X_n \rangle \) and
 \item \(R_2 \) is the number of valleys in \(\langle X_1, X_2, \ldots, X_n \rangle \).
\end{itemize}

What is the set of feasible pairs of \(R_1 \) and \(R_2 \)?
Example of Sets of Feasible Pairs of R_1 and R_2: Convex Case

The set of feasible (blue) points is convex.

Characterised by a set of parametrised linear inequalities (where R_1, R_2 are the variables and n the parameter)

$$\gamma_1 = \text{nb_peak}$$

$$\gamma_2 = \text{nb_valley}$$
Example of Sets of Feasible Pairs of R_1 and R_2: Non-Convex Case

- The set of feasible (blue) points is non-convex.
- A conjunction of linear inequalities of is not enough.
- Need also for a non-linear characterisation.

\[
\gamma_1 = \text{sum}_\text{width}_\text{decreasing}_\text{sequence}
\]

\[
\gamma_2 = \text{sum}_\text{width}_\text{zigzag}
\]
Two Emerging Problems for Characterising Infeasible Combinations

1. Generate linear inequalities depending on R_1, R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \ldots\}$, which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.
Two Emerging Problems for Characterising Infeasible Combinations

1. Generate linear inequalities depending on R_1, R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \ldots\}$, which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a large family of constraints?

Main Insight · · ·
Two Emerging Problems for Characterising Infeasible Combinations

1. Generate linear inequalities depending on R_1, R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \ldots\}$, which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a large family of constraints?

Main Insight ...

Use register automata and parameterised characterisation.
Take-Away Message

- Convex Case:
 - A compositional way of generating cuts from register automata [CP17implied].

- Non-Convex Case:
 - Data Mining for generating conjectures,
 - Proof using transducers and automata.
Case Study: Time-Series Constraints

- Described by:
 - Declaratively: **quantitative regular expressions**,
 - Operationally: **finite transducers**.

- Baseline implementation as **register automata**.

- Missing propagation for conjunction of constraints.

Work on improving propagators for **all** constraints at the same time.
Example of a Time-Series Constraint

Constrain the maximum of the widths of the valleys in the time series \(X = \langle 5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0 \rangle \).

A subsequence \(\langle X_i, \ldots, X_j \rangle \) of \(\langle X_0, \ldots, X_m \rangle \) is a valley if the signature of \(\langle X_{i-1}, \ldots, X_{j+1} \rangle \) is a maximal word matching \('>(|=)*(<|=)*<'. \)
Compositional Time-Series Definition by Multiple Layers of Functions

Input: time series \((I)\)

Signature sequence (II)

Occurrences of regular expression (III)

Feature sequence (IV)

Output: aggregation

max_width_valley\((\langle 5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0 \rangle, 4 \rangle)\)
Space of Time-Series Constraints

Regular Expressions over \{<,=,>\}

253 time-series constraints [Beldiceanu: synthesis]
Time-Series Constraints Families of This Work

- Only topological constraints, i.e. $\text{nb}_\sigma(X,R)$ and $\text{sum}_\text{width}_\sigma(X,R)$ (R depends only on the relations $<, =, >$ between consecutive X variables).

- Representation as register automata with linear register updates.

- 35 constraints in the two families.
Synthesis of Services (Parameterised Bounds and Cuts)

\[g_1 _ f_1 _ \sigma_1(X, R_1) \land \cdots \land g_k _ f_k _ \sigma_2(X, R_2), \ X = \langle X_1, X_2, \ldots, X_n \rangle \]

For 253 Constraints, Parameterised Bounds on \(R_i \)
(independent of \(R_j: j \neq i \))

[BoundsConstraints; CP16]

For 35 Constraints, Parameterised Cuts Linking \(R_1, \ldots, R_k \)

[CP17implied]
Example of Obtained Bounds and Generated Invariants for a Conjunction of Two Constraints

\[\text{nb_peak}(X, R_1) \land \text{nb_valley}(X, R_2) \] with \(X = \langle X_1, X_2, \ldots, X_n \rangle \), \(n \geq 2 \)

Bounds obtained from a generic formula for nb_σ:

\[
0 \leq R_1 \leq \left\lfloor \frac{n-1}{2} \right\rfloor \\
0 \leq R_2 \leq \left\lfloor \frac{n-1}{2} \right\rfloor
\]

Generated cuts:

\[
\begin{align*}
R_2 &\leq R_1 + 1 \\
R_1 &\leq R_2 + 1 \\
R_1 + R_2 &\leq n - 2 \\
R_1 + R_2 &\geq 0
\end{align*}
\]

Bounds are sharp and 3 out of the 4 found inequalities are facet-defining!
Example of a Generated Invariant for a Conjunction of Three Constraints

\[\text{nb}_\text{peak}(X, R_1) \land \text{nb}_\text{valley}(X, R_2) \land \text{nb}_\text{inflexion}(X, R_3) \]

The point \((4, 4, 7)\) is discarded by \(R_1 + R_2 \leq R_3\):

- \((4, 4, 7)\)
- \((3, 3, 5)\)
- \((2, 2, 3)\)
- \((1, 1, 1)\)
Generating Non-Linear Invariants that Deal With Missing, Infeasible Cases

Three Phases of our Method:

1. **Generation of Data:** generate all feasible combinations of R_1, R_2, \ldots, R_k for a given range of n values.

2. **Mining Phase:** generate hypothesis covering subsets of infeasible points using the generated data.

3. **Proving Phase:** prove the generated hypothesis using transducers and automata.

The three phases are offline.
Generation of Data

- Pairs of different time-series constraints
 \(\gamma_1(\langle X_1, X_2, \ldots, X_n \rangle, R_1) \) and \(\gamma_2(\langle X_1, X_2, \ldots, X_n \rangle, R_2) \).

- Generate all feasible pairs \((R_1, R_2)\) for \(n \in \{1, 2, \ldots, 12\} \).

- Compute the convex hull using Graham’s scan.

- Collect all infeasible points inside the convex hull.
Example of Samples of Generated Data

\[\gamma_1 = \text{sum_width_decreasing_sequence}, \quad \gamma_2 = \text{sum_width_zigzag} \]
Mining Phase: Generation of Hypothesis

- Consider only samples of sizes from 7 to 12.
- Hypothesis of type $C_1 \land C_2 \land \cdots \land C_p$ to cover infeasible points inside the convex hull.
- Every C_k is a relation from our bias.
- Examples of relations in our bias:
 - $R_i = c$, $c \in \mathbb{Z}$,
 - $R_i = \text{upper bound}(R_i, n)$,
 - R_i is odd (even),
 - $R_i = R_j$.

Every infeasible point on/inside the convex hull must be covered by at least one hypothesis.
Mining Phase: Example

(Group 1) \(R_1 = 1 \)

(Group 2) \(R_2 = 1 \)

(Group 3) \(R_1 = 3 \land R_2 = 2 \)

(Group 4) \(R_1 = 5 \land R_2 = 4 \)

(Group 5) \(R_1 = up(R_1, n) \land R_2 \mod 2 = 1 \)

(Group 6) \(R_1 = R_2 \land R_1 \mod 2 = 1 \)
Classification of Groups of Points

1. **Independent Groups**: \(H = C_1 \land C_2 \land \cdots \land C_p \), every \(C_k \) depends only on one \(R_i \).
2. **Dependent Groups**: \(H = C_1 \land C_2 \land \cdots \land C_p \), at least one \(C_k \) depends on more than one \(R_i \).

The proof scheme depends on the group type!
Proving Phase: Independent Groups

- For every hypothesis $C_1 \land C_2 \land \cdots \land C_p$, generate a constant size automaton for each C_i relation.

- Do the intersection of the automata for all $C_1, C_2, \ldots C_p$.

- The intersection is an automaton that recognises all and only sequences satisfying the conjunction $C_1 \land C_2 \land \cdots \land C_p$.

- If the intersection is empty, then $C_1 \land C_2 \land \cdots \land C_p$ is not feasible.
 else generate a counter example to refine the hypothesis.
Proving Phase: Independent Group Example

\[\text{sum_width_decreasing_sequence}(X, R_1) \land \text{sum_width_zigzag}(X, R_2) \]

An independent group is described by \(R_1 = 3 \land R_2 = 2 \)

The intersection of two automata is **empty**!

The combination \(R_1 = 3 \) and \(R_2 = 2 \) is indeed **infeasible**.
For two considered families of time-series constraints, we can generate systematically automata for:

- $R_i = c$, $c \in \mathbb{Z}$,
- $R_i = \text{up}(R_i, n) - c$, $c \geq 0 \in \mathbb{Z}$, and γ_i is nb_\sigma,
- $R_i = \text{up}(R_i, n)$, and γ_i is sum_width_\sigma,
- R_i is odd/even.
Example of Automaton for the ‘R is odd’ Rule

\[\text{sum_width_decreasing_sequence}(X, R) \]

(a) Automaton for the sum_width_decreasing_sequence constraint;
(b) Automaton for the ‘R is odd’ rule, constructed from (a)
Example of Automaton for the $R = up(R, n)$ Rule

\[
sum_width_decreasing_sequence(X, R)
\]

(a) Automaton for the \texttt{sum_width_decreasing_sequence} constraint;
(b) Automaton for the $R = up(R, n)$ rule, constructed from (a)
Proof of dependent groups requires case by case consideration.

The proof consists of verifying a certain property using our cut-generation technique.

Often, this property is only a sufficient, but not a necessary condition, for proving our hypothesis.
Conclusion

- **Convex Case:** A compositional way of generating cuts from register automata. Already evaluated in [CP17implied].

- **Non-Convex Case:** Data Mining + Proof (using automata characterising infeasible combinations of points for conjunction of constraints)

 Currently evaluated from two perspectives:
 - Use small sequences for learning, check on bigger sequences whether uncovered infeasible points appear or not.
 - Check how much it enhances propagation.

- Our method is offline and solver/system independent (build a data base of parameterised invariants)