Cooperation control in Parallel SAT Solving

N. Lazaar, Y. Hamadi, S. Jabbour, M. Sebag
Parallel SAT Solving

Decentralized resolution

▶ Each core: conflict-directed clause learning
▶ Cooperation: each core sends the learned clauses to other cores
▶ Why? additional clauses help pruning the search space.

Previous work

Hamadi et al. 09

▶ Controlling the length of the shared clauses
 (TCP/IP congestion avoidance, additive increase multiplicative decrease)
Limitations

Does not scale up when the number of cores increases.

Position of the problem

- Dynamically control the topology of the network
- This paper: density ρ is fixed
BESS
Bandit Ensemble for parallel SAT Solving

Core tasks
- Design the reward
- Adjust the decision schedule wrt internal SAT schedule

BESS structure
- Each receiver core
- Selects n emitter cores

$n = 1/2 \# \text{ cores}$
Designing the reward of an emitter core

\textbf{Reward(emitter)}: sum of reward(shared clauses)

I. Global clause rewards

\begin{itemize}
 \item Size-based: clause of length s removes 2^{N-s} instances
 \[
 r(c) = -\log 1 - 2^{-s}
 \]
 \item Literal-block distance
 each literal (decision level) produces unit propagations
 \text{LBD}: difference between highest and lowest decision levels in the clause literals
 \item Mixtures of the above
\end{itemize}

FAIL
II. Receiver-specific clause rewards

- Literals ℓ are associated their activity $a(\ell)$

 # (their assignment \rightarrow failure)

$$r(c) = \frac{1}{c} \sum_{\ell \in c} \text{sigmoid} \left(\frac{a(\ell)}{a_{\max}} \right)$$
BESS Algorithm

In each core, independently

- Maintain a reward threshold
- Update the reward of alive emitters relaxation
- \(\Pr (\text{removing emitter}) = \Pr (\text{emitter reward} < \text{threshold}) \)
- Turns (oldest) sleeping emitters into alive ones to achieve \(n \) alive emitters at all time.
Experimental setting

Platforms

- 8-core Intel Xeon, 16 GB RAM, 2.33GHz
- 32-core AMD Opteron Proc. 6136, 64GB RAM, 2.4GHz.

SAT instances

SAT-Challenge 2012.
588 SAT+UNSAT instances.

Parameters

- CPU time limit = 30mn CPU per core
- Shared clause limit size: 8
- Alive emitters: 1/2 nb of cores.

Baseline

Random selection of alive emitters in each time step.
Results on 8 cores

Comments

- Bess slightly improves on ManySAT 2.0 for difficult problems
Results on 32 cores

Comments

- Random improves on ManySAT 2.0 (confirms scalability issue)
- Bess improves on Random and ManySAT 2.0
 solves the first 300 pbs in 20,000 s. versus 50,000 s.
Perspectives

1. Adjust the *number* of emitters for each core

2. Adjust the clause length limit

3. Share information among cores to speed-up cooperation, enforce diversification.