NEGATION *for free!*

Nadjib Lazaar — Aribi Noureddine
Arnaud Gotlieb — Yahia Lebbah

N° 7749
October 2011
NEGATION for free! *

Nadjib Lazaar †, Aribi Noureddine ‡
Arnaud Gotlieb †, Yahia Lebbah ‡

Domaine : Algorithmique, programmation, logiciels et architectures
Équipes-Projets Celtique

Rapport de recherche n° 7749 — October 2011 — 16 pages

Abstract: Global constraint design is a key success of CP for solving hard combinatorial problems. Many works suggest that automaton-based definitions and filtering make easier the design of new global constraints. In this paper, from such a design, we present an approach that gives an automaton-based definition of the NEGATION of a global constraint... for free! For a given global constraint C, the idea lies in giving operators for computing an automaton that recognizes only tuples that are not solution of C, and use the REGULAR global constraint to automatically reason on this automaton. We implemented this approach for automaton-based global constraints, including global contiguity and \leq_{lex} constraints, and got experimental results that show that their automatically computed negation is highly competitive with more syntactic transformations.

Key-words: Global Constraints; Negation; Deterministic Finite Automaton.

* This work is supported by INRIA-DGRSDT (France, Algeria).
† INRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France mail: {nadjib.lazaar, arnaud.gotlieb}@irisa.fr
‡ Université d’Oran Es-Senia, Lab. LITIO,B.P. 1524 EL-M’Naouar, 31000 Oran, Algeria, mail: aribi_noureddine@yahoo.fr, ylebbah@gmail.com
Ngation gratuite des contraintes globales

Résumé : Les contraintes globales représentent en grande partie la puissance de la PPC. Ces dernières années, on retrouve de nouvelles représentations des contraintes globales par des automates tâts finis (DFA) ou encore des MDD (Multivalued Decision Diagram) avec du filtrage générique. Dans cet article, partant d’une représentation DFA, nous présentons une approche pour la ngation des contraintes globales. En prenant une contrainte globale C, l’idée est de définir des opérateurs qui calculent un automate qui ne reconnait que les solutions de \(\neg C \). Pour le filtrage, nous utilisons la contrainte générique REGULAR qui prend l’automate de la version nie de la contrainte. Nous avons exprimé cette approche sur deux exemples (i.e., global contiguity et Lex), les résultats sont comparés ceux d’une ngation naive d’un niveau syntaxique.

Mots-clés : Contraintes Globales; Ngation; Automate tâts finis.
1 Introduction

Modern constraint programming languages aim at making easy problems formulation and solving. One of the key success of CP is global constraints design. Since its introduction in [6], automaton-based definition of global constraint has grown and is now recognized as a mainstream technique. Carlsson and Beldiceanu proposed in [6, 3] to use automata representation and reformulation for designing new global constraints from constraint checkers. Pesant proposed in [14] a generic global constraint, the REGULAR global constraint which holds if a fixed-length sequence of finite-domain variables represents a word of a given regular language. In another context, Andersen et al. [1] proposed to use the multivalued decision diagram structure (MDD) to replace the domain store where constraints have an MDD-Based presentation.

As suggested by the above mentioned works, building new global constraints is often required to address challenging combinatorial problems. Obviously, having logical negation in the tool-box would be interesting to facilitate this process. In our previous works related to program verification [10, 11, 12], we faced the problem of negating existing global constraints. Our (naive) solution involved simple syntactic transformations of the original constraints to easily compute its negation. For example, the negation of: \(\text{inverse}(\text{all}(R)(i \in R) \ g[i], \ \text{all}(S)(j \in S) \ f[j]) \); in OPL was easily expressed by:

\[
\text{or}(i \in S) \ g[f[i]] = i; \ o r(j \in R) \ f[g[j]] = j.
\]

As possible, the syntactic transformations can exploit also the existing global constraints to express the negation form of a given constraint. For example, the negation of an atLeast constraint can be expressed using the atMost and vice-versa, GCC by atLeast and atMost, allDifferent by a disjunction of GCC, etc.

However, those syntactic transformations did not capture the essence of logical negation and did not filter constraints in a sufficient and consistent way.

In (Constraint) Logic Programming, negation–as–failure has been the traditional approach to deal with negation in the general framework of the Clark completion. However, it is well known that negation–as–failure corresponds only to logical negation on ground instances. Constructive negation, as proposed by Stuckey in [18], presents a sound and complete operational model of negation in the Herbrand Universe. An interesting implementation of this operator in the constraint concurrency model of Oz has been proposed by Schulte in [16]. Constructive constraint negation is general as it can handle any constraint but is also ineffective in terms of filtering. Indeed, no dedicated filtering algorithms is available for the negation of the constraint and thus, these operators are usually not useful to prune the search space. More recently, constraint negation has been considered in the more general context of logical connectives [5, 2, 13]. However, in these works, negation is proposed for constraints defined in extension and cannot be applied to global constraints that capture complex relations among a set of variables.

In this paper, we present an approach that takes the automaton-based design of a global constraint as input and automatically returns an automaton-based definition of the NEGATION of this global constraint. For a given global constraint \(C \), the idea is first to give operators for computing a Deterministic Finite Automaton (DFA) that recognizes the tuples that are not solution of \(C \); and second to use the REGULAR global constraint [14] to automatically derive filtering rules for this new automaton.

One can choose an MDD-based design and just swap end-states to get the negation form. But this approach has two limitations: First, it is expensive, because for a given constraint, the generated MDD contains only the feasible paths. To do such
negation, the infeasible portion has to be generated as well as the feasible one. Second, for efficiency reasons, MDD-based global constraints are usually represented by fixed-width MDDs [8] which are correct but produce imprecise relaxations. This representation may include assignments violating the constraint, thus, building the negation of a given global constraint by swapping the end-states between accepting and non-accepting states in a fixed-width MDD, may be unsound. On the contrary, we will see that using a folded DFA for building the negation is guaranteed to be sound.

This paper contains global constraint examples that were automatically negated through our approach, including the negation of the global contiguity and \(\leq_{lex} \) constraints. We implemented our approach in Gecode, where a good implementation of REGULAR is available, and got experimental results on these global constraints that show our negation is highly competitive with more syntactic transformations.

The paper is organized as follows. The next section describes the process of constructing the automaton of the negated constraint and using REGULAR. Section 3 illustrates the approach on two constraints: global contiguity, and \(\leq_{lex} \). The experimentations are described in section 4. Section 5 concludes the paper.

2 Negation on DFA-based Global Constraints

In this section, we present an efficient method to handle the negation of the automaton-based design global constraints. This kind of global constraint has behind a specific DFA (Deterministic Finite Automaton) as a checker of ground instances. We summarize the approach in two points:
- From the DFA of a given global constraint \(C \), we generate, using an automatic process, the complement which is the DFA of the negation form (\(\neg C \)).
- We derive the filtering algorithm using the REGULAR constraint.

2.1 Notations

A Deterministic Finite Automata (DFA) \(A \) of a given constraint \(C \) is defined as a 7-tuple, \((X, E, \Psi, \Sigma, \delta, e_0, F)\), consisting of:
- a sequence of finite-domain variables \(X \) (i.e., signature of the constraint \(C \)),
- a finite set \(E \) of states \(e_i \),
- a finite set of labeled states \(\Psi \) s.t. \(source(e_0) \): the starting state, \(node(e_i) \): intermediate state, \(sink(e_i) \): sink state\(^2\), \(final(e_i) \): final state,
- a finite alphabet \(\Sigma \),
- a transition function \(\delta \), \((e_i, s, e_j)\) is a transition where \(e_i, e_j \in E, s \in \Sigma \cup \{\$\}\),
- the start state \(e_0 \) where \(source(e_0) \in \Psi \),
- a set of final states \(F \subseteq E \) where \(\forall e_i \in F : final(e_i) \in \Psi \).

We stress the fact that any state \(e_i \) should have exclusively one of the four possible labels in \(\Psi \). We note \(\mathcal{L} \) the language recognized by \(A \) (i.e., \(\mathcal{L}(A) \)) where \(\mathcal{L} \subseteq \Sigma^* \).

\(^2\)State \(e_i \) is a sink state if and only if it is not a final state and there are no transitions leading from \(e_i \) to another state.

\(^3\)\$\$ represents the empty transition.
2.2 DFA Complement

To have the complement of a global constraint DFA’s we use three operators, namely: Complete, Swap-state and Clean-up operators.

2.2.1 A Complete DFA

A deterministic automaton \(A\) of a given constraint \(C\) considers essentially the patterns where the constraint is evaluated to the accepted or satisfied states (i.e., final states). It does not consider all the possible patterns of the constraint. The patterns that violate the constraint are not considered, because they do not lead to satisfaction states. Thus, to complete an automaton we have to add all possible states in order to be able to consider all the possible patterns of the constraint instance (i.e., \(C(A)\)). Formally speaking, the complete operator on \(A\) returns an extended automaton \(C(A)\) that takes in account all transitions as well as those leading to a sink state.

Definition 1 \((C(A))\) The complete automaton of \(A = (X, E, \Psi, \Sigma, e_0, F)\) is \(C(A) = (X, E', \Psi', \Sigma, \delta', e_0, F')\) s.t.:

- \(E' = E \cup \{e_k : \exists s \in \Sigma, e_i \in E \text{ s.t. } (e_i, s, e_k) \notin \delta\}\)
- \(\Psi' = \Psi \cup \{sink(e_k) : e_k \in E' \setminus E\}\)
- \(\delta' = \delta \cup \{(e_i, s, e_k) : \exists s \in \Sigma, e_i \in E', e_k /\notin E\}\)

For \(|E| = n\) and \(|\Sigma| = m\), the complete operator adds at most \(nm\) states and transitions, and is \(O(nm)\). It is correct where it preserves \(L(A)\) by adding only sink states. It is also complete where, for each state of the computed DFA’s, there is as outgoing arcs as symbols in \(\Sigma\).

2.2.2 A DFA Swap-state

The swap-state \(S\) swaps the sink states to final and vice-versa.

Definition 2 \((S(A))\) Let us take the automaton \(A = (X, E, \Psi, \Sigma, e_0, F)\), a swap-state on \(A\) is \(S(A) = (X, E, \psi', \Sigma, \delta, e_0, F')\) s.t.:

\[
\forall e_i, e_j \in E : final(e_i), sink(e_j) \in \Psi \\
\Rightarrow sink(e_i), final(e_j) \in \Psi'
\]

It is obvious to say that the swape-state operator is correct and complete where all (and only) sink (resp. final) states are swapped.

2.2.3 A DFA Clean-up

The Clean-up operator on a DFA \(A\), noted \(U(A)\), is the inverse function of the complete operator (i.e., \(U(C(A)) = C(U(A)) = A\)), where the clean-up reduces the automaton by removing all transitions leading to a sink state.
Definition 3 (U(A)) The clean-up operator of \(\mathcal{A} = (X, E, \Psi, \Sigma, e_0, F) \) is \(U(\mathcal{A}) = (X, E', \Psi', \Sigma, \delta', e_0, F') \) s.t.:

- \(E' = E \setminus \{ e_k : \text{sink}(e_k) \in \Psi \} \)
- \(\Psi' = \Psi \setminus \{ \text{sink}(e_k) : e_k \in E \} \)
- \(\delta' = \delta \setminus \{ (e_i, s, e_k) \in E \times \Sigma \times E : \text{sink}(e_k) \in \Psi \} \)

The clean-up operator preserves \(L(\mathcal{A}) \) where it cannot remove a final or a node state (correctness). At the end, the computed DFA’s removes all sink states and transitions leading to its (completeness).

Using the three operators seen before, we get the complement of a given DFA of a global constraint.

Theorem 1 Let \(\mathcal{A} \) a DFA. \(\bar{\mathcal{A}} \) is the complement s.t.:

\[
\bar{\mathcal{A}} = \mathcal{U}(\mathcal{S}(\mathcal{C}(\mathcal{A})))
\]

Proof

Let \(L(\mathcal{A}) \) (resp. \(L(\mathcal{B}) \)) a regular language for some DFA \(\mathcal{A} = (X, E, \Psi, \Sigma, e_0, F) \) (resp. \(\mathcal{B} = (X', E', \Psi', \Sigma, \delta', e_0, F') \)) s.t. \(\mathcal{B} = \mathcal{U}(\mathcal{S}(\mathcal{C}(\mathcal{A}))) \). \(\mathcal{B} \) is the complement of \(\mathcal{A} \) iff \(\bar{L}(\mathcal{A}) = L(\mathcal{B}) \) (i.e., \(L(\mathcal{A}) = \Sigma^* - L(\mathcal{A}) \) as stated by [9]).

- \(w \in L(\mathcal{A}) \Rightarrow w \notin L(\mathcal{B}) \): Let \(w \in L(\mathcal{A}) \), so \(\exists e_i, \text{s.t.} \ (e_0, w, e_i) \in \delta^* \) and final\((e_i) \in \Psi \). \(e_i \) is a final state in \(\mathcal{C}(\mathcal{A}) \) (Def.1) where it is swapped to sink state by \(\mathcal{S}(\mathcal{C}(\mathcal{A})) \) (Def.2). By \(\mathcal{U}(\mathcal{S}(\mathcal{C}(\mathcal{A}))) \) \(e_i \) will be removed as it is sink state, so final\((e_i) \notin \Psi' \) (Def.3) and \(w \notin L(\mathcal{B}) \).

- \(w \in L(\mathcal{B}) \Rightarrow w \notin L(\mathcal{A}) \): In the same way, the inverse is also true.

Property 1 The complement of a regular language is regular [9].

The property guarantees that the complement of a given DFA automaton \(\mathcal{A} \) (i.e., the recognized regular language \(L \)) is a DFA (i.e., regular language).

Property 2 The complement of a DFA of a given constraint \(\mathcal{C} \) represents the DFA of the negated form \(\neg \mathcal{C} \).

A DFA of a given constraint \(\mathcal{C} \) represents the solution set of the constraint, therefore all instantiations that do not belong to this solution set are recognized by the complement DFA. So, the complement DFA represents the solution set of \(\neg \mathcal{C} \).
2.3 Filtering the negation with the REGULAR constraint

Having the automaton is not enough to get a filtering algorithm of the negation of a given global constraint: rules associated to the regular expressions recognized by the automaton have to be considered [6]. While automatic construction of the automaton of the negation is easy, finding filtering rules is difficult, especially when generalized arc-consistency is required. In the general case, as the automaton for the negation is a DFA that can be augmented with counters, the generic global constraint GRAMMAR could be used to automatically derive filtering rules [17, 15]. However, this constraint has exponential cost w.r.t. the states of the automaton. When strings are of fixed length, [7] pointed out an approach where the GRAMMAR constraint is processed with the REGULAR global constraint [14] by transforming the push-down automaton associated to the constrained grammar to a finite-state automaton. Thus, in our approach, we selected the REGULAR global constraint to encode generic filtering rules for the negation of global constraints.

A regular language membership constraint is a constraint \(C \) on a sequence of finite-domain variables \(x \) associated with a DFA \(\mathcal{A} = (X, E, \Sigma, \delta, e_0, F) \) s.t:

\[
\text{regular}(x, \mathcal{A}) = \{ \tau : \tau \text{ tuple of } x \text{ recognized by } \mathcal{A} \}
\]

The consistency algorithm of the REGULAR constraint has three main phases. The forward, the backward and the maintaining phases collect states from \(E \) that support the pair \((x_i, v_i) \) (i.e., \(v_i \in D_{x_i} \)).

The forward phase unfolds the DFA \(\mathcal{A} \) by constructing the corresponding Multivalued Decision Diagram (MDD) which is an acyclic graph by construction. The MDD contains different layers \(L_i \) \((L_1, L_2, \ldots, L_n) \). Each layer contains states from \(E \) where arcs appear between consecutive layers. The first layer \(L_1 \) contains only the start state \(e_0 \) (source \(e_0 \) \(\in \Psi \)). We unfold the DFA from \(L_1 \) to \(L_n \) according to the transition function \(\sigma \).

The backward phase removes states and the corresponding incoming arcs from layer \(L_n \) to \(L_1 \). We start by removing from the last Layer \(L_n \) all no final states and their incoming arcs. For a layer \(L_i \), we remove all states and their incoming arcs that have no outgoing arcs.

There is also a maintaining phase if a domain reduction is provoked by another constraint. Here the MDD needs to be maintained by removing all arcs corresponding to the removed value. We remove also, for each layer, all unreachable states or those without outgoing arcs.

To show how REGULAR is used in our framework, we illustrate the automatic derivation for the negation of global_contiguity and \(\leq_{lex} \) in the next section.

3 Case Studies

In this section we take two case studies to illustrate our approach, namely global_contiguity and \(\leq_{lex} \) constraints. We construct DFA of the negated form and we get the filtering algorithm using the REGULAR constraint.
3.1 Case study: ¬global_contiguity

The global_contiguity(var) [3, 4] is defined on a vector of variables var. Each variable var[i] can take value in \{0, 1\}. The global_contiguity constraint holds since the valuation of the sequence of variables var contains no more than one group of contiguous 1. For example, if we take a sequence of 10 variables, the sequence 0011100110 is a correct sequence where 0011100110 is not.

The DFA of global_contiguity constraint is given in Fig. 1 part(a). It corresponds to:

\[
\mathcal{A} = (\text{var}, \{e_0, e_1, e_2, e_3\}, \Psi, \{0, 1\}, \delta, e_0, \{e_3\}),
\]

\[
\Psi = \{\text{source}(e_0), \text{node}(e_1), \text{node}(e_2), \text{final}(e_3)\},
\]

\[
\delta = \{(e_0, 0, e_0), (e_0, 1, e_1), (e_0, \$, e_3), (e_1, 1, e_1), (e_1, 0, e_2),
\]

\[
(e_1, \$, e_3), (e_2, 0, e_2), (e_2, \$, e_3)\}.
\]

Figure 1: Complement DFA of the global_contiguity constraint.

To construct the complement of the DFA shown in Fig. 1 part(a), we first call the complete operator (Fig. 1 part(b)) where the sink state \(e_4\) is added to complete the automaton. Second, the swap-states operator swaps the added state \(e_4\) to final and the final state \(e_3\) is swapped to sink state (Fig. 1 part(c)). The clean-up step removes the resulting sink state \(e_3\) (Fig. 1 part(d)).

Once the DFA of the negated form constructed, we exploit the filtering algorithm of the REGULAR constraint.

The regular expression of the consistent tuples of global_contiguity is given by:

\[0^*10^*\]

If we consider the negation form, we have as regular expression of the consistent tuples of ¬global_contiguity:

\[0^*11^*00^*1(0, 1)^*\]

These two regular expressions can be easily modeled in any CP language containing the REGULAR constraint.

The fact that the automaton of global_contiguity constraint is defined on the variables values, enabled to exploit efficiently and directly the REGULAR constraint.

Let us take an example with four variables \((x_1, x_2, x_3, x_4)\). Fig. 2 shows the three phases of REGULAR consistency algorithm. The MDD is constructed with four layers.
corresponding to the variables. The forward phase unfolds the negated DFA of Fig. 1 where the backward phase removes 9 arcs and 6 states. If another constraint reduces the domain of x_3 by removing the value 0, the maintaining phase removes 6 arcs and 3 states to have at the end only two solutions (1010 and 1011).

Figure 2: REGULAR constraint on \negglobalcontiguity with four variables.

3.2 Case study: \negLex

The lexicographic ordering constraint\cite{3, 4} $\vec{x} \leq_{lex} \vec{y}$ over two vectors of variables $\vec{x} = < x_0, x_1, ..., x_{n-1}>$ and $\vec{y} = < y_0, y_1, ..., y_{n-1}>$ holds iff $n = 0$, or $x_0 < y_0$, or $x_0 = y_0$, and $\vec{x} = < x_1, ..., x_{n-1} > \leq_{lex} < y_1, ..., y_{n-1}>$. The automaton is defined on the relation between every two consecutive variables. In order to exploit the REGULAR constraint, we should transform the Lex constraint as following:

$$\vec{x} \leq_{lex} \vec{y} \equiv LexRel(r_0, r_1, ..., r_{n-1})$$

where $r_i \in \{<, =, >\}$, and $rel(r_i, y_i) \equiv x_i, y_i$. The automaton of $LexRel(r_0, r_1, ..., r_{n-1})$ is given in Figure 3 part(a) where it corresponds to: $A = (\langle \vec{x}, \vec{y} \rangle, \{r_0, r_1, r_2\}, \Psi, \{=, <, >\}, \delta, e_0, \{e_1, e_2\})$, $\Psi = \{source(e_0), final(e_1), final(e_2)\}$, $\delta = \{(e_0, =, e_0), (e_0, <, e_1), (e_0, >, e_2), (e_1, =, e_1), (e_1, <, e_1), (e_1, >, e_1)\}$.

This constraint can be easily implemented with the REGULAR constraint, where the accepted regular expression is:

$$=^* | =^* < =, < >^*$$
Negating form of the \leq_{lex} constraint is shown in part (d) of the Figure 3 which represents the complement of the DFA of \leq_{lex}. part (b,c,d) shows respectively the complete, swap-state and clean-up steps to obtain the complement. From the complement of this constraint (i.e., DFA of $\neg \leq_{\text{lex}}$) we get the associated regular expression:

$$=^* \{=,<,>\}^*$$

With the regular expression of the negated \leq_{lex}, we are able to exploit efficiently and directly the REGULAR constraint for filtering.

Let us take a simple example with $\vec{x} = [x_1, x_2, x_3, x_4]$ and $\vec{y} = [y_1, y_2, y_3, y_4]$ where each variable takes a value in $[0, 10]$. Fig. 4 shows the three phases of REGULAR consistency algorithm on $\neg \leq_{\text{lex}}$. The MDD is constructed with four layers corresponding to the variables (x_i, y_i). The forward phase unfolds the negated DFA of Fig. 3.
and the backward phase removes the state e_0 form the last layer. In the case of a reduction by other constraints where the domain of x_1 is reduced to $[5, 10]$ and y_1 to $[0, 4]$, the maintaining phase removes 6 arcs and 3 states.

4 Experimental validation

The goal of our experimental validation was to check that an automaton-based negated global constraint version (gotten for free through the presented framework) was more effective than a version where the negation is syntactically computed. For both the global_contiguity and \leq_{lex} constraints, we built Gecode models and run our experiments on Intel Core2Quad CPU, Q6600 of 2.4 GHz, Linux machine with 3 Go of RAM.

4.1 global_contiguity

The declarative specification of global_contiguity can be given by:

$$\text{global} _{\text{contiguity}}(x) \equiv \forall i, j \in 1..n : i < j \text{ s.t. } (x_i = 1) \land (x_j = 0) \Rightarrow (\forall k \in j + 1..n : x_k = 0)$$

Where, the negated form can be declaratively given by:

$$\neg \text{global} _{\text{contiguity}}(x) \equiv \exists i, j \in 1..n : i < j \text{ s.t. } (x_i = 1) \land (x_j = 0) \land (\exists k \in j + 1..n : x_k = 1)$$

The Table 1 contains our experimental results on global_contiguity. We give a comparison between the implementation of the declarative specification of $\neg \text{global} _{\text{contiguity}}$ and DFA-based implementation using our negation approach and the REGULAR constraint. The reported results are on different instances (from 200 to 10^3 variables) where a solving to get the first 100 solutions is launched. The results are on time/memory consumptions, number of propagations and the generated nodes. For each instance, from 200 to 10^3, the DFA-Based negation gives an interesting and impressive results comparing to the syntactic transformations based negation. For example, let us take the instance of 10^3 variables, the syntactic approach take more than five minutes and 2.5 Go of memory. With our DFA approach, the solving to get the first 100 solutions takes only 32 ms and 9 Mo of memory. For big instances (more than 10^3 variables), the syntactic approach reports an out-of-memory. Our approach stills giving interesting results also for the huge instance (11.10^3 variables) with 32 sec.. Fig. 5 shows the increase of time consumption of a solving to get the first 100 solutions with a syntactic negation and a DFA-based negation according to the grow-up of instances. The time consumption in the syntactic transformations increase following an exponential, where the increase time using our approach is in a linear way.

4.2 \leq_{leq}

The declarative specification of \leq_{leq} on $\vec{x} = <x_0, x_1, ..., x_{n-1}>$ and $\vec{y} = <y_0, y_1, ..., y_{n-1}>$ can be given as follows:

$$\vec{x} \leq_{\text{leq}} \vec{y} \equiv (n = 0) \lor (x_0 < y_0)$$
Table 1: Experimental results on \negglobal_contiguity.

<table>
<thead>
<tr>
<th>var</th>
<th>syntactic transformations based negation</th>
<th>DFA – based negation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>200</td>
<td>53.13</td>
<td>24.39</td>
</tr>
<tr>
<td>300</td>
<td>186.07</td>
<td>77.90</td>
</tr>
<tr>
<td>400</td>
<td>509.93</td>
<td>179.22</td>
</tr>
<tr>
<td>500</td>
<td>1 082.35</td>
<td>344.86</td>
</tr>
<tr>
<td>600</td>
<td>1 936.68</td>
<td>589.79</td>
</tr>
<tr>
<td>700</td>
<td>3 125.01</td>
<td>930.34</td>
</tr>
<tr>
<td>800</td>
<td>4 735.71</td>
<td>1 381.68</td>
</tr>
<tr>
<td>900</td>
<td>6 760.44</td>
<td>1 960.24</td>
</tr>
<tr>
<td>1 000</td>
<td>19 407.02</td>
<td>2 681.01</td>
</tr>
<tr>
<td>1 100</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 200</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 300</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 400</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 500</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 600</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 700</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 800</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>1 900</td>
<td>—</td>
<td>OOM</td>
</tr>
<tr>
<td>2 000</td>
<td>—</td>
<td>OOM</td>
</tr>
</tbody>
</table>

T: time (ms), H: memory (MB), P: propagations, N: nodes, OOM: Out of Memory

Figure 5: Time consumptions for \negglobal_contiguity (syntactic and DFA-Based negation).
\[(x_0 = y_0 \land < x_1, \ldots, x_{n-1} > \leq_{\text{lex}} < y_1, \ldots, y_{n-1} >)\]

where the negation form is simply:

\[
\neg(x \leq_{\text{lex}} y) \equiv ((n = 1) \land (x_0 > y_0)) \lor ((n > 1) \land ((x_0 > y_0) \lor

\langle x_1, \ldots, x_{n-1} > \nleq_{\text{lex}} < y_1, \ldots, y_{n-1} >))
\]

This is a first transformation to get the negation of \(\leq_{\text{lex}}\). One can also express the negation using the global constraint \(>_{\text{lex}}\) which is available on Gecode:

\[
\neg(x \leq_{\text{lex}} y) \equiv x >_{\text{teq}} y
\]

The Table 2 contains results on the syntactic negation and the \(>_{\text{lex}}\) global constraint. We compare the two results with our DFA-based negation approach. The reported results are on 200 to \(8 \times 10^3\) variables instances. The DFA-based negation is better than the syntactic negation and the original constraint \(>_{\text{lex}}\). Let us take the big instance with \(8 \times 10^3\) variables, our generic approach to negate \(\leq_{\text{lex}}\) have a time consumption three times less than the syntactic negation and two times less than \(>_{\text{lex}}\) constraint. For memory consumption, the \(>_{\text{lex}}\) have a consumption two times or more than the DFA-based negation. Through these comparisons, we see that the DFA-based negation is widely better than the syntactic negation and remains very competitive with its equivalent well established global constraint \(>_{\text{lex}}\).
Table 2: Experimental results on $\neg \leq_{lex}$.

<table>
<thead>
<tr>
<th>var</th>
<th>syntactic transformations based negation</th>
<th>DFA – based negation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>200</td>
<td>7.00</td>
<td>1.67</td>
</tr>
<tr>
<td>300</td>
<td>13.24</td>
<td>3.50</td>
</tr>
<tr>
<td>400</td>
<td>21.45</td>
<td>6.42</td>
</tr>
<tr>
<td>500</td>
<td>30.86</td>
<td>9.56</td>
</tr>
<tr>
<td>600</td>
<td>43.32</td>
<td>13.35</td>
</tr>
<tr>
<td>700</td>
<td>56.77</td>
<td>17.38</td>
</tr>
<tr>
<td>800</td>
<td>71.89</td>
<td>22.00</td>
</tr>
<tr>
<td>900</td>
<td>90.12</td>
<td>27.12</td>
</tr>
<tr>
<td>10^3</td>
<td>107.97</td>
<td>33.02</td>
</tr>
<tr>
<td>2.103</td>
<td>402.09</td>
<td>123.06</td>
</tr>
<tr>
<td>3.103</td>
<td>889.68</td>
<td>270.51</td>
</tr>
<tr>
<td>4.103</td>
<td>1 591.25</td>
<td>475.89</td>
</tr>
<tr>
<td>5.103</td>
<td>2 527.08</td>
<td>738.53</td>
</tr>
<tr>
<td>6.103</td>
<td>3 758.49</td>
<td>1 059.63</td>
</tr>
<tr>
<td>7.103</td>
<td>5 194.56</td>
<td>1 440.67</td>
</tr>
<tr>
<td>8.103</td>
<td>6 951.67</td>
<td>1 880.27</td>
</tr>
</tbody>
</table>

T: time (ms), M: memory (MB), P: propagations, N: nodes, OOM: Out – Of – Memory
5 Conclusion

In this paper, we have proposed an approach to get automatically a filtering algorithm for the negation of an automaton-based global constraint. Our approach is built over automata operations and exploits the REGULAR global constraints to automatically derive filtering rules for the negation. Through experiments, we evaluated this approach on two well-known global constraints, namely the negation of global_contiguity and ≤lex, for which we automatically derived filtering algorithms. The Gecode models and results show that our versions are efficient. We forecast 1) to extend our approach to push-down automata by using the generic GRAMMAR constraint and 2) to extend it to logical connectives (i.e., conjunction, disjunction) between global constraints.

References

