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—Constraint programs such as those written in high-
level modeling languages (e.g., OPL [15], ZINC [14], or COMET
[16]) must be thoroughly verified before being used in appli-
cations. Detecting and localizing faults is therefore of great
importance to lower the cost of the development of these
constraint programs. In a previous work, we introduced a
testing framework called CPTEST enabling automated test case
generation for detecting non-conformities [13]. In this paper, we
enhance this framework to introduce automatic fault localization
in constraint programs. Our approach is based on constraint
relaxation to identify the constraint that is responsible of a given
fault. CPTEST is henceforth able to automatically localize faults
in optimized OPL programs. We provide empirical evidence
of the effectiveness of this approach on classical benchmark
problems, namely Golomb rulers, n-queens, social golfer and car
sequencing.

I. INTRODUCTION

These last years have seen the explosion of high-level
constraint modeling languages, including OPL [15], COMET
[16], ZINC [14], or Essence [7]. In parallel, several propo-
sitions were made to use constraint programs in critical
applications. For example, constraint programs were developed
for e-commerce [9], air-traffic control and management [6],
[11] or critical software development [4], [8]. As any other
programs, constraint programs written in high-level modeling
languages must be thoroughly verified before being used on
real-size instances of satisfaction or optimization problems. In
[13], we introduced a testing framework where a first highly
declarative constraint model is took as a reference to detect
non-conformities within a refined and optimized constraint
program solving the same problem. These non-conformities
result from faults introduced during the refinement process,
coming either from the absence or the bad formulation of
constraints. Our testing framework was shown useful to detect
non-conformities but it reveals itself poor at identifying the
constraint responsible of the fault. In fact, the user resorts to
explore manually one by one each of the constraints of its
constraint model, which can be cumbersome even for small
programs. For example, consider the N-queens problem solved
by the OPL program of Fig.1. When N = 30, using a simple
declarative model of N-queens, the testing framework of [13]
reports a non-conformity: [30 29 28 ...1]. Although this vector
indeed solves all the constraints of Fig.1, it shows a fault in
the OPL program which obviously places many queens on the
same diagonal. Therefore, at least one constraint of the model
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using CP;

int n=...;

range Domain=1..n;

dvar int queens[Domain] in Domain;
dvar int diagl[Domain];

dvar int diag2[Domain];

subject to{

forall( i in Domain)
a. diagl[i]==queens[i]+1i;
forall( 1 in Domain)
b. diag2[i]==queens[i]-1i;
c. sum (i in Domain) queens[i]==(nx(n+l) div 2);

forall (ordered i, j in Domain)
d. diagl[i]<=diagl[]j];

forall (ordered i,j in Domain)
e. diag2[i]!=diag2[]j];

forall (ordered i,j in Domain)
f. queens [i] !=queens[]j];

}

Fig. 1: N-queens problem in OPL.

is incorrectly formulated. In this paper, we address the problem
of automatically locating the constraint that is responsible
of such a non-conformity. Automatic fault localization is a
difficult problem, even for conventional programs. The most
successful approach in the Software Engineering community is
the Jones, Statsko and Harrold’s algorithm [10] that compares
execution traces in order to guess the source code statements
that are more likely to contain a fault. Their implementation
called Tarantula takes both successful and unsuccessful execu-
tion traces of a sequential program as inputs, and by crossing
these traces, it ranks the statements from the most suspicious
to the less suspicious. The idea of the ranking algorithm is
that faulty statements more frequently appear on unsuccessful
traces. A related approach proposed by Cleve and Zeller aims
at tracing back the causes of fault introduction [3], which is
the ultimate goal of fault localization. Recently, it has been
shown that the Jones, Statsko and Harrold’s algorithm can be
rephrased by using classical data mining indicators [1] leading
to possible generalization to multi-faults localization. These
approaches are well suited for sequential programs as the
control flow is data-driven, i.e., any execution trace depends



on the values of input variables. However, they are not suited
for constraint programs as the control flow is constraint-driven
in this case, i.e., the order on which constraints are considered
by the language interpreter is usually not determined by input
values. In other words, comparing traces on distinct instances
does not help to localize faults. A trend in constraint program
debugging has been to analyze a single trace via generic
trace models [5], [12]. In the context of the OADymPPaC1
project, several post-mortem trace analyzers such as Codeine
for Prolog and Morphine [12] for Mercury, ILOG Gentra4CP,
and JPalm/JChoco have been developed. All these tools can
help the developer to understand and optimize his constraint
program, but they are not dedicated to automatic fault localiza-
tion. Following the Shapiro’s algorithmic debugging approach,
the user still has to query the trace and user interaction during
the debugging process is mandatory.

In this paper, we introduce a fault localization approach that
is fully automated for OPL programs. This approach is based
on systematic constraint relaxation by making use of the ILOG
CP constraint solver. The idea is to solve auxiliary constraint
programs built over the OPL constraint program under test and
the reference model used to specify the problem. We provide
an algorithm that takes the faulty constraint program and a
non-conformity as inputs and returns either a single constraint
or a set of constraints that are responsible of the fault. For
example, in the OPL program of Fig.1, our algorithm reports
constraint d as responsible of the given non-conformity. Look-
ing at constraint d permits to spot that operator =< should
be replaced by !=. We present our implementation called
CPTEST enabling automatic fault localization. We provide
empirical evidence on classical benchmark problems, namely
golomb rulers, n-queens, social golfer and car sequencing that
our approach is not only applicable but also efficient to localize
faults in OPL programs.

The rest of the paper is organized as follows: Section II
gives an overview of the constraint programs testing frame-
work of [13] and introduces some notations. Section III
presents our automatic fault localization algorithm. Section
IV presents CPTEST and the empirical results we got on
n-queens, golomb rulers, social golfers and car sequencing.
Section V concludes this paper and draws some perspectives
to this work.

II. BACKGROUND

CP aims at solving satisfaction or optimization problems.
When one faces a problem specification, one usually writes
down a first declarative constraint model that faithfully rep-
resents the problem. We have high confidence in this model
but playing with it rapidly shows that it cannot solve large
instances of the problem. Then, this model is refined us-
ing classical techniques such as constraint reformulation, re-
dundant and surrogate constraint addition, global constraint
replacement, or static symmetry-breaking constraints. This
refinement leads to have an optimized constraint model tuned
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Fig. 2: Fault localization cases.

to address difficult instances. We think that most of the
faults are introduced in this refinement step. In our previous
work [13], we introduced a testing framework taking the first
declarative model as an oracle for detecting non-conformities
in the optimized model. We defined various formal conformity
relations handling the cases where a single solution is found,
all the solutions are found or a cost function has to be
optimized.

A. Notations

In this section, we briefly give the necessary notations
to understand the rest of the paper. M denotes the initial
declarative model called the Model-Oracle and P denotes
the Constraint Program Under Test (CPUT). Sol(M) (resp.
sol(P)) denotes the set of solutions of the model-oracle (resp.
CPUT) where M possesses at least one solution(sol(M) # 0).
Considering unsatisfiable model-oracles could be interesting
for some applications but we excluded these cases in order
to avoid considering equivalence of unsatisfiable models. The
difference of two sets E and F is noted E\F £ {z/(x €
E)A(x ¢ F)}. The general conformity relation between the
model-oracle M and the CPUT P is given by the following
definition:

Definition 1 (conf):

P conf M < sol(P)#0 A sol(P) C sol(M)

B. Non-conformity detection

As proving conformity on any instance of a problem is
undecidable in the general case, we have proposed in [13], test
algorithms aiming at detecting non-conformities. For a given
instance, a non-conformity is either a solution of the CPUT P
that is not a solution of the model-oracle M, or P is reduced to
fail (i.e., sol(P) = ). Systematic non-conformities detection
can be performed by combining the negation of a constraint
of the model-oracle with the constraints of P (i.e., P A ~C;
where C; € M). Badly formulating a constraint in P can
remove and/or add solutions.

III. FAULT LOCALIZATION

Once a non-conformity is detected, one faces the problem
of localizing the faulty constraint. The major requirement on
which our approach is based is the single fault hypothesis,



i.e., there is only one constraint that is faulty in P. This
requirement might appear as being restrictive but it has been
shown that complex faults usually result from the coupling of
single faults (a.k.a. the coupling effect [10]). In other words,
faults that come from the interaction of several constraints are
less likely to appear than single faulty constraint. Therefore,
in our approach, when a non-conformity is found, we suppose
that the CPUT P misses a single constraint or has only one
faulty constraint in it.

A. Intuitions

Fig.2 depicts four distinct cases where the CPUT P does
not conform the model oracle M (P —conf M), i.e., there
is a solution of P and not of M (part (a, b)) or sol(P) =0
(part (c, d)), where P is a conjunction of three constraints
C1 AN Cy A C3. In Fig.2, P is represented by the intersection
of the three constraints and possible corrections are shown in
blue.

o Part(a) exhibits a set of non-conformities (i.e., solutions
of P but not of M) where P shares solutions with M
(i.e., sol(M)Nsol(P) # (). P is faulty as it contains C3 a
badly formulated constraint such that sol(P)\sol(M) #
(). In fact, after having localized Cs, this model could be
corrected as shown in part(a’).

o Part(b) exhibits another set of non-conformities where
sol(P)\sol(M) # 0 and sol(M) N sol(P) = 0. In this
example, we have

sol(M) N sol(Cy) N sol(Cy) #
sol(M) N sol(Cy) N sol(C3)
sol(M) N sol(C2) N sol(Cs)

0
0
0

hence, the faulty constraint can be localized as being C's.
Part(b’) shows a possible correction of P by revising
Cs.
o Part(c) exhibits a case where P is unsatisfiable. Here
again, we have
sol(M) N sol(Cy) N sol(Cy) #
sol(M) N sol(Cy) N sol(C3)

sol(M) N sol(C2) N sol(C3)

0
0
0

hence C} is localized as the faulty constraint and should
be revised as proposed in part(c’).

o Finally, Part(d) shows a case where P is unsatisfiable
but differs from the previous one as

SOZ(M) N SOl(Cl) n 801(02) 7é 0= C'3 may be faulty
SOZ(M) n SOZ(01> N SOl(Cg) 7é 0= C'5 may be faulty
SOZ(M) n SOZ(CQ) N 801(03) #+ () = C1 may be faulty
In this case, the faulty constraint cannot be local-
ized and the set {C},C%,C3} is returned as an over-

approximation. In part(d’), we chose C5 as a possible
correction.

(a) (b) (c)

Fig. 3: Faulty constraint.

There are three distinct cases when considering non-
conformities within P w.r.t. M: if C’ is a faulty version of a
given constraint C, then C’ can either removes actual solutions
(such as in part(a) in Fig.3), either add “new solutions” (part(b)
in Fig.3) or both (part(c) in Fig.3).

B. The fault localization process

Our fault localization process is based on the following
definitions and property. Formally speaking, given a CPUT
P formed of {Cy,Cy,...Cy, } constraints that are not conform
w.r.t. its Model-Oracle M, then we introduce the notion of
suspicious constraint as follows:

Definition 2 (Suspicious constraint):

C; is suspicious in P w.r.t. M
=MA{C1,Cs...,Ci—1,C41...Cy } is satisfiable.

P does not conform M iff either P is unsatisfiable or
there exists a non-conformity test case nc such as nc €
sol(P)\sol(M). Our fault localization process aims at report-
ing the set of suspicious constraints:

Definition 3 (SuspiciousSet): SuspiciousSet(P) = {C €

P : C is suspicious in P w.r.t. M}
In the example of Fig.2, the fault localization process will
return Suspicious(P) = {Cy,Cs,Cs} for part(a) and part(d)
as no one of these three constraints may be faulty while
it will return singleton {C5} for both part(b) and part(c),
showing that the faulty constraint is actually C3. Note that,
by construction, the set Suspicious(P) is the smallest set
containing all the suspicious constraints and then the over-
approximation provided by this approach is also the more
precise.

C. Algorithm

Based on the previous definitions, we propose an algorithm
called locate that automatically localize suspicious constraints
in P. Algo.l takes as inputs the Model-Oracle M, the
CPUT P and a non-conformity nc that has been automatically
detected by other means [13]. The special case where P
is unsatisfiable and then there is no nc is handled by a
special tag. This algorithm returns SuspiciousSet(P) noted
rev({C1,..,Cy,}) that may be a singleton in the most favor-
able case or all the constraints of P in the worst case. The
algorithm returns also a second set addSet for the special
case where all the constraints of P are suspicious, and a non-
conformity point nc exists. In this case, nc satisfies P, but
does not satisfy some single constraint in M, according to
the testing process [13]. The checking algorithm computes
addSet, the subset of M constraints that does not satisfy nc:
some of these constraints could be caught in P in order to
eliminate this non-conformity point.



Algorithm 1 locate(M, P, nc)

1: set «— ()

2: addSet — ()

3: for each C; € P do

4. if sol(M N P\{C;}) # () then
5 set «— set U {C;}

6: end if

7. end for

8: if (set = P) A (nc # () then

9:  addSet «— checking(M,nc)

end if
return (rev(set), addSet)

_ = =
M o2

14: checking(B, nc):
15: if B = () then
16:  return ()

17: else

18: for each C; € B do

19: if nc |= C; then

20: return checking(M\{C;},nc)

21: else

22: return {C;}U checking(M\{C;},nc)
23: end if

24:  end for

25: end if

D. Correctness and completeness

Providing that the underlying constraint solver is correct and
complete, Algo.1 is correct as it will necessary return the faulty
constraint within SuspiciousSet(P). As sol(M AP\{C;}) #
() is a sufficient condition for assessing that C; is actually
a faulty constraint and Algo.1 loops on all the constraints,
no suspicious constraint can be missed. But, this condition
is not necessary as, by hypothesis, only a single constraint
is faulty. Thus, algo.l is not complete and can return an
over-approximation under the form of a set of suspicious
constraints. Roughly speaking, algo.l can return false alarms
even in the case where a correct version of P is submitted
for fault localization. Note also that Algo.l can return all
the constraints of P making the fault localization totally
useless. Hopefully, this case is not frequent as it requires the
conjunction of many unlikely events such as shown in Fig.4.
In this example, there are three constraints where each pair of
constraints shares common solutions.

IV. EXPERIMENTS

All our experiments were performed on Intel Core2 Duo
CPU 2.40Ghz machine with 2.00 GB of RAM and all the
models we used to perform these experiments are available
online at (www.irisa.fr/celtique/lazaar/CPTEST).

A. CPTEST

In this section, we give a brief overview of CPTEST, a
first testing framework for constraint programs written on

Fig. 4: Pathologic case

OPL. CPTEST includes a complete OPL parser and a backend
process that produces dedicated OPL programs as output that
have to be solved to detect and localize faults. The tool
implements a process to detect fault and Algo.l to localize
this fault. CPTEST is based on ILOG CP optimizer 2.1.

The objective of our current experiment was to check that
CPTEST can automatically detect and localize fault, using
standard a fault injection process [2]. Then, we fed CPTEST
with faulty CPUTs of four well-known CP problems, namely
n-queens, social golfer, golomb rulers and car sequencing
problems and we tried to localize faults by working on several
instances from the easiest to the hardest.

B. n-queens problem

The problem of placing n queens on an n X n chessboard
is a classical problem where the model-oracle can be given
by three constraints (noted m_ctl,m_ct2 and m_ct3), the
first one insures that all queens are placed differently on their
column, the second and the third constraint insure that no
two queens are placed on the same upper or lower-diagonal
on the chessboard. We improved this model by adding new
data structures, redundant, surrogate and global constraints.
We have produced 7 different faulty CPUTs (P1 to P7)* for
n-queens using fault injection.

Tab.I shows the results given by CPTEST on each faulty
n-queens CPUT (n = 8). It shows the number of constraints
and where fault was injected (e.g. p5_ct3 for P5), P6 and
P7 are messing a part of n-queens specification where the
fault injected respectively in p6_ct3 and p7_ct1 leads the
CPUT:s to accept new solutions. (part(b) Fig.3).

Tab.I shows also the non-conformity detected after the
testing phase, the results of localization phase and its time con-
sumption. P1, P2, P3 and P4 have no solution (sol(Pi) = 0)
where the fault injected reduces them to fail. For instance let
us take P3, the fault injected in is as follows:

p3_ctll: sum(i in Domain) queens[i]==(nx(n+l)/2);

turned to

p3_ctll: sum(i in Domain) queens[i]==(n+(n+l)/2);
2We recall that all models and CPUTs are available on

(www.irisa.fr/celtique/lazaar/CPTEST).



TABLE I: Fault detection and localization of n-queens problem

8-queens # fault non-conformity
consts injected detected
P1 12 pl_ctll sol(P1) =0
- P2 12 p2_ctl2 sol(P2) =0
S P3 2 p3_ctll sol(P3) =
P4 12 pd_ctl2 sol(P4) =0
P5 5 p5_ct3 gl
Po6 3 p6_ct3 q2
P7 2 p7_ctl a3
non-conformity gql=[1 511488 4]
g2= [7 8 32 4156], g3= (843 6572 1]
8-queens fault localized time
o P1 (rev (pl_ctll),0) 2.09s
i) P2 (rev (p2_ct12),0) 1.64s
_g P3 (rev (p3_ctl1l),0) 1.57s
s P4 (rev (pd_ct12),0) 1.59s
3 P5 (rev (p5_ct3),0) 0.62s
Po (rev(P6), (m_ct2,m_ct3)) 4.12s
P7 (rev(P7), (m_ct2,m_ct3)) 3.01s

CPTEST returns (rev(p3_ct11),®) , here the set of
suspicious constraint is the singleton p3_ct11 the faulty
constraint that has to be revised. The faults are localized for
the four first programs in few seconds by pointing each time
the faulty constraint that has to be revised.

The fault injected in P5 leads it to have bad n-queens
solutions, testing phase highlights this non-conformity
(151148 8 4]). For localization phase, CPTEST points
the faulty constraint in less than a second and returns p5_ct3
to be revised.

For P6 and P7 the fault is that, respectively, p6_ct3 and
p7_ct1 do not catch a part of n-queens specification. The two
CPUTs accept consequently new solutions. CPTEST detects
non-conformities that are bad solutions revealing faults in P6
and P7. For localization, let us take P6, CPTEST returns
(rev (P6), (m_ct2,m_ct3)) , in less than five seconds. The set
of suspicious constraint is here equals to P6, CPTEST returns
also a set of M constraints (m_ct2, m_ct3) that should be
considered in P6.

C. Social golfer problem

Social golfer is one of the famous problems in the CSPLib
(prob010). We have m social golfers, n weeks and k groups
of [ size. Each golfer plays once a week in groups of [
golfers. The problem is to build a schedule of play for all
golfers over the n weeks such that no golfer plays in the
same group as any other golfer more than one time.

The model-oracle can be built by two constraints ( m_ct1
and m_ct2 ), the first one to specify that each group has
exactly [ golfers (group size). The second one to say that
each pair of golfers meets only at most once.

The model-oracle can after be improved using static
symmetry breaking. The symmetry can be broken by selective
assignment. We get a model with five constraints, we inject

TABLE II: Fault detection and localization of social golfer
problem

social 7# fault non-conformity
golfer constrs. injected detected
- P1 5 pl_ctl sol(P1) =0
é P2 5 p2_ct2 ncl
P3 5 p3_ct3 sol(P3) =0
P4 5 pd_ctd sol(P4) =0
P5 5 p5_ct5s sol(P5) =0
non-conformity ncl= [[1 11 1][1 2 2 2][1 3 3 3]
[2133][2221][22111[3332][3112][3 32 3]]
o social golfer fault localized time
S P1 (rev (pl_ctl),0) 1.04s
8 P2 (rev(P2), (m_ct2)) 0.18s
b P3 (rev (p3_ct3),0) 1.05s
S P4 (rev (p4_ctd,pd_ct5),0) 1.03s
P5 (rev (p5_ct5),0) 1.15s

in each constraint a fault to get at the end five faulty CPUTs
(P1 to P5). We launch CPTEST on these faulty CPUTs to
first detect fault and after localize them. We take an instance
of the problem with 9 golfers (3 groups of 3 golfers) playing
during 4 weeks.

Tab.IT shows the results given by CPTEST on each faulty
CPUT. The fault injected in P1, P3 and P35 are respectively on
pl_ctl, p3_ct3 and p5_ct5 . These faults reduce the solution
space to empty for the three CPUTs, so there are non-conform
to the model-oracle. For instance, let us take P35, the fault in
p5_ctb is:

p5_ct5: forall (g in 1l..golfers, w in 1..weeks:
w >= 2 && g <= groupSize )
assignlg,w] == g;
turned to
p5_ct5: forall (g in 1..golfers, w in 1..weeks:
w >= 2 && g <= groupSize )
assignlg,g] == w;

CPTEST localizes the fault (in ~ 1s) and returns the
singleton p5_ct?5 the constraint to be revised.

The fault injected in p2_ct2 leads P2 to accept new
solutions. In this case, P2 can return bad solutions. CPTEST
detects one of them by testing, ncl is a non-conformity (a
bad solution of social golfer) where golfer 3 and golfer 4
play in the same group (group3) over 2 weeks (3rd and
4th week). CPTEST returns (rev (P2), (m_ct?2)) that
the developer has to reformulate a constraint in P2 to catch
(m_ct?2) the second constraint of the model-oracle.

P4 is a case where CPTEST returns a set of suspicious con-
straint. The fault is injected in p4_ct4 and CPTEST returns
(p4_ct4, p4_ct5) an over-approximation of constraints.
The two constraints in P4 break symmetries. Let us imagine
that the search space SR can be divided in two symmetric sets:
SR =51 US; where p4_ct5 removes Sy. p4_ct4 divides
S1 in two symmetric sets (S; = S3 U .Sy) and removes Sy.
By adding the two constraints, the search space is reduced to
Ss. The fault injected to p4_ct 4 removes S; where p4_ct5



TABLE III: Fault detection and localization of Golomb rulers
problem

TABLE IV: Fault detection and localization of car sequencing
problem

removes Sy, in this case the search space is reduced to empty
and either p4_ct4 or p4_ct5 can be revised.

D. Golomb rulers

A Golomb ruler is a set of m marks (0 = z1 < z3... < T,)
where the m(m — 1)/2 distances {z; — z;|1 < i < j < m}
are distinct. A ruler is of order m and its length is x,,. The
objective is to find an optimal ruler (minimal length) of order
m.

A first declarative model (model-oracle) includes two
constraints. m_ct1l to order the marks and m_ct2 to have
different distances between these marks.

We improve this model using different techniques, the use
of new data structure (e.g. d for distances), the addition of
a global constraint (allDifferent (d)), the addition of
surrogate and redundant constraints. We also break symmetry
by adding specific constraints. We obtain at the end 7 faulty
CPUT by fault injection.

We take a small instance of Golomb rulers (m = 4). We
launch CPTEST on these faulty CPUTs where Tab.III shows
the results. The three first CPUTs accept new solutions where
the fault injected is of type part(b) Fig.3. For each of these
three CPUTs a non-conformity is reached. For example, if we
take P2, CPTEST returns after testing [0 1 6 11] that is
a bad Golomb ruler where 6-1=11-6. CPTEST returns after
localization (rev (P2), (m_ct2) ), here P2 has to catch the
second constraint of the model-oracle by reformulating one of
its constraints.

P4 and P5 are also non-conform to the model-oracle where
sol(Pi) = (. The faults are respectively in p4_ct5 and
p5_ctl. Let us take P4 to show the injected fault:

p4_ct5: allDifferent (all(ind in indexes ) d[ind]);
turned to
p4_ct5: forall(i in m..2+m)

count (all(j in indexes) d[j],1i)==1;

Golomb # fault non-conformity car 7 constraints fault non-conformity
rulers consts injected detected sequencing injected detected
P1 2 pl_ct2 [0 1 3 6] P1 2 pl_ct2 slotsl
- P2 4 p2_ct3 [001 6 11] - P2 3 p2_ct3 slots?2
E P3 5 p3_ct3 [0 5 6 11] é P3 3 p3_ct2 slots3
P4 9 pd_ct5 sol(P4) =0 P4 3 pd_ct2 sol(P4) =10
P5 9 p5_ctl sol(P5) =0 P5 6 p5_ctl sol(P5) =0
P6 9 p6_ct2 [0 1 6 11] P6 6 p6_cté6 sol(P6) =0
P7 9 p7_ct9 sol(PT) =10 P7 6 p7_ct5 sol(P7) =10
Golomb rulers fault localized time slotsl= [4 53 64 651 3 2]
o P1 (rev(P1l), (m_ct2)) 0.32s slots2= [4 6 3 1 52 35 4 6]
S P2 (rev(P2), (m_ct2)) 0.82s slots3= [52 3 6 1 4 3 6 4 5]
g P3 (rev (P3), (m_ct2)) 1.15s cSeq fault localized time
'S P4 (rev (p4_ct5),0) 1.87s - P1 (rev (P1), (m_ct2)) 0.46s
3 P5 (rev(p5_ctl), D) 1.62s i P2 (rev(P2), (m_ct2)) 0.23s
P6 (rev (P6), (m_ct2)) 2.14s 8 P3 (rev (P3), (m_ct2)) 0.67s
P7 (rev(p7_ct6,p7_ct9),0) 1.92s s P4 (rev (p4_ct2),0) 0.87s
S P5 (rev (p5_ctl),0) 1.29s
P6 (rev (p6_ct6),0) 1.34s
P7 (rev (p7_ct5, p7_ct6),0) 1.28s

CPTEST returns a singleton as suspecious constraints set
for P4 and PS5 (resp. p4_ct5 and p5_ct1) in a reasonable
time consumption.

P6 have a bad formulation on p6_ct2 and CPTEST returns
a non-conformity. For localization, CPTEST returns m_ct2 to
be caught in P6.

On P7, we injected one fault at p7_ct9 (# turned to =).
This fault reduces sol(P7) to empty. CPTEST returns two
suspicious constraints (p7_ct6 and p7_ct9). This is due
to the interference created by the injected fault between the
faulty p7_ct9 and p7_ct6 where the two constraints are
dedicated to a static symmetry breaking.

E. Car sequencing

Car sequencing is an interesting CP problem that tries to
find an assembly line of cars for a car-production company
where cars are grouped on classes. Each class represents cars
with some specific options. The assembly line must satisfy
some option capacity constraints.

The model-oracle of car sequencing is taken from the OPL
book [15]. The model-oracle is composed of two constraints
(m_ctl and m_ct2). The first one expresses demand
constraints for how many cars of a given class have to be
produced. The second one expresses capacity constraints of
the form 1 outof u for: Each sub-sequence of u cars, a
unit can produce at most 1 cars with a given option.

We improve the original model and we follow the same
approach as for the precedent problems by injecting faults.
We have at the end 7 faulty CPUTs.

We took an instance of the problem with an assembly
line of 10 cars, 6 classes and 5 options. Tab.IV shows the
results of CPTEST for fault detection and localization on car
sequencing problem.

The three first CPUTs (P1, P2 and P3) have the same
characteristics that accept new solutions and are non-conform



to the model-oracle, the faults are injected respectively in
pl_ct2, p2_ct3 and p3_ct2. CPTEST returns a non-
conformity point for the three first CPUTs (resp. slotsl,
slots2 and slots3) that are bad assembly lines. To
localize faults, CPTEST returns all constraints as an over-
approximation. It proposes a model-oracle constraint m_ct2
to be caught in the CPUTs.

P4, PS5 and P6 have a faulty constraint (resp. p4_ct2,
p5_ctl and p6_ct6). The faults injected in these CPUTs
reduce the set of solutions to empty and CPTEST detects this
non-conformity.

If we take PS5, the fault injected is a bad formulation as:

p5_ctl: forall(i in Cars) sum(j in Slots)
((slot[j]==1)~* (one[]]))==demandV[i];

turned to

p5_ctl: pack(slot, slot, one);

This constraint is returned by CPTEST ( (rev (ct1),{) in
1.29s.

In P7, the fault is injected in p7_ct5 where P7 is non-
conform to the model-oracle. CPTEST returns in localization
a set of suspicious constraints (p7_ct5, p7_ct6).

V. CONCLUSION

In this paper, we introduced a novel approach for automatic
fault localization in constraint programs. According to our
knowledge, this is the first time an approach that is not based
on post-mortem trace analysis is proposed: the advantage being
that our approach does not require any user interaction. We
enhanced CPTEST, our CP testing framework for OPL pro-
grams, with automatic fault localization. And we got empirical
evidence that shows our approach is efficient to localize fault
in OPL programs. The experimental evaluation was performed
on classical benchmarks such as Golomb rulers, n-queens,
social golfers and car sequencing. In many cases, CPTEST
can localize exactly the constraint responsible of a reported
non-conformity efficiently. In a few cases, several constraints
are proposed among which the faulty constraint is necessarily
included. However, our approach is currently built on the
hypothesis that a single constraint is responsible of the non-
conformity which is a limitation. Further work includes the
removal of this limitation as well as the extension of CPTEST
to automatic correction of faulty constraints.
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