A crash course on Order Bases: Theory and Algorithms

BY ROMAIN LEBRETON

Université Montpellier 2

CLIC 2014 Seminar Université de Versailles – Saint-Quentin en Yvelines

_

December 10th, 2014

What is this talk about?

Context:

Two different worlds

Result.

The reduction of lattices over $\mathbb{F}[x]$ takes polynomial time.

versus

Result.

The reduction of lattices over \mathbb{Z} is NP-hard.

Reduction of polynomial lattices is an important tool:

Application to the decoding of generalized Reed-Solomon codes

Today's talk:

Ideas and tools to reduce $\mathbb{F}[x]$ -lattices in polynomial time with the best current exponents.

Motivation for order bases

The following problems with matrices over a field \mathbb{F} have **equivalent** \mathcal{O} -complexity

- multiplying two matrices
- inverting a matrix
- computing the determinant of a matrix
- solving a linear system, ...

Question: What happens when working with matrices over $\mathbb{F}[x]$

Motivation for order bases

The following problems with matrices over a field $\mathbb F$ have **equivalent** $\mathcal O$ -complexity

- multiplying two matrices
- inverting a matrix
- computing the determinant of a matrix
- solving a linear system, ...

Question: What happens when working with matrices over $\mathbb{F}[x]$

Answer:

- Determinant is still equivalent to multiplication
 Other operations such as order bases, column reduction are also equivalent
- Inversion is NOT (because of the size of the output)

→ Order basis is a fundamental tool when working with polynomial matrices to reduce many problems to multiplication

Outline of the talk

- 1. Polynomial matrix multiplication in time $\tilde{\mathcal{O}}(m^\omega d)$
- 2. Order bases in $\tilde{\mathcal{O}}(m^{\omega}d)$
 - a. Definition and properties
 - b. Algorithms and complexity
- 3. Lattice reduction in $\tilde{\mathcal{O}}(m^\omega d)$

Polynomial matrix multiplication

Settings.

- ullet Let $\mathbb F$ be a field
- Let $\mathbb{F}[x]_{\leqslant d}$ be polynomials over \mathbb{F} of degree $\leqslant d$
- Let $\mathbb{F}[x]^{m \times n}$ be m by n matrices with polynomial coefficients

Complexity notations

• Multiplication in
$$\mathbb{F}[x]_{\leqslant d}$$

• Multiplication in
$$\mathbb{F}^{n \times n}$$

• Multiplication in
$$(\mathbb{F}[x]_{\leq d})^{n \times n}$$

$$\mathsf{M}(d) = \mathcal{O}(d\log d\log\log d)$$

$$\mathsf{MM}(n) = \mathcal{O}(n^{\,\omega})$$

$$\mathsf{MM}(n,d) = \mathcal{O}(\mathsf{MM}(n)\,\mathsf{M}(d)) = \tilde{\mathcal{O}}(n^\omega\,d)$$

Note:

 $\mathsf{MM}(n,d) = \mathcal{O}(\mathsf{MM}(n)\,d + n^2\,\mathsf{M}(d))$ via evaluation/interpolation on a geometric sequence

Outline of the talk

- 1. Polynomial matrix multiplication in time $\tilde{\mathcal{O}}(m^\omega d)$
- 2. Order bases in $\tilde{\mathcal{O}}(m^{\omega}d)$
 - a. Definition and properties
 - b. Algorithms and complexity
- 3. Lattice reduction in $\tilde{\mathcal{O}}(m^\omega d)$

Order basis - Definition

Settings.

Let
$$F \in \mathbb{F}[x]^{m \times n}$$
.

Let (F, σ) be the $\mathbb{F}[x]$ -module of

$$(F,\sigma) := \{ v \in \mathbb{F}[x]^{1 \times m} \text{ such that } v F = 0 \mod x^{\sigma} \}.$$

Remark.

$$x^{\sigma} \mathbb{F}[x]^{1 \times m} \subseteq (F, \sigma) \subseteq \mathbb{F}[x]^{1 \times m}$$

so (F, σ) is a $\mathbb{F}[x]$ -module of dimension m.

Definition

An (F, σ) order basis P is a $\mathbb{F}[x]$ -module basis of (F, σ) of minimal degree.

- → What is the notion of degree ?
- → Minimality for which order ?

Row degree - Definition

Definition of row degree

1. Row degree of a row vector:

$$rdeg((a_1, ..., a_n)) = max (deg a_i) \in \mathbb{Z}$$

2. Row degree of a matrix:

$$\operatorname{rdeg}\left(\left(\begin{array}{c} \operatorname{row} 1 \\ \vdots \\ \operatorname{row} m \end{array}\right)\right) = (\operatorname{rdeg} (\operatorname{row} i))_{i=1...m} \in \mathbb{Z}^m$$

Example:

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1+x & 0 \\ 1 & x^2+x^3 & x & 0 \\ x^2 & 0 & x^3+x^4 & 0 \end{pmatrix} \in \mathbb{F}_2[x]^{4\times 4} \quad \Rightarrow \quad \text{rdeg } F = (0,1,3,4) \in \mathbb{Z}^4$$

Problem:

If $(c_1, ..., c_m) = (b_1, ..., b_m) \cdot A$ then rdeg(c) is not necessarily related to rdeg(b) and rdeg(A)

→ Notion of shifted degree

Shifted row degree - Definition

Definition of shifted row degree

Let
$$\vec{s} = (s_1, ..., s_n) \in \mathbb{Z}^n$$
.

1. Shifted row degree of a row vector:

$$\operatorname{rdeg}_{\vec{s}}((a_1,...,a_n)) = \max(\operatorname{deg} a_i + s_i) \in \mathbb{Z}$$

2. Row degree of a matrix:

$$\operatorname{rdeg}_{\vec{s}}\left(\left(\begin{array}{c} \operatorname{row} 1 \\ \vdots \\ \operatorname{row} m \end{array}\right)\right) = (\operatorname{rdeg}_{\vec{s}}(\operatorname{row} i))_{i=1...m} \in \mathbb{Z}^{m}$$

Remark 1: If
$$x^{\vec{s}} = \begin{pmatrix} x^{s_1} \\ \ddots \\ x^{s_n} \end{pmatrix}$$
 then $\operatorname{rdeg}_{\vec{s}}(A) = \operatorname{rdeg}(A \cdot x^{\vec{s}})$.

Example:

If
$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1+x & 0 \\ 1 & x^2+x^3 & x & 0 \\ x^2 & 0 & x^3+x^4 & 0 \end{pmatrix}$$
 and $\vec{s} := (1,0,0,1)$ then
$$\operatorname{rdeg}_{\vec{s}} F = \operatorname{rdeg}(F \cdot x^{\vec{s}}) = \operatorname{rdeg} \begin{pmatrix} x & 0 & 1 & x \\ x^2 & 1 & 1+x & 0 \\ x & x^2+x^3 & x & 0 \\ x^3 & 0 & x^3+x^4 & 0 \end{pmatrix} = (1,2,3,4) \in \mathbb{Z}^4$$

Shifted row degree - Definition

Definition of shifted row degree

Let
$$\vec{s} = (s_1, ..., s_n) \in \mathbb{Z}^n$$
.

1. Shifted row degree of a row vector:

$$rdeg_{\vec{s}}(P_1,...,P_n) = max (deg P_i + s_i) \in \mathbb{Z}$$

2. Row degree of a matrix:

$$\operatorname{rdeg}_{\vec{s}}\left(\left(\begin{array}{c}\operatorname{row} 1\\ \vdots\\ \operatorname{row} m\end{array}\right)\right) = (\operatorname{rdeg}_{\vec{s}}(\operatorname{row} i))_{i=1...m} \in \mathbb{Z}^{m}$$

Remark 2: $\operatorname{rdeg}_{\vec{s}}(A)$ is really related to $x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}$!

$$\left\{ \begin{array}{l} \operatorname{rdeg}_{\vec{s}}(A) = \vec{v} \\ \operatorname{rdeg}_{\vec{s}}(A) \leqslant \vec{v} \end{array} \right. \text{ if and only if } \left\{ \begin{array}{l} \operatorname{rdeg}(x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}) = \vec{v} \\ \operatorname{rdeg}(x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}) \leqslant \vec{v} \end{array} \right.$$

Example:

If
$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1+x & 0 \\ 1 & x^2+x^3 & x & 0 \\ x^2 & 0 & x^3+x^4 & 0 \end{pmatrix}$$
, $\vec{u} := (1,0,0,1)$, then $\vec{v} := \mathrm{rdeg}_{\vec{u}}(F) = (1,2,3,4)$ and
$$x^{-\vec{v}} \cdot A \cdot x^{\vec{u}} = \begin{pmatrix} 1 & 0 & x^{-1} & 1 \\ 1 & x^{-2} & x^{-2}+x^{-1} & 0 \\ x^{-2} & x^{-1}+1 & x^{-2} & 0 \\ x^{-1} & 0 & x^{-1}+1 & 0 \end{pmatrix}$$

Shifted row degree - Properties

Definition of shifted row degree

Let $\vec{s} = (s_1, ..., s_n) \in \mathbb{Z}^n$.

1. Shifted row degree of a row vector:

$$rdeg_{\vec{s}}(P_1,...,P_n) = max (deg P_i + s_i) \in \mathbb{Z}$$

2. Row degree of a matrix:

$$\operatorname{rdeg}_{\vec{s}}\left(\left(\begin{array}{c}\operatorname{row} 1\\ \vdots\\ \operatorname{row} m\end{array}\right)\right) = (\operatorname{rdeg}_{\vec{s}}(\operatorname{row} i))_{i=1...m} \in \mathbb{Z}^{m}$$

Lemma - Transitivity of the shifted degree

Let $c := b \cdot A$, $\vec{v} = \text{rdeg}_{\vec{u}}(A)$ and $w = \text{rdeg}_{\vec{v}}(b)$, then

$$rdeg_{\vec{u}}(c) \leqslant w.$$

Proof.

- Reminder : $rdeg_{\vec{u}}(c) \leqslant \vec{v}$ if and only if $rdeg(x^{-w} \cdot c \cdot x^{\vec{u}}) \leqslant 0$
- $\bullet \quad \text{Then } x^{-w} \cdot \boldsymbol{c} \cdot x^{\vec{u}} = x^{-w} \cdot (\boldsymbol{b} \cdot A) \cdot x^{\vec{u}} = \underbrace{(x^{-w} \cdot \boldsymbol{b} \cdot x^{\vec{v}})}_{\text{rdeg}() \leqslant 0} \cdot \underbrace{(x^{-\vec{v}} \cdot A \cdot x^{\vec{u}})}_{\text{rdeg}() \leqslant 0} \text{ so } \text{rdeg}(x^{-w} \cdot \boldsymbol{c} \cdot x^{\vec{u}}) \leqslant 0$

Order on row degrees

Definition

Let $\vec{u} = (u_1, ..., u_m), \vec{v} = (v_1, ..., v_m) \in \mathbb{Z}^m$ be two row degrees.

We say $\vec{u} \leqslant_{\text{ob}} \vec{v}$ if for all i, $u_i \leqslant v_i$.

Few facts on $\mathbb{F}[x]$ -module bases:

- $U \in \mathbb{F}[x]^{m \times m}$ is said unimodular if $\det(U) \in \mathbb{F} \setminus \{0\}$
- U is unimodular iif U is invertible in $\mathbb{F}[x]^{m \times m}$
- If P,Q are two row bases of the same $\mathbb{F}[x]$ -module then $\exists U$ unimodular s.t. $P=U\cdot Q$

Definition

A matrix $F \in \mathbb{F}[x]^{m \times n}$ is row-reduced if for any U unimodular $\operatorname{rdeg}(F) \leqslant_{\operatorname{ob}} \operatorname{rdeg}(U \cdot F)$

Order basis - Existence

Settings (reminder).

- $F \in \mathbb{F}[x]^{m \times n}$,
- $(F, \sigma) := \{ v \in \mathbb{F}[x]^{1 \times m} \text{ such that } v F = 0 \mod x^{\sigma} \}.$

Definition

An (F, σ) order basis P is a $\mathbb{F}[x]$ -module basis of (F, σ) that is row-reduced.

Proposition

There exists a row-reduced basis P of (F, σ) .

Example

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1+x & 0 \\ 1 & x^2+x^3 & x & 0 \\ x^2 & 0 & x^3+x^4 & 0 \end{pmatrix}}_{(F,8,\vec{0})-\text{order basis over } \mathbb{F}_2} \underbrace{\begin{pmatrix} x+x^2+x^3+x^4+x^5+x^6 \\ 1+x+x^5+x^6+x^7 \\ 1+x^2+x^4+x^5+x^6+x^7 \\ 1+x+x^3+x^7 \end{pmatrix}}_{F \text{ in } \mathbb{F}_2[x]^{4\times 1}} = 0^{4\times 1} \mod x^8$$

Order basis - Existence

Settings (reminder).

- $F \in \mathbb{F}[x]^{m \times n}$,
- $(F, \sigma) := \{ v \in \mathbb{F}[x]^{1 \times m} \text{ such that } v F = 0 \mod x^{\sigma} \}.$

Definition

An (F, σ) order basis P is a $\mathbb{F}[x]$ -module basis of (F, σ) that is row-reduced.

Proposition

There exists a row-reduced basis P of (F, σ) .

Remark

Existence but no unicity (>>> Popov form).

Proposition

There exists a row-reduced basis P of (F, σ) .

Naive proof (incorrect).

Consider the minimum of all the sorted $rdeg(P \cdot U)$ for all unimodular matrices $U \in \mathbb{F}[x]^{m \times m}$.

 \Rightarrow any basis $P \cdot U$ with minimal degree is an *order basis*.

Careful. The order \leq_{ob} on basis is NOT a total order.

We could have two bases whose row degrees are (1,2,3) and (1,1,4)!

→ We can not guarantee the existence of a minimum (yet!).

Some properties of row reduceness

Definition

If $\vec{v} := \text{rdeg}_{\vec{u}}(A)$ then the leading coefficient matrix $\text{lcoeff}(A) \in \mathbb{F}^{m \times n}$ of A is the constant coefficient of $x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}$.

Example:

If
$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1+x & 0 \\ 1 & x^2+x^3 & x & 0 \\ x^2 & 0 & x^3+x^4 & 0 \end{pmatrix}$$
 then $\vec{v} := \text{rdeg}(F) = (1,2,3,4)$ and

$$x^{-\vec{v}} \cdot A \cdot x^{\vec{s}} = \begin{pmatrix} 1 & 0 & x^{-1} & 1 \\ 1 & x^{-2} & x^{-2} + x^{-1} & 0 \\ x^{-2} & x^{-1} + 1 & x^{-2} & 0 \\ x^{-1} & 0 & x^{-1} + 1 & 0 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\text{lcoeff}(A)} + \mathcal{O}_{x \to \infty}(x^{-1})$$

Some properties of row reduceness

Definition

If $\vec{v} := \text{rdeg}_{\vec{u}}(A)$ then the leading coefficient matrix $\text{lcoeff}(A) \in \mathbb{F}^{m \times n}$ of A is the constant coefficient of $x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}$.

Lemma - Transitivity of the shifted degree (revisited)

Let $c := b \cdot A$, $\vec{v} = \operatorname{rdeg}_{\vec{u}}(A)$ and $w = \operatorname{rdeg}_{\vec{v}}(b)$.

If lcoeff(A) is (left) injective then $rdeg_{\vec{u}}(c) = w$.

Proof.

- Reminder: $rdeg_{\vec{u}}(c) = \vec{v} \Leftrightarrow rdeg(x^{-w} \cdot c \cdot x^{\vec{u}}) = 0$
- Then $x^{-w} \cdot c \cdot x^{\vec{u}} = \underbrace{(x^{-w} \cdot b \cdot x^{\vec{v}})}_{\text{lcoeff}(b) \text{ is}} \cdot \underbrace{(x^{-\vec{v}} \cdot A \cdot x^{\vec{u}})}_{\text{lcoeff}(A) \text{ is}}$ so lcoeff(c) is a non zero vector \Box

Some properties of row reduceness

Definition

If $\vec{v} := \text{rdeg}_{\vec{u}}(A)$ then the leading coefficient matrix $\text{lcoeff}(A) \in \mathbb{F}^{m \times n}$ of A is the constant coefficient of $x^{-\vec{v}} \cdot A \cdot x^{\vec{s}}$.

Lemma - Criteria for row reduceness

If lcoeff(A) is (left) injective, then A is row reduced.

Proof.

Let U be unimodular and $\vec{u} := \operatorname{rdeg}(A)$.

Since lcoeff(A) is injective, $rdeg(U \cdot A) = rdeg_{\vec{u}}(U) \geqslant \vec{u} = rdeg(A)$.

So A is row-reduced.

Note: In fact, lcoeff(A) injective $\Leftrightarrow A$ is row reduced.

Weak-Popov form:

Let [d] denote a polynomial of degree d

Row pivot is the rightmost element of maximal degree

A matrix W is in weak-Popov form if pivots have distinct indices

Example.

$$W = \begin{pmatrix} [1] & [1] & [1] & [1] \\ [2] & [1] & [1] & [1] \\ [1] & [2] & [2] & [1] \\ [3] & [4] & [3] & [3] \end{pmatrix}$$

[Mulders, Storjohann, 2003] Algorithm:

Algorithm - [Mulders, Storjohann, 2003]

Input : $A \in \mathbb{F}[x]^{m \times n}$

Output : its weak-Popov form $W \in \mathbb{F}[x]^{m \times n}$

Algorithm:

- 1. Add monomial multiples of one row to another to
 - \rightarrow either move a pivot to the left
 - \rightarrow or decrease the degree of a row
- 2. Stop when no more transformations are possible

Example.

$$\begin{pmatrix}
[3] & [3] & [2] \\
[1] & [1] & [0] \\
[3] & [2] & [2]
\end{pmatrix}
\xrightarrow{(1)} \begin{pmatrix}
[3] & [2] & [2] \\
[1] & [1] & [0] \\
[3] & [2] & [2]
\end{pmatrix}
\xrightarrow{(2)} \begin{pmatrix}
[2] & [2] & [2] \\
[1] & [1] & [0] \\
[3] & [2] & [2]
\end{pmatrix}$$

- (1) add $*x^2$ times second row to first row (appropriate $*\in\mathbb{F}$)
- (2) add * times last row to first row
- final matrix is in weak Popov form (distinct pivot locations)

Proposition

There exists a row-reduced basis of (F, σ) .

Proof.

Apply [Mulders, Storjohann, 2003] to a row basis R of (F, σ) .

Transformations are unimodular so $W = U \cdot R$ with U unimodular.

W has distinct pivot locations so lcoeff(W) is injective $\Rightarrow W$ is row reduced.

Notes.

- 1. Weak Popov \Rightarrow Row reduced
- 2. Complexity of [Mulders, Storjohann, 2003] : $\mathcal{O}(m^3 d^2)$
 - → we will do better

Outline of the talk

- 1. Polynomial matrix multiplication in time $\tilde{\mathcal{O}}(m^\omega d)$
- 2. Order bases in $\tilde{\mathcal{O}}(m^{\omega}d)$
 - a. Definition and properties
 - b. Algorithms and complexity
- 3. Lattice reduction in $\tilde{\mathcal{O}}(m^\omega d)$

Order basis algorithms - Base case $\sigma = 1$

Basic ideas if $\sigma = 1$ and $F \in \mathbb{F}^{m \times n}$:

- If $\binom{S}{K}F = \binom{R}{0}$ with R full rank then $\binom{xS}{K}F = \binom{xR}{0} = 0 \mod x$ $\rightsquigarrow \binom{xS}{K}$ is a basis of the module (F,1).
- Take a supplementary S of the kernel K that involves the smallest degree lines of F \leadsto consider the row echelon form of F

Algorithm:

Algorithm Basis

Input: $F \in (\mathbb{F}[x]_{\leq 0})^{m \times n}$ and a shift vector \vec{s}

Output: an $(F, 1, \vec{s})$ order basis and its \vec{s} -row degree

Algorithm:

- 1. Assume \vec{s} is increasing
- 2. Compute a row echelon form $F = \tau \cdot L \cdot E$ with $r = \operatorname{rank}(E)$ τ a permutation, $L = \begin{pmatrix} L_r & 0 \\ G & I_{m-r} \end{pmatrix}$ lower triangular, $E = \begin{pmatrix} E' \\ 0 \end{pmatrix}$ row echelon
- 3. **return** $\begin{pmatrix} x L_r & 0 \\ G & I_{m-r} \end{pmatrix}$, $\tau^{-1} \vec{s} + [1_r, 0_{n-r}]$

Splitting the order basis problem

How can we split the order basis problem?

- 1. Let P_1 be a (F, σ_1, \vec{s}) order basis of \vec{s} -row degree \vec{u} Let $M \in \mathbb{F}[x]^{m \times n}$ be s.t. $P_1 F = x^{\sigma_1} M$
- 2. Let P_2 be a (M, σ_2, \vec{u}) order basis of \vec{u} -row degree \vec{v}
- 3. Remark: $P_2 P_1 F = P_2 (x^{\sigma_1} M) = x^{\sigma_1} (P_2 M) = 0 \mod x^{\sigma_1 + \sigma_2}$

Theorem

 $P_2 P_1$ is a $(F, \sigma_1 + \sigma_2, \vec{s})$ order basis of \vec{s} -row degree \vec{v} .

Remarks.

- The module $(F, \sigma_1 + \sigma_2, \vec{s})$ is a subset of (F, σ_1, \vec{s}) of basis P_1 \leadsto Express the module $(F, \sigma_1 + \sigma_2, \vec{s})$ on the basis $P_1 \to$ reduce the problem
- Need of \vec{s} -row degree:

Change of basis by $P_1 \Rightarrow$ shift the row degree by $\vec{s} := rdeg(P_1)$

Order basis algorithms

Input: $F \in (\mathbb{F}[x]_{<\sigma})^{m \times n}$, a shift vector \vec{s} and an order $\sigma \in \mathbb{N}$

Output: an (F, σ, \vec{s}) order basis and its \vec{s} -row degree

1. Quadratic algorithm M-Basis

Iterative : $(F,1) \rightarrow (F,2) \rightarrow (F,3) \rightarrow \cdots \rightarrow (F,\sigma)$

Algorithm M-Basis

- 1. $P_0 := \mathsf{Basis}(F \bmod x)$
- 2. **for** $k = 1, ..., \sigma 1$ **do**
- 3. $F' := x^{-k} P_{k-1} F$
- 4. $M_k := \mathsf{Basis}(F' \bmod x)$
- 5. $P_k := M_k P_{k-1}$
- 6. return $P_{\sigma-1}$

In terms of polynomial multiplication, naive multiplication $P_{\sigma-1} = M_{\sigma-1} (\cdots M_3 (M_2 M_1))$ where each M_i is of degree one.

Complexity: $\mathcal{O}(m^{\omega} \sigma^2)$

Existing order basis algorithms

Input: $F \in (\mathbb{F}[x]_{<\sigma})^{m \times n}$, a shift vector \vec{s} and an order $\sigma \in \mathbb{N}$

Output: an (F, σ, \vec{s}) order basis and its \vec{s} -row degree

2. Quasi-linear algorithm PM-Basis

Divide-and-conquer: $(F,1) \rightarrow (F,2) \rightarrow (F,4) \rightarrow \cdots \rightarrow (F,\sigma/2) \rightarrow (F,\sigma)$

Algorithm PM-Basis

- 1. if $\sigma = 1$ then
- 2. **return** Basis($F \mod x$)
- 3. else
- 4. $P_{\text{low}} := \mathsf{PM}\text{-}\mathsf{Basis}(F, \lfloor \sigma/2 \rfloor)$
- 5. Let F' be s.t. $P_{\text{low}} \cdot F = x^{\lfloor \sigma/2 \rfloor} \cdot F'$
- 6. $P_{\text{high}} := \mathsf{PM-Basis}(F', \lceil \sigma/2 \rceil)$
- 7. **return** $P_{\text{high}} \cdot P_{\text{low}}$

First subproblem

Update problem

Second subproblem

Solve original problem

In terms of polynomial multiplication, binary multiplication tree.

Complexity: $\mathcal{O}(\mathsf{MM}(m,\sigma)\log(\sigma)) = \tilde{\mathcal{O}}(m^{\omega}\sigma)$

Outline of the talk

- 1. Polynomial matrix multiplication in time $\tilde{\mathcal{O}}(m^\omega d)$
- 2. Order bases in $\tilde{\mathcal{O}}(m^{\omega}d)$
 - a. Definition and properties
 - b. Algorithms and complexity
- 3. Lattice reduction in $\tilde{\mathcal{O}}(m^\omega d)$

How can we compute the row reduction of a matrix :

- [Mulders, Storjohann, 2003] complexity is $\mathcal{O}(n^3 d^2)$
- \hookrightarrow Let's sketch the ideas to get to $\tilde{\mathcal{O}}(n^{\omega}d)$

Problem

Let $A \in \mathbb{F}[x]^{m \times m}$ be the matrix to reduce and $R = U \cdot A$ its row-reduction (U unimodular)

Idea 1.

We want to express R as an order basis $\leadsto R$ would be row reduced.

Problem

Let $A \in \mathbb{F}[x]^{m \times m}$ be the matrix to reduce and $R = U \cdot A$ its row-reduction (U unimodular)

Idea 1.

We want to express R as an order basis $\rightsquigarrow R$ would be row reduced.

Use the relation
$$(U R) \cdot \begin{pmatrix} A \\ -I \end{pmatrix} = 0 \leadsto (U R)$$
 is part of an order basis of $F = \begin{pmatrix} A \\ -I \end{pmatrix}$.

Example of an $A \in \mathbb{F}[x]^{30 \times 30}$ with degree 12

$$\begin{bmatrix} [299] & \dots & [300] \\ \vdots & \ddots & \vdots \\ [303] & \dots & [304] \end{bmatrix} \cdot \begin{bmatrix} [12] & \dots & [11] \\ \vdots & \ddots & \vdots \\ [12] & \dots & [10] \end{bmatrix} = \begin{bmatrix} [0] & \dots & [0] \\ \vdots & \ddots & \vdots \\ [1] & \dots & [4] \end{bmatrix}$$

Remark. If A is of degree d, U can have degree $m\,d$

Problem

Let $A \in \mathbb{F}[x]^{m \times m}$ be the matrix to reduce and $R = U \cdot A$ its row-reduction (U unimodular)

Idea 1.

We want to express R as an order basis $\rightsquigarrow R$ would be row reduced.

Use the relation $(U R) \cdot \begin{pmatrix} A \\ -I \end{pmatrix} = 0 \leadsto (U R)$ is part of an order basis of $F = \begin{pmatrix} A \\ -I \end{pmatrix}$.

In practice:

Compute an (F, σ, \vec{s}) order basis with

$$F := \begin{pmatrix} A \\ -I \end{pmatrix}$$
, $\sigma := m d + d + 1$ and $\vec{s} := (1, ..., 1, m d, ..., m d)$

The order basis will be $\begin{pmatrix} U & R \\ * & * \end{pmatrix}$

Cost: Order basis of order $\sigma = m d \implies \tilde{\mathcal{O}}(m^{\omega} (m d))$

Problem

Let $A \in \mathbb{F}[x]^{m \times m}$ be the matrix to reduce and $R = U \cdot A$ its row-reduction (U unimodular)

Idea 2: Use the dual space

$$(R \ U) \cdot \begin{pmatrix} A^{-1} \\ -I \end{pmatrix} = 0$$

 $\leadsto U$ is still of degree $m \cdot d$

Problem

Let $A \in \mathbb{F}[x]^{m \times m}$ be the matrix to reduce and $R = U \cdot A$ its row-reduction (U unimodular)

Idea 3: Use the dual space and look at an high-order component

On a scalar example

$$A^{-1} = \frac{U}{R} = \frac{1+3x+4x^2+6x^3+x^4}{1+x}$$
$$= 1+2x+2x^2+4x^3+4x^4+3x^5+4x^6+3x^7+4x^8+\cdots$$

However

$$(A^{-1}\operatorname{div} x^5) x^5 = 3 x^5 + 4 x^6 + 3 x^7 + 4 x^8 + \dots = \frac{3}{1+x} x^5$$

So
$$\left(\begin{array}{cc} R & U' \end{array} \right) \cdot \left(\begin{array}{cc} A^{-1}\operatorname{div} x^{md} \\ -I \end{array} \right) = 0$$
 with U' of degree d

Cost: Order basis of order $\sigma = d \implies \tilde{\mathcal{O}}(m^{\omega} d)$

References

[ZHOU Ph.D. 2012]

Fast Order Basis and Kernel Basis Computation and Related Problems

[GIORGI, JEANNEROD, VILLARD, 2003]

On the complexity of polynomial matrix computations

[GIORGI, LEBRETON, 2014]

Online order basis algorithm and its impact on the block Wiedemann algorithm

[Slides of STORJOHANN]

Lattice reduction of polynomial matrices

[Beckermann, Labahn, 1994]

A uniform approach for the fast computation of Matrix-type Pade approximants